1	Supplementary appendix
2	Autoantibody profiling identifies predictive biomarkers of
3	response to anti-PD1 therapy in cancer patients
4	
5	Supplemental Methods
6	Supplementary Tables: 4
7	Supplemental Figures: 8
8	

9 Supplemental Tables: 4

Supplemental	Autoantibodies selected by protein microarray fluorescent
Table S1	signal and prior knowledge.
Supplemental	Performance of PD1 IgG2 and PD-L1 IgG2 as predictive
Table S2	markers.
Supplemental	The human proteins associated with five AAb biomarkers
Table S3	identified by the random walking with restart (RWR) approach.
Supplemental	Pathway enrichment analysis of the AAb biomarkers and their
Table S4	protein interactions using the Reactome database.

10

11 Supplemental Figures: 8

Supplementary	Schematic	illustration	of protei	n microarray	preparation	and
Supplementary	Schematic	illustration	of protei	n microarray	preparation	an

Figure S1	plasma AAb screening.
Supplementary	Reproducibility of plasma autoantibody detection using
Figure S2	NAPPA protein microarrays.
Supplementary	Reproducibility of serological antibody detection using
Figure S3	ELISA.
Supplementary	Jitter plot analysis of differentially expressed plasma AAbs in
Figure S4	ASPS, NSCLC and lymphoma patients.
Supplementary	Comparison of PD1 and PD-L1 AAb expression between the
Figure S5	responder and non-responder lymphoma patient groups at the
	evaluation time point of 4.5 months.
Supplementary	Comparison of PD1 and PD-L1 AAb expression between the
Figure S6	responder and non-responder lymphoma patient groups at the
	evaluation time point of 6 months.
Supplementary	Distribution of PD1/PD-L1 IgG and IgG2 AAb expression in
Figure S7	consistent responder and non-responder lymphoma patients.
Supplementary	Protein-protein interaction network of the AAb biomarkers.
Figure S8	

15 Supplementary Methods

16 **Bioinformatics analysis**

The circus correlation analysis was performed using software at http://www.circos.ca/ 17 and plotted with Circos[1]. The protein class analysis for the proteins displayed on the 18 NAPPA array, candidate markers and PPI subnetwork were performed using the 19 PANTHER database[2]. Prior evidence of the candidate markers were derived from 20 the human AAg database AAgAtlas (http://biokb.ncpsb.org/aagatlas/)[3]. The human 21 22 protein-protein interaction subnetwork analysis was performed using the IntAct 23 database[4] by random walking[5]. The pathway enrichment analysis was performed using the Reactome database [6]. 24

25 Functional analysis of validated AAb biomarkers by protein-protein interactions

Five protein antigens (PD1, PD-L1, P53, SIX2, EIF4E2) of the identified AAb 26 biomarkers in this study were selected together as seed nodes. The random walking 27 with restart (RWR) approach was then employed to prioritize the relativity of the 28 other human proteins compared to the five markers with the steadily reaching 29 30 probability at the convergence state[5]. For the subnetwork construction, the largest average clustering coefficient of the subnetwork composed of the higher prioritized 31 32 proteins determined the threshold of the top-rank proteins. For RWR in the human protein-protein interaction network, each edge was weighted with the reciprocal of the 33 given node's degree. The restarting parameter of RWR was set at 0.7 for simplicity[5]. 34 35 The subnetwork analysis was implemented and plotted with the Python Networkx and Matplotlib modules, respectively. 36

37

38 **References**

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information
 aesthetic for comparative genomics. Genome Res. 2009; 19: 1639-45.

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new
PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019; 47:
D419-D26.

Wang D, Yang L, Zhang P, LaBaer J, Hermjakob H, Li D, et al. AAgAtlas 1.0: a human autoantigen
database. Nucleic Acids Res. 2017; 45: D769-D76.

Alonso-Lopez D, Campos-Laborie FJ, Gutierrez MA, Lambourne L, Calderwood MA, Vidal M, et al.
 APID database: redefining protein-protein interaction experimental evidences and binary
 interactomes. Database (Oxford). 2019; 2019.

Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate
 disease genes. Am J Hum Genet. 2008; 82: 949-58.

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome
 Pathway Knowledgebase. Nucleic Acids Res. 2018; 46: D649-D55.

Yu X, Wallstrom G, Magee DM, Qiu J, Mendoza DE, Wang J, et al. Quantifying antibody binding on
 protein microarrays using microarray nonlinear calibration. Biotechniques. 2013; 54: 257-64.

8. Wang H, Demirkan G, Bian X, Wallstrom G, Barker K, Karthikeyan K, et al. Identification of
Antibody Against SNRPB, Small Nuclear Ribonucleoprotein-Associated Proteins B and B', as an
Autoantibody Marker in Crohn's Disease using an Immunoproteomics Approach. J Crohns Colitis. 2017;
11: 848-56.

65 Supplementary Figures

66 Figure S1

68 Figure S1. Schematic illustration of protein microarray preparation and plasma

AAb screening. (A) Workflow of serum AAb detection using self-assembed protein microarrays; (B) Protein class analysis of 2300 human proteins used for screening of discovery cohort 1. (C) Protein class analysis of 4600 human proteins used for screening of discovery cohort 2; (D) Representative images of human cDNA microarray and protein microarrays; (E) Correlation between the fluorescent signals of different protein microarrays with anti-GST antibody staining representing levels of displayed proteins;

Figure S2. Reproducibility of plasma AAb detection using NAPPA protein
microarrays. The autoantibody for the same plasma sample was detected using
NAPPA protein microarray on different days. The red spots indicated positive
controls.

90 Figure S3. Reproducibility of serological antibody detection using ELISA. (A)

and (B) are the correlation analyses of ELISA signals within and between different
96-well plates, respectively. (C) and (D) are the intra-CV and inter-CV of ELISA
assays within and across different experiments as previously described [7].

Figure S4. Jitter plot analysis of differentially-expressed plasma AAbs in ASPS,
NSCLC and lymphoma patients. The statistical analysis was performed using the
Mann-Whitney U test. *, **, ***, **** in the graphs correspond to a p-value of <0.05,
<0.01, <0.001 and <0.0001, respectively.

Figure S5. Comparison of PD1 and PD-L1 AAb expression between the responder and non-responder lymphoma patient groups at the evaluation time point of 4.5 months. Patients with PD1 IgG2 and PD-L1 IgG2 AAbs above the cut-off are shown as red dots.

- ----

Figure S6. Comparison of PD1 and PD-L1 AAb expression between the responder and non-responder lymphoma patient groups at the evaluation time point of 6 months. Patients with PD1 IgG2 and PD-L1 IgG2 AAbs above the cut-off are shown as red dots.

Figure S7. Distribution of PD1/PD-L1 IgG and IgG2 AAb expression in consistent responder and non-responder lymphoma patients. RRR and NNN are defined as patients that showed consistent response (R) and non-response (NR) to PD1 immunotherapy at 3 months, 4.5 months, and 6 months. The sample distribution of the PD1/PDL1 IgG and IgG2 values was based on the Gaussian kernel density estimation, which was implemented and plotted with the Python Seaborn module.

145

- 146
- 147

148

149

150

151

Figure S8. Protein-protein interaction network of the AAb biomarkers. The 154 human protein-protein interaction subnetwork analysis of 5 picked markers (EIF4E2, 155 P53, SIX2, PD-L1, PD1) was based on the protein-protein interaction database IntAct. 156 The five markers were selected together as the seed nodes and the random walking 157 with restart (RWR) approach was employed to prioritize the relativity of the other 158 159 human proteins with the five markers with the steadily reaching probability at the convergence state. For the subnetwork construction, the threshold of the top-rank 160 161 proteins was determined when the average clustering coefficient of the subnetwork composed of the higher prioritized proteins above the threshold was largest. For RWR 162 in the human protein-protein interaction network, the edge from a given node to 163 another node was weighted with the reciprocal of the given node's degree. The 164 165 restarting parameter of RWR was set at 0.7 for simplicity. The subnetwork analysis

- 166 was implemented and plotted with the Python Networkx and Matplotlib modules,
- 167 respectively.

Ptient No.	1 2	3	4	56	57	78	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	Evidence in	Assoc	ciation with
Cancer	L L	LI	LC A	A A	A I	LLC	C L	LC	L	L	L	L	A	A	A	A	A	LC	LC	L	А	А	LC	LC	L	LC	LC	LC	LC	LC	LC	А	А	A	AAg Atlas	cancer	r (PMID)
Response-6M	R R	R	R I	R F	R F	RR	R	R	R	R	R	R	R	R	R	R	R	NR	database																		
													Disc	cove	ery s	stag	e1																				
GEMIN2	0 0	0	0	5														0	0	0	0	0													Yes	Yes	29371219
DDX49	4 0	0	0 0	0														0	0	0	0	0													Yes	Yes	29618122
EIF4E2	0 5	0	0 (0														0	0	0	0	0													Yes	Yes	24408918
CCDC130	0 0	0	0 :	5														0	0	0	0	0													Yes	Yes	22276133
MRPL44	0 0	0	5 (0														0	0	0	0	0													Yes	Yes	25590838
P53	0 0	3	0 (0														0	0	0	0	0													Yes	Yes	19410540
FATE1	0 0	0	4 (0														0	0	0	0	0														Yes	31036566
													Disc	ove	ry si	tage	e2																				
RCN3	0	0	0 (0 () 3	3 0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	27156316
VMAC	5	0	5	3 () (0 0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	30248895
PHACTR1	0	0	0 (0 () (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	5	0	0	0	0	0	Yes	Yes	23479725
EIF3H	0	0	0 (0 () (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0		Yes	25849773
LPCAT4	0	0	0 0	0 () (0 0	0	0	5	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	23815430
UBALD1	4	0	3	0 () (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Yes	Yes	29416781
ARFGAP1	0	0	4 (0 () (0 0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Yes	Yes	23752192
CPLX2	0	4	0 (0 () (0 0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Yes	Yes	23912489
ZNF280B	0	0	0	5 () (0 0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	22219177
SIX2	0	0	3 (0 () (0 0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	27821176
TCEA3	3	0	0 (0 5	5 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Yes	23357533
JUN	0	0	0 (0 5	5 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	3	0	0	0	0	5	0	Yes	Yes	17057737

Supplementary Table S1. Autoantibodies selected by protein microarray fluorescent signal and prior knowledge.

SIX3 0 0 0 0 0 5 0 4 0	SPAG8	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Yes	Ye	es	21150711
PD1 Yes Yes 2243787 PD-L1 Yes 2243787	SIX3	0	0	0	0	4	0	0	0	0	5	0	4	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Ye	es	27821176
PD-L1 Yes 2243787	PD1																																				Yes	Ye	es	22437870
	PD-L1																																					Ye	es	22437870

Abbreviation: L:Lymphoma; LC:Lung cancer; A:Alveolar soft part sarcoma; 6M:6 Months; R:Responder; NR: Non-responder;

AAg Atlas database: http://biokb.ncpsb.org/aagatlas_portal/index.php

The numbers 1-5 indicate the signal intensity of "Halo ring"[8].

168

Month	Feature	Threshold	Number <threshold< th=""><th>Number>threshold</th><th>Specificity</th><th>Sensitivity</th><th>pAUC</th></threshold<>	Number>threshold	Specificity	Sensitivity	pAUC
3months	PD1 IgG2	1.629	51	11	1.000	0.208	0.020
3months	PD-L1 IgG2	2.034	54	8	1.000	0.148	0.015
4.5months	PD1 IgG2	1.629	51	11	0.933	0.213	0.013
4.5months	PD-L1 IgG2	1.765	48	14	0.933	0.277	0.021
6months	PD1 IgG2	2.398	55	7	0.920	0.135	0.011
6months	PD-L1 IgG2	1.840	51	11	0.920	0.227	0.020
RRRvsNNN	PD1 IgG2	1.629	36	8	1.000	0.222	0.022
RRRvsNNN	PD-L1 IgG2	2.034	37	7	1.000	0.194	0.019

Supplementary Table S2. Performance of PD1 IgG2 and PD-L1 IgG2 as predictive markers.

Ranking position	Gene symbol	Clustering coefficient	Ranking position	Gene symbol	Clustering coefficient
1	PDCD1	0.000	39	FOXQ1	0.627
2	CD274	0.000	40	RTKN	0.637
3	TP53	0.000	41	MAGI1	0.647
4	SIX2	0.000	42	ZNF638	0.656
5	EIF4E2	0.000	43	CHEK1	0.652
6	AES	0.000	44	FOXA3	0.634
7	TLE3	0.333	45	DCLK1	0.643
8	CD80	0.667	46	TESK2	0.652
9	PDCD1LG2	0.630	47	DENND4C	0.660
10	CTLA4	0.617	48	CGN	0.666
11	CMTM6	0.542	49	NF1	0.674
12	CMTM4	0.661	50	SRSF12	0.681
13	DMBX1	0.585	51	YWHAB	0.676
14	PTPN6	0.533	52	SYDE1	0.683
15	PTPN11	0.493	53	MAPKAP1	0.689
16	AGO1	0.460	54	GAB2	0.699
17	CD86	0.462	55	CDC25B	0.705
18	CD28	0.468	56	CDK16	0.710
19	NGFR	0.437	57	AGAP1	0.716
20	KSR1	0.415	58	INPP5E	0.716
21	YWHAZ	0.395	59	CDC25C	0.717
22	GIGYF1	0.430	60	NADK	0.723
23	TCF4	0.423	61	FAM110A	0.723
24	CBY1	0.457	62	GIGYF2	0.723
25	SRGAP2	0.491	63	USP21	0.726
26	KIF13B	0.516	64	FAM53C	0.729
27	ZBTB21	0.539	65	RASAL2	0.732
28	SH3PXD2A	0.559	66	FAM110B	0.735
29	LRFN1	0.578	67	ANKRD34A	0.738
30	DENND1A	0.596	68	ANXA1	0.723
31	HDAC4	0.610	69	MAP3K21	0.727
32	KCTD3	0.625	70	GOLGA2	0.723
33	LIMA1	0.639	71	PHLDB2	0.726
34	SIPA1L1	0.651	72	TIAM1	0.730
35	MAST3	0.662	73	CAMSAP2	0.732
36	FOXB1	0.625	74	KIF1C	0.734
37	PPM1H	0.637	75	KRT31	0.729
38	PLEKHA7	0.648			

Supplementary Table S3. The human proteins associated with five AAb biomarkers identified by the random walking with restart (RWR) approach.

Pathway		#Entitie	s#Entities	Entities	Entities	Entities	#Reactions	#Reactions	Reactions	Species	G :
identifier	Pathway name	found	total	ratio	pValue	FDR	found	total	ratio	identifier	Species name
R-HSA-388841	Costimulation by the CD28 family	10	97	0.007	< 0.001	< 0.001	21	34	0.003	9606	Homo sapiens
R-HSA-75035	Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex	4	15	0.001	< 0.001	< 0.001	4	5	< 0.001	9606	Homo sapiens
R-HSA-389948	PD-1 signaling	5	45	0.003	< 0.001	0.001	4	4	< 0.001	9606	Homo sapiens
R-HSA-389513	CTLA4 inhibitory signaling	4	25	0.002	< 0.001	0.002	4	5	< 0.001	9606	Homo sapiens
R-HSA-389357	CD28 dependent PI3K/Akt signaling	4	26	0.002	< 0.001	0.002	3	9	0.001	9606	Homo sapiens
R-HSA-3700989	Transcriptional Regulation by TP53	12	486	0.034	< 0.001	0.002	174	259	0.021	9606	Homo sapiens
R-HSA-5663202	Diseases of signal transduction	12	489	0.035	< 0.001	0.002	38	289	0.024	9606	Homo sapiens
R-HSA-9008059	Interleukin-37 signaling	4	36	0.003	< 0.001	0.003	1	14	0.001	9606	Homo sapiens
R-HSA-389356	CD28 co-stimulation	4	39	0.003	< 0.001	0.004	12	19	0.002	9606	Homo sapiens
R-HSA-4641265	Repression of WNT target genes	3	16	0.001	< 0.001	0.005	7	7	0.001	9606	Homo sapiens
R-HSA-69473	G2/M DNA damage checkpoint	5	81	0.006	< 0.001	0.005	7	12	0.001	9606	Homo sapiens
R-HSA-3769402	Deactivation of the beta-catenin transactivating complex	4	44	0.003	< 0.001	0.005	11	14	0.001	9606	Homo sapiens
R-HSA-389359	CD28 dependent Vav1 pathway	3	17	0.001	< 0.001	0.005	5	6	< 0.001	9606	Homo sapiens
R-HSA-1433557	Signaling by SCF-KIT	4	50	0.004	< 0.001	0.006	9	36	0.003	9606	Homo sapiens
R-HSA-512988	Interleukin-3, Interleukin-5 and GM-CSF signaling	4	50	0.004	<0.001	0.006	9	38	0.003	9606	Homo sapiens
R-HSA-6804754	Regulation of TP53 Expression	2	4	0.000	< 0.001	0.006	5	5	< 0.001	9606	Homo sapiens
R-HSA-6804114	TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest	3	21	0.001	< 0.001	0.006	6	11	0.001	9606	Homo sapiens
R-HSA-69481	G2/M Checkpoints	6	154	0.011	< 0.001	0.007	12	24	0.002	9606	Homo sapiens
R-HSA-449147	Signaling by Interleukins	12	641	0.045	< 0.001	0.009	21	492	0.041	9606	Homo sapiens

Supplementary Table S4. Pathway enrichment analysis of the AAb biomarkers and their protein interactions using the Reactome database.