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Supplementary Methods
1. Inference of Immune Cell Infiltration

 CIBERSORT [1]: To quantify the proportions of immune cells in the tumor samples, we used the CIBERSORT algorithm and
the LM22 gene signature, which allows for highly sensitive and specific discrimination of 22 human immune cell phenotypes
including B cells, T cells, NK cells, macrophages, dendritic cells (DCs), and myeloid subsets. CIBERSORT is a
deconvolution algorithm that uses a set of reference gene expression values (a signature with 547 genes) considered a
minimal representation for each cell type and, based on those values, infers cell type proportions in data from bulk tumor
samples with mixed cell types using support vector regression. Gene expression profiles were prepared using standard
annotation files and data were uploaded to the CIBERSORT web portal (http://cibersort.stanford.edu/), with the algorithm
run using the LM22 signature at 1,000 permutations.

 MCP-counter [2]: Proportions of stromal cell were also applied Microenvironment Cell Populations-counter (MCP-counter)
method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations
in heterogeneous tissues from transcriptomic data.

 TIMER [3]: Allows explorations of the disease-specific clinical impact of different immune infiltrates in the tumor
microenvironment. TIMER was developed to estimate the abundance of six tumor-infiltrating immune cell types (B cells,
CD4 T cells, CD8 T cells, neutrophils, macrophages, and dendritic cells) to study 23 cancer types in The Cancer Genome
Atlas (TCGA). This tool was validated thanks to Monte Carlo simulations, orthogonal estimates from DNA methylation-based
inferences, as well as pathological assessment.

 EPIC [4]: EPIC package uses a constrained least square minimization to estimate the proportion of each cell type with a
reference profile and another uncharacterized cell type in bulk gene expression samples.

 xCell [5]: Performs cell type enrichment analysis from gene expression data for 64 immune and stroma cell types. xCell is a
gene signatures-based method learned from thousands of pure cell types from various sources. xCell applies a technique
for reducing associations between closely related cell types. xCell signatures were validated using extensive in-silico
simulations and cytometry immunophenotyping, and were shown to outperform previous methods.



2. Tumor Purity Assessment
Tumor purity was assessed computationally in all longitudinal samples using estimates derived from RNA-seq data using 
ESTIMATE algorithm [6] that uses gene expression signatures to infer the fraction of stromal and immune cells in tumor 
samples.
3. BLCA molecular subtyping 
Molecular subtypes of tumor samples were estimated using the approach of BLCAsubtyping [7], an R package which integrates 
six published molecular classifications.
4. Gene expression profile obtained from GEO and preprocessing
Raw data from the microarray datasets generated using Affymetrix® and Illumina® were downloaded from the Gene Expression 
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). The raw data for the dataset from Affymetrix® were processed using the RMA 
algorithm for background adjustment using the Affy package [8]. RMA was used to perform background adjustment, quantile 
normalization, and final summarization of oligonucleotides per transcript using the median polish algorithm. The raw data for the 
dataset from Illumina® were processed using the lumi package. The ComBat algorithm [9] was applied to reduce the likelihood 
of batch effects from non-biological technical biases.
5. Calculating signature score of gene sets using PCA algorithm
For gene expression (normalized by RMA or TPM methods) matrix, the expression of each gene in a signature was standardized 
so that its mean expression was zero, and standard deviation was 1 across samples. Then, a principal component analysis 
(PCA) was performed, and principal component 1 was extracted to serve as the gene signature score. This approach has the 
advantage of focusing the score on the set with the largest block of well-correlated (or anti-correlated) genes in the set, while 
down-weighting contributions from genes that do not track with other set members [10, 11].
6. Feature Engineering
To avoid the shortcoming of overfitting of lasso cox regression model developed by the training dataset, feature engineering was
conducted. Firstly, all features (N = 7556) were standardized across all samples. Then, univariate Log-rank (Mantel-Cox) test 
was conducted to seek out signatures that were associated with anti-PD-L1 survival outcome with a cutoff of P = 0.01. Moreover, 
Mann-Whitney U test was applied to find out features related to treatment response (CR/PR vs SD/PD) with a cutoff of p = 0.05. 
As a result, we got 780 features for training a LASSO cox regression model.



7. Bootstrap sampling to obtain robustness of predictors
LASSO Cox regression [12] was performed for the signatures (N = 780) passing the initial filtering of feature engineering using 
80 percent of the training set, randomly selected. This procedure was repeated 10,000 times and we got 10,000 cox regression 
model which was used to calculate the frequency of each feature that was enrolled in anti-PD-L1 immunotherapy predictive 
model.
8. Assessment of prognostic and predictive value of biomarkers
The sensitivity and specificity of the survival prediction based on the risk model and signature scores were depicted by the time-
dependent receiver operating characteristic curve (ROC) and quantified by the area under the ROC (AUC) using timeROC and 
survivalROC package [13]. “roc.test” function of pROC package [14] was used to compares the AUC or partial AUC of two 
correlated or uncorrelated ROC curves.
9. Consensus clustering of TME infiltrating pattern
Cell fraction matrix deconvoluted by CIBERSORT [1] was scaled, and unsupervised clustering methods (K-means) [15] for 
analysis of dataset was applied to identify immune cell infiltrating pattern and classify patients for further analysis. This
procedure using ConsensuClusterPlus R package [16] was repeated 1000 times to ensure the stability of classification.
10. Gene Set Enrichment Analysis and visualization
Gene sets were downloaded from the MSigDB database (v.6.2) of Broad Institute [17], then HALLMARK [18] and KEGG [19] 
gene sets were selected to perform over-representation hypergeometric test [17]. Enrichment P values were based on 1,000 
permutations and subsequently adjusted for multiple testing using the Benjamini-Hochberg procedure to control the FDR [20]. 
The R package enrichplot (https://github.com/GuangchuangYu/enrichplot), implements several visualization methods to help 
interpreting enrichment results and was adopted to visualize GSEA result.
11. Other gene signatures enrolled in this study
To characterize the metabolism, immune microenvironment and other prevalent gene signatures activation in each tumor 
samples, PCA algorithm was apply to determine the pathway activity using gene sets (see Supplementary Table S11) curated 
by Mariathasan et al. [10], Cristescu et al. [21], Rooney et al. [22], Rosario et al. [23] and Zeng et al.[24]. We thereby obtained, 
for each signature, an enrichment score per sample that indicated the extent of upregulation or downregulation of the 
associated genes. A minimum overlap of two genes was required.

https://github.com/GuangchuangYu/enrichplot
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Supplementary Figures



Deconvolution of signatures (N = 7556)
Gene sets: GO, KEGG, REACTOME, HALLMARK, Other signatures; 
Cell types: CIBERSORT, TIMER, EPIC, xCell, MCP-counter, ESTIMATE;

Feature Engineering: (N = 780)
① Response relevant features; (Wilcoxon test, 
adjust p value <= 0.05);
②Features associated with outcome (Log rank 
test  p value <= 0.01);
③Standardized features;

Randomly assign samples (N = 348)
Training cohort vs Validation cohort: (6 : 4)

LASSO cox regression model 
construction
①10 time cross-validations;
②minimal lambda;
③ using the coefficients of features 
to construct risk score model;

Validation of risk score model 
①using the same coefficients of features；
②using the same cutoff of risk score to 
validate the prognostic value;

Bootstrap sampling to obtain 
robustness of predictors
①Randomly choose 80% of patients;
②Using LASSO cox regression 
algorithm to select combination of 
signatures;
③Calculate the frequency of features.

Figure S1
Flowchart of LASSO cox regression model construction and validation.



Correlation and comparison of M1 
macrophage with reported biomarkers. 
(A-C) The predictive capacity of M1 
macrophage (A) in estimating overall survival 
was superior to TMB (B), TNB (C). (M1: 12-
month AUC = 0.647, 24-month AUC = 0.707; 
TMB: 12-month AUC = 0.644, 24-month 
AUC = 0.666; TNB: 12-month AUC = 0.647, 
24-month AUC = 0.704.) TMB: tumor 
mutation burden; TNB: tumor neoantigen
burden.
(D) M1 macrophage was statistically 
associated with favorable survival outcome 
independent of TNB (Kaplan-Meier survival 
analyses, p < 0.0001).
(E-F) Distribution of M1 macrophage varied 
among UNC subtypes (F) and Consensus 
Class (G) respectively (Mann Whitney U test, 
p = 1.2e-04, p = 1.3e-10; respectively). 
(G) Multi-variates regression analysis of 
hazard ratio among M1 macrophage and 
prior reported biomarkers. M1 macrophage 
collaborated with TMB were protect factors 
in resistance to tumor progression. 
Additional statistical analysis of biomarkers 
refer to Table S6. 

Figure S2



M1 macrophage reproductively correlates with 
immunophenotype in TCGA. 
(A) Unsupervised consensus clustering analysis of 
TCGA based on the TME-cell signatures inclined to 
divide into two TME clusters. The plot of two and 
three clusters were both displayed. 
(B) Heatmap of (red = high expression; blue = low 
expression) TME pattern of TCGA data with two 
TME clusters A (blue) and B (yellow). Rows of the 
heatmap show expression of TME-infiltrating cell 
signatures (Z scores) calculated by CIBERSORT. 
(C) TME clusters A statistically associated with 
better survival (Kaplan-Meier survival analysis, p = 
3.4e-02) in TCGA BLCA dataset.
(D) TCGA BLCA dataset validated the significant 
correlation between TME cluster A and high M1 
infiltration (Mann Whitney U test, p < 1.2e-04) 
(E) Immunophenotype-determine capacity of M1 
macrophage was validated in analysis of TCGA (M1: 
AUC = 0.61; monocyte: AUC = 0.497; CD8+T: AUC 
= 0.723). 

Figure S3



Combination with macrophage M2 did not raise 
the predictive value of predictive capacity of M1 
alone . 
(A) Lower M2 frequency was statistically correlated 
with more favorable overall survival (p = 0.011)
(B) M2 quantification discrepancy in different 
response subgroups didn’t reach statistical 
significance (p = 0.19).
(C) Bare statistical correlation was observed 
between macrophage M1 and M2 frequency (p = 
0.916; r = 0.006).
(D) High M1/M2 ratio was significantly associated 
with better response to anti-PD-L1 therapy (p = 
4.6e-06).
(E) ROC curve suggested that M2 exerted inferior 
predictive sensitivity to anti-PD-L1 response. 
M1/M2 ratio didn’t elevate the predictive capacity 
of M1 alone. (M1: AUC = 0.701; M2: 0.552; M1/M2 
ratio: AUC = 0.653 ). Corresponding p values are 
exhibited in Table S4.

Figure S4



Tumor microenvironment and metabolic 
signatures expression in IMvigor210. 
(A) Expression of Tumor microenvironment related 
signatures were elevated in high (yellow) 
macrophage infiltration versus the low (blue) in 
IMvigor210. All statistics in the figure use two-sided 
Mann Whitney U test. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001. ns, not significant compared 
to isotype group.
(B) Metabolic signatures expression were 
significantly higher in low (blue) macrophage 
infiltration than those in high (yellow) in IMvigor210. 
All statistics in the figure use two-sided Mann 
Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. ns, not significant compared to 
isotype group.

Figure S5



Transcriptomic and metabolic programs are 
reproducible in TCGA.
(A-B) Gene ontology (GO) (A) and KEGG pathways (B) 
were significantly associated with M1 macrophage 
infiltration in bladder TCGA data. Tumor with M1-deficient 
subtype have dramatically higher activation in steroid 
metabolism, xenobiotics metabolism whereas tumor with 
high-M1 infiltration embraced elevated immune activation. 
The top ten genes per set are shown (ranked by single-
gene P value, GO: red: high, blue: low; KEGG: blue: high, 
green: low). Complete lists are given in Table S8. 
(C) GSEA analyses of TCGA validated the key pathways 
enriched in high (up) and low (down) M1 subset. (light 
blue: metabolism of xenobolics by cytochrome P450; green: 
drug metabolism by cytochrome P450; blue violet: steroid 
hormone biosynthesis; scarlet: cytokine-cytokine receptor 
interaction; brick red: natural killer cell meditated 
cytotoxicity; dark violet: Th1 and Th2 cell differentiation; 
navy: antigen processing and presentation). Complete 
information and similar results of hallmark analyses are 
demonstrated in Table S8.
(D) Heatmap of unsupervised clustering different 
expressing gene signatures is consistent in (red: high 
expression; blue: low expression) in TCGA. Binary M1-
macrophage infiltration was show as annotation on the top 
(red: high; green: low). Comprehensive information is 
displayed in Table S9. 

Figure S6



Validation of Tumor microenvironment and metabolic 
signatures profiles in TCGA.
(A) TCGA dataset externally validated that expression of Tumor 
microenvironment related signatures were elevated in high 
(yellow) macrophage infiltration versus the low (blue). All 
statistics in the figure use two-sided Mann Whitney U test. *p
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  ns, not 
significant compared to isotype group.
(B) External TCGA verified that Metabolic signatures 
expression were significantly higher in low (blue) macrophage 
infiltration than those in high (yellow). All statistics in the figure 
use two-sided Mann Whitney U test. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. ns, not significant compared to 
isotype group.

Figure S7



FGFR related signatures landscape and verification of 
genome in TCGA.
(A-B) Signatures upregulated in FGFR mutation deficient subset 
(A) and mutated group (B) in IMvigor210 respectively. Steroid 
metabolism signatures are inclined to upregulated in FGFR
mutated setting while T cell inflamed signatures and immune 
check point signatures in mutation-deficient fraction. 
Corresponding p values are shown.
(C-D) FGFR mutated group was linked with relative better 
response to anti-PD-L1 therapy. CR: complete response; PR: 
partial response; SD: stable disease; PD: progressive disease.
(E-G) External validation of M1 macrophage related DEGs 
mutation versus wild type in TCGA. FGFR3 (E) TP53 (F), FBXW7
(G), (Mann Whitney U test, p = 1.6e-07, p = 1.5e-06; p = 5e-02, 
respectively).

Figure S8
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