

Figure S1. qPCR detection of knockdown efficiency of $A x l, A x l-S$ and $A x l-L$ in liver cancer cells
qPCR was used to detect the knockdown efficiency of $A x l(\mathrm{~A}), A x l-L(\mathrm{~B})$ and $A x l-S(\mathrm{C})$ in HepG2 cells; qPCR was used to detect the knockdown efficiency of $A x l(\mathrm{D})$, Axl-L (E) and Axl-S (F) in HCCLM3 cells. Data are presented as mean \pm S.D. $(N=3)$, and one way ANOVA followed by Tukey's test was performed for statistical analysis. The "****" indicates " $\mathrm{P}<0.001$ " versus the control group.

Figure S2. Transcriptome sequencing analysis of differentially expressed genes in high and low metastatic liver cancer cells
(A) Volcano Mapping Analysis of Differentially Expressed Genes in HCCLM3 and HepG2 Cells.

Transcriptome sequencing analysis of differentially expressed hnRNP family proteins (A), SR family proteins (B) and other splicing proteins (C) in HCCLM3 cells and HepG2 cells.

A

Expression of PTBP1 in HCC based on Sample types

B
Expression of PTBP1 in HCC based on tumor grade

C

D

Figure S3. Clinical analysis of the effect of PTBP1 and Axl expression level on liver cancer
(A) The expression level of PTBP1 and Axl in liver cancer tissues and normal liver tissues. (B)

The expression level of PTBP1 and Axl in different stages of liver cancer. (C) Effect of difference in expression level of PTBP1 and Axl on survival probability of patients with liver cancer. (D) The clinical significance of PTBP1/ Axl.

Figure S4. Verification of over-expression or knockdown efficiency of PTBP1

Western-blot detects the over-expression (A) or knockdown (B) efficiency of PTBP1. (C-D) Statistical difference analysis of PTBP1 over-expression efficiency; (E-F) Statistical difference analysis of PTBP1 knockdown efficiency. Data are presented as mean \pm S.D. $(N=3)$, one way ANOVA followed by Tukey's test was performed for statistical analysis. The "***" indicates " $\mathrm{P}<0.001 "$ versus the control group.

Figure S5. qPCR was used to detect the effect of PTBP1 on the $\boldsymbol{A x l}$-S isoform (minigene level)

Over-expression or knockdown of the effect of PTBP1 on the expression levels of Axl-S isoform (minigene levels) in HepG2 (A) or HCCLM3 (B) cells. Data are presented as mean \pm S.D. ($N=3$), one way ANOVA followed by Tukey's test was performed for statistical analysis. The "*, **, ***" indicates " $\mathrm{P}<0.05,0.01,0.001$ " versus the control group, respectively.

HepG2-minigene

Figure S6. qPCR was used to examine the effect of PTBP1 on wild-type or mutant Axlminigene

Data are presented as mean \pm S.D. $(N=3)$, one way ANOVA followed by Tukey's test was performed for statistical analysis. The "**" indicates " $\mathrm{P}<0.01$ " versus the control group; The "\#" indicates " $\mathrm{P}<0.05$ " versus the "PTBP1+WT" group.

Figure S7. qPCR detection of over-expression efficiency of Axl-L or Axl-S isoforms in liver cancer cells
qPCR was used to detect the over-expression efficiency of $A x l-L$ (A) and Axl-S (B) in HepG2 cells; qPCR was used to detect the over-expression efficiency of Axl-L (C) and Axl-S (D) in HCCLM3 cells. Data are presented as mean \pm S.D. $(N=3)$, and one way ANOVA followed by Tukey's test was performed for statistical analysis. The "***" indicates " $\mathrm{P}<0.001$ " versus the control group.

Figure S8. Effects of expression levels of PTBP1 and Axl isoforms on growth and proliferation of hepatoma cells
(A) Tumor size appearance of each group of mice, and the red circle marks the tumor. (B) The average weight of tumors in each group of mice. (C) The expression level of Ki67 in tumor tissues was analyzed by immunohistochemistry, and the average Ki67 positive cells in tumor tissues of each group were analyzed by image J software. Data are presented as mean \pm S.D. ($N=6$), and one way ANOVA followed by Tukey's test was performed for statistical analysis. The "*, **, ***" indicates " $\mathrm{P}<0.05,0.01,0.001$ " versus the corresponding group, respectively.

Figure S9. Structural diagram to explain the design of Axl-L and Axl-S knockdown sites.

Supplementary Table 1 List of primers

Primer names	Sequences	Applications
Axl-E9-FP	5'GTGCTAATGGACATAGGGCTAA G3'	Fig. 1 B, 1 C, 3 F, 4 B, 4 C and 5 A
Axl-E11-RP	5'CCATAACGGGTCTCCTTCTTTC3'	Fig. 1 B, Fig. 3 D, 3 E, 3 G, 4 B, 4 C, 5 A and Fig. S1 and S6
Axl-S-RT-RP	5'GGTTCCTTCACTGGGCGCC3'	Fig. 1 C and Fig. S5, S6
GAPDH-RTFP	5'GACACCCACTCCTCCACCTTT3'	Fig. 1 C, Fig. 3 A, 3 D, 3 E, 3 F, Fig. S1 and S7
GAPDH-RTRP	5'TGTTGCTGTAGCCAAATTCGTT3'	Fig. 1 C, Fig. 3 A, 3 D, 3 E, 3 F, Fig. S1 and S7
hnRNPA1-RT- FP	$\begin{gathered} \text { 5'CTTTGCCTTTGTAACCTTTGACG } \\ 3^{\prime} \end{gathered}$	Fig. 3 A
hnRNPA1-RTRP	5'TCTTTGGCTGGATGAAGCACTA G3'	Fig. 3 A
hnRNPA/B-RT-FP	5'TAGACCAGAAGGAGCACAGGC3	Fig. 3 A
hnRNPA/B-RT-RP	5'TGGCTTCAGGATTCAGACCC3"	Fig. 3 A
hnRNPC-RTFP	5'TAGTGCCCTCGAAACGTCAG3'	Fig. 3 A
hnRNPC-RT- RP	5'TAGTGCCCTCGAAACGTCAG3'	Fig. 3 A
hnRNPF-RT- FP	5'CAGGCAGAGTGGTGAGGCT3'	Fig. 3 A
hnRNPF-RT- RP	5'CTCGGTTCTGTGGGACTTGA3'	Fig. 3 A
hnRNPH2-RT- FP	5'GCTGGGTTTGAAAGGATGAG3'	Fig. 3 A
hnRNPH2-RT- RP	5'TGTGGTGCTCTGGAAACTGG3'	Fig. 3 A

PTBP1-RT-FP	5'TGGATGGTGCTCCTTCTCGT3'	Fig. 3 A
PTBP1-RT-RP	5'GCTGCTTCCTCGGTTGCTAG3'	Fig. 3 A
SRp30-RT-FP	$\begin{aligned} & \text { 5'GGGATGTCTGTTATGCTGATGTG } \\ & \text { C3' } \end{aligned}$	Fig. 3 A
SRp30-RT-RP	5'GGGAACCCCTGCTTTGGTAT3'	Fig. 3 A
SRp38-RT-FP	5'CACTTGATTTCTACACTCGCCG3'	Fig. 3 A
SRp38-RT-RP	5'TACACATTCCTCCCTTCCTTGG3'	Fig. 3 A
SRp40-RT-FP	5'GGACGATACTCTGACCGTTTTA3'	Fig. 3 A
SRp40-RT-RP	5'CTTCCCCAGCTTGTCTCATG3'	Fig. 3 A
SRp75-RT-FP	5'TGTGGTGAGCGAGTAATTGTTG3	Fig. 3 A
SRp75-RT-RP	5'TTCATTTTTGCGTCCCTTGTG3'	Fig. 3 A
Tra2 α-RT-FP	5'AATCCAGATCCCAACACTTGCC3	Fig. 3 A
Tra2 α-RT-RP	5'ATCCACCCGAATTCTTCTACCA3'	Fig. 3 A
Fox1-RT-FP	$\begin{array}{\|c\|} \hline \text { 5'AAAACAAGTCTCAGCCCAAGCG } \\ 3^{\prime} \end{array}$	Fig. 3 A
Fox1-RT-RP	5'CGAAAGTTACGAAACCAAATCC CT3'	Fig. 3 A
Fox2-RT-FP	5'TTGCCAAACTGCCCAAACAT3'	Fig. 3 A
Fox2-RT-RP	5'GCAGAGCAGCAACTCACCCA3'	Fig. 3 A
Celf1-RT-FP	5'AGATGTTTGTGGGCCAGGTT3'	Fig. 3 A
Celf1-RT-RP	5'TGGGAGGACTTTCATGTTGTGA3	Fig. 3 A
Celf4-RT-FP	5'AAACGGACAGGCTGACAACG3'	Fig. 3 A
Celf4-RT-RP	5'CCTTCAGAACCGTAAGCTCGTA3	Fig. 3 A
Axl-E11-FP	5'TGAAGGAACCTTCAACTCCTGC C3'	Fig. 3 D, 3 E, 4 B, 4 C and Fig. S1 A and S1 D.
Axl-E10-FP	$\begin{gathered} \text { 5'TCCCTTACTCGTGCCACACCCTC } \\ \text { AC3' } \end{gathered}$	Fig. 3 D, 3 E, 4 B, 4 C, 5 A and Fig. S1 B, S1 E, S7 A and S7 C.

Axl-S-FP	5'GGCGCCCAGTGAAGGAACC3'	Fig. 3 D, 3 E and Fig. S1 C, S1 F, S7 B and S7 D.
Axl-S-RP	5'GGTTCCTTCACTGGGCGCC3'	Fig. 1 C, S5 and S6
pcDNA3.1-exFP	5'TAATACGACTCACTATAGGGAG ACC3'	Fig. 3 H, 3 I and S5
Axl-E9-RP	5'CTGGGCGCCAGGCCTCCAGG3'	Fig. 3 H, 3I, 4 B, 4 C, 5 A and S5
$\begin{gathered} \text { Axl-L-ORF- } \\ \text { HR-FP } \end{gathered}$	$\begin{gathered} \text { 5'GTTAATTAAGGATCCGTTTGC } \underline{C} \\ \text { CACCATGGCGTGGCGGTGCCCCA } \\ \text { G3' } \end{gathered}$	Construction of pMXs- $A X L-L$
$\begin{gathered} \hline \text { AXL-L-ORF- } \\ \text { HR-RP } \end{gathered}$	5'CGTCCTTGTAGTCTTGTTTTC AGGCACCATCCTCCTGCCCT3'	Construction of pMXs-AXL-L
pMXs-Axl-S- FP	5'TGAAGGAACCTTCAACTCCTGC 3'	Construction of pMXs- $A X L-S$
$\begin{gathered} \text { pMXs-Axl-S- } \\ \text { RP } \end{gathered}$	5'CTGGGCGCCAGGCCTCCAG 3'	Construction of pMXs- $A X L-S$
pMXs-FP	5^{\prime} GACCCCGGGGGTGGACCATCCTC T3'	Sequencing
pMXs-RP	5' TTATCGTCGACCACTGTGCTG3'	Sequencing
shAxl-1 $\mathbf{1}^{\text {st }}$	5'gatccccCGTGGAGAACAGCGAGA TTTAttcaagaga3'	Construction of pSUPER$\operatorname{sh} A X L$
$\operatorname{shAxl}-2^{\text {nd }}$	5'TAAATCTCGCTGTTCTCCACGtttt a3'	Construction of pSUPER$\operatorname{sh} A X L$
shAxl-3 ${ }^{\text {rd }}$	5'TAAATCTCGCTGTTCTCCACGgg g3'	Construction of pSUPER$\operatorname{sh} A X L$
$\operatorname{shAxl}-4^{\text {th }}$	5'agcttaaaaaCGTGGAGAACAGCGA GATTTAtctcttgaa3'	Construction of pSUPER- $\operatorname{sh} A X L$
shAxl-L-1 ${ }^{\text {st }}$	5'gatccccGGCAAGCACAGCCAGTC CACCttcaagaga3'	Construction of pSUPER- $\operatorname{sh} A X L-L$
shAxl-L-2 ${ }^{\text {nd }}$	5'GGTGGACTGGCTGTGCTTGCCttt tta3'	Construction of pSUPERsh $A X L-L$

shAxl-L-3 ${ }^{\text {rd }}$	$\begin{gathered} \text { 5'GGTGGACTGGCTGTGCTTGCCgg } \\ \text { g3' } \end{gathered}$	Construction of pSUPER- $\operatorname{sh} A X L-L$
shAxl-L-4 ${ }^{\text {th }}$	5'agcttaaaaaGGCAAGCACAGCCAG TCCACCtctcttgaa3'	Construction of pSUPER- $\operatorname{sh} A X L-L$
$\operatorname{sh} A x l-S-1{ }^{\text {st }}$	5'gatccccTGGCGCCCAGTGAAGGA ACCttcaagaga3'	Construction of pSUPER-shAXL-S
shAxl-S-2 ${ }^{\text {nd }}$	5' GGTTCCTTCACTGGGCGCCAttttta3	Construction of pSUPER - $\operatorname{sh} A X L-S$
shAxl-S-3 ${ }^{\text {rd }}$	5' GGTTCCTTCACTGGGCGCCAggg3'	Construction of pSUPER - $\operatorname{sh} A X L-S$
shAxl-S-4 ${ }^{\text {th }}$	5'agcttaaaaaTGGCGCCCAGTGAAGG AACCtctcttgaa3'	Construction of pSUPER-shAXL-S
pSUPER (+19)	$\overline{5^{\prime}}$ CGACGGTATCGATAAGCTTAAAA $\text { A } 3 \text { ' }$	Sequencing
pSUPER (-20)	5' TGTGTAGCGCCAAGTGCCCA 3'	Sequencing
Axl-mini-FP	5'GTGCTAATGGACATAGGGCTAA3	Construction of pcDNA3.1-AXLminigene
Axl-mini-RP	5'CCATAACGGGTCTCCTTCTTTC3'	Construction of pcDNA3.1-AXLminigene
Axl-mini-HR- FP	5'TAGTCCAGTGTGGTGGAATTC GTGCTAATGGACATAGGGCTAA3'	Construction of pcDNA3.1-AXLminigene
$\begin{gathered} \text { Axl-mini-HR- } \\ \text { RP } \end{gathered}$	5'AACGGGCCCTCTAGACTCGAG CCATAACGGGTCTCCTTCTTTC3'	Construction of pcDNA3.1-AXLminigene
Axl-Intron-9-1- MT-FP	$\begin{gathered} \text { 5'TGAGAGCTG } \underline{\underline{A} C C T} \underline{\underline{A} A C T C} \underline{\underline{A} C T T} \\ \text { A } \underline{\underline{A} C C A T G 3}, \end{gathered}$	Construction of mutant pcDNA3.1-AXLminigene

Axl-Intron-9-1- MT-RP	5'CATGGTTAAGTGAGTTAGGTCA GCTCTCA3'	Construction of mutant pcDNA3.1-AXLminigene
Axl-Intron-9-2- MT-FP	5'ACATC $\underline{\underline{A C C T C A C T G T C A T T T A T T}}$ CACACA3'	Construction of mutant pcDNA3.1-AXLminigene
Axl-Intron-9-2-MT-RP	5'TGTGTGAATAAATGACAGTGAG GTGATGT3'	Construction of mutant pcDNA3.1-AXLminigene
Axl-minigene-MS2-FP	5'GCACAGTGGCGGCCGCTCGAG CCGGGCCCTATATATGGA3'	Construction of pcDNA3.1-AXL-minigene-MS2 plasmid
Axl-minigene-MS2-RP	5'AACGGGCCCTCTAGACTCGAG TCGATCGCGCGCAGATCT3'	Construction of pcDNA3.1-AXL-minigene-MS2 plasmid
Ax1-In9-FP	5'TCTCTCCCTGACAGCCCTGACT3	CLIP. Fig. 4 B, 4C and 5A
Axl-In9-RP	5'AAGGGAGTGAGGGTGTGGCAC G3'	CLIP. Fig. $4 \mathrm{~B}, 4 \mathrm{C}$ and 5A
Axl-E10-RP	5'GAGAAACATGAAAGGGATGTGC 3'	CLIP. Fig. 4 B, 4C and 5A
Ax1-In10-1-FP	5'TCCTCCTCACATCCATCCCTCTC 3^{\prime}	CLIP. Fig. 4 B, 4C and 5A
Ax1-In10-1-RP	5'GAATGAGAAGTGTGTTGTGCAA TGG3'	CLIP. Fig. 4 B, 4C and 5A
Axl-In10-2-FP	5'CTCCATTCCACCCCTGCCCTTT3'	CLIP. Fig. 4 B, 4C and 5A
Axl-In10-2-RP	5'AGGGGCATGGTAAGCATATACA G3'	CLIP. Fig. 4 B, 4C and 5A
Ax1-In10-3-FP	5'TCTCTCCCTCCCATTCCACACTC 3^{\prime}	CLIP. Fig. $4 \mathrm{~B}, 4 \mathrm{C}$ and 5A
Axl-In10-3-RP	5'AAGAGAGTGCCAGGATAGTTCA	CLIP. Fig. $4 \mathrm{~B}, 4 \mathrm{C}$ and

	GG3'	5A

Bold of Axl-L-ORF-HR-FP/RP are the homologous sequences of pMXs-Flag vector; Bold of Axl-mini-HR-FP/RP and Axl-minigene-MS2-FP/RP are the homologous sequences of pcDNA3.1-(+) vector; The underlined GCCACC is the Kozak sequence (Applied to pMXs-Axl-L and pMXs-Axl-S plasmids); The Double underline "T" or " A " represents the mutation site (Applied to Construction of mutant pcDNA3.1-Axl-minigene); The wavy line marks GAATTC and CTCGAG are the cleavage sites of EcoR Iand Xho I, respectively.

