Supplementary data for

Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics

Yao-Chen Chuang,§a Chia-Hui Chu,§a Shih-Hsun Cheng, a,b Lun-De Liao, a
Tsung-Sheng Chu, a Nai-Tzu Chen, c Arthur Paldino, d Yu Hsia, a Chin-Tu Chen, b and Leu-Wei Lo*, a

a Institute of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan.

b Department of Radiology, The University of Chicago, Chicago, IL 60637, USA.

c Department of Cosmeceutics, China Medical Universety, 91 Hsueh-Shih Road, Taichung, Taiwan 40402

d Faculté de médecine Lyon-Est, Université Claude Bernard, 8 Avenue Rockefeller, Lyon 69008, France

§ These authors contributed equally

* Author for correspondence:

Leu-Wei Lo, Ph.D.

Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.

Tel: 886-37-246166 # 37115 Fax: 886-37-586440

E-mail: lwlo@nhri.edu.tw
Figure S1. The survival rates of cells were determined by the MTT method after treated by 0, 20, 50, or 100 µg·mL⁻¹ of Y₂O₃:Eu@SiO₂ nanoparticles for 24 h in vitro. No obvious toxicity of Y₂O₃:Eu@SiO₂ nanoparticles is observed in both CAOV3 and SKOV3 cells.
Figure S2. Histopathologic examination of the major organs collected of nu mice in the X-ray PDT group, fractionated radiation therapy group and the control group at the experimental endpoint (scale bar: 20 mm).