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Figure S1. Targetable αvβ3 is expressed in greater amounts on M2 
macrophages following incubation with an αvβ3 integrin specific 
fluorescent probe (Integrasense 645, PerkinElmer) in vitro. 



	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure	  S2.	  Flow	  cytometry	  analysis	  of	  β3	  integrin	  expression	  in	  the	  4T1.GFP.FL	  
breast	  cancer	  cell	  line.	  
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Figure S3. Flow cytometry analysis of immune popoulations isolated from mammary fat pad 
tumors estabished with the murine breast cancer cell line 4T1.GFP.FL. 
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Figure S5. αvβ3-MI3-PD NP treated mammary fat pad tumors showed no 
significant difference in (A) CD4 T cells (B) CD8 T cells (C) M-MDSC or (D) 
G-MDSC immune cell populations. 



	  
	  

Description Gene name Entrez ID 
c-Myc MYC ENSG00000136997 
Max MAX ENSG00000125952 
Cytokeratin 7 KRT7 ENSG00000135480 
Cd11b CD11b ENSG00000169896 
CSF1 receptor CSF1R ENSG00000182578 
CD47  CD47 ENSG00000196776 

	  
	   Table	  S1.	  RNA	  sequencing	  primers	  



	  
Gene Forward Primer Reverse Primer 
c-Myc CCCTAGTGCTGCATGAGGA CCTCTTCTCCACAGACACCA 
Max ACCGAGGTTTCAATCTGCG AGTCCCGCAAACTGTGAAAG 
Actin CTGTATTCCCCTCCATCGTG CCTCGTCACCCACATAGGAG 
Wnt5a TCAGGACCACATGCAGTACAT TGTCCACTGTGCTGCAGTTC 
AKAP12 TGCAATCTGCTTTGTCTTGG GCCAGTGAAGAACATGAGCA 
MAOA GCCAGGAACGGAAATTTGTA TCTCAGGTGGAAGCTCTGGT 
MRC1 GCAAATGGAGCCGTCTGTGC CTCGTGGATCTCCGTGACAC 
PCSK5 AGTAGGTTGACTGGGACTGG AGATCGCATAGCCAGCAAGT 

	  
Table	  S2.	  Murine	  RT-‐PCR	  Primers	  



	  
	  

Target	   Fluorophore	   Antibody	  
CD45	   PE-‐Cy7	   Clone:	  104	  
CD11b	   APC-‐efluor780	   Clone:	  M1/70	  
GR1	   PerCP-‐Cy5.5	   Clone:	  RB6-‐8C5	  
F4/80	   BV650	   Clone:	  BM8	  
MHCII	   PE/Dazzle	  594	   Clone:	  M5-‐114.15.2	  
CD206	   BV421	   Clone:	  C068C2	  
Integrin	  B3	   AF647	   Clone:	  2C9.G2	  
Tumor	  Cell	   GFP	   	  	  
Live/Dead	  Blue	   450/50	   	  	  

	   Table	  S3.	  Antibody	  panel	  for	  flow	  cytometry	  analysis	  
of	  cell	  populations	  derived	  from	  mammary	  fat	  pad	  
tumors.	  



Supplemental Methods 

 

The present manuscript focuses on the effectiveness of cMYC-MAX dimer antagonism to 

reduce the influence of tumor promoting M2 macrophages within the TAM population. This brief 

summary provides the reader access to some of the scientific literature regarding 

perfluorocarbon nanoparticles (PFC) and the drug delivery mechanism, we term contact-

facilitated drug delivery. Note that the references for this section are cited below, separate for 

those of the paper proper. 

The medical history of perfluorocarbon (PFC) and PFC emulsions has an extensive 

scientific literature dating back to 1966 [1]. PFCs are chemically at ground state and nonreactive 

[2]. They are neither hydrophilic or lipophilic [2]. PFC particle sizes are therefore very stable, 

dependent on the surfactants. They do not imbibe water and swell.  Over time, the degradation 

of  PFC particles occurs by a process known as Ostwald ripening. Ostwald ripening occurs 

when components of a discontinuous phase (PFC particles) diffuse through the continuous 

phase (aqueous media) from smaller to larger droplets. PFC emulsions have long shelf-lives at 

room temperature, which afforded the use in clinical studies.  PFC nanoparticles have high 

biocompatibility because PFCs are unreactive and unmetabolized in the body [3]. This is due to 

the dense electron cloud surrounding the C-F bonds. PFC, PFOB (perfluorooctylbromide) in this 

manuscript, are eliminated, in man, as PFC gas through the lungs.  While chemically inert, 

PFOB and other PFCs have the capacity to dissolve oxygen, which was dramatically 

demonstrated by liquid-ventilation, i.e., liquid breathing, in rodents in 1966 [1]. Continued 

research with PFC emulsions (nanoparticles, [NP]) [4-10] led to a seminal clinical demonstration 

of improved pulmonary function in neonatal infants suffering with respiratory distress syndrome 

[11]. These fragile neonates received intratracheal PFC NP and experienced improved 

respiratory function with negligible adverse effects [11]. However, during clinical testing, artificial 



lung surfactant replacement technology emerged as a competitive concept and quickly 

displaced the intratracheal PFC approach.  

 

Sterile PFOB emulsions were produced by Alliance Pharmaceuticals [3, 12, 13] and PFDCO 

(perfluorodichlorooctane) emulsions and developed by HemaGen/PFC [14]. Both formulations 

completed GLP safety and stability development and were produced by GMP manufacture for 

late stage clinical trials in the US and ex-US. These indications included neonates with 

respiratory distress and acute use as artificial blood substitutes. Unfortunately, the oxygen 

release profile of PFC nanoparticles did not mimic the hysteresis of hemoglobin dissociation 

curves exhibited by erythrocytes. Consequently, they failed to provide adequate oxygen delivery 

to ischemic tissues.   

Over the last 25 years, PFC NPs have been extensively explored in both preclinical and 

clinical realms. Initial applications involved IV administration of the vascular-constrained PFC 

NP for blood pool imaging (MR, ultrasound, CT), reticuloendothelial (RES) organ imaging, 

gastrointestinal imaging [15-22], inflammation imaging [15-22] and cell tracking [23]. Lanza, 

Wickline, et al were the first to functionalize PFC nanoparticles for molecular imaging and later 

drug delivery (i.e., so-called theranostics) for many pathologies [24-34]. Kereos, Inc., co-

founded by the Lanza/Wickline lab, translated two αvβ3-PFC pharmaceutical candidates to the 

clinic: one in Australia (Dr. Hodsman, Melbourne, VIC, PRO-KI02-06-0308-0162.00, 2008) and 

the other in the US (IND# 108320, Dr. Rich, Washington University Medical School). These 

GMP particles underwent extensive CMC characterization as well as formal GLP stability, 

toxicology and efficacy in multiple species. The PFC nanoparticles studied in the present 

manuscript are the same as those that developed for the clinic. However, in the present 

manuscript a very small amount (5 mol%) of Sn2 prodrug is included in the phospholipid 

membrane.  



The spherical appearance of targeted PFC nanoparticles has been presented with scanning 

electron microscopy (SEM) bound to fibrin-rich thrombus [35] to upregulated tissue factor on 

proliferating vascular smooth muscle cells [36], and to various cell types showing the hemifusion 

mechanism of CFDD. A TEM photomicrograph of αvβ3-PFOB-MYC-PD NP, as used in this 

manuscript, was previously reported in 2015 by Pan et al. [37]. 

The concept of contact facilitated drug delivery (CFDD) has been a cornerstone of our drug 

delivery efforts since 2002 [38]. We have reviewed the concept in detail and published several 

papers demonstrating how the mechanism bypasses the endosomal pathway [39-43] by fusing 

with the outer leaflet of the target cell.  These studies were demonstrated with fluorescent 

phosphatidylethanolamine membrane biomarkers, fusogenic cytolytic peptides, and 

phosphatidylcholine Sn 2 cyanine dyes and doxorubicin prodrugs and have imaging data 

examples using fluorescent microscopy, confocal fluorescent microscopy, fluorescent life-time 

imaging, single molecule super high resolution microscopy and electron microscopy (SEM) are 

presented.  

As mentioned previously, the systemic clearance of PFC nanoparticles is via the 

reticuloendothelial system with eventual elimination by exhalation in man. The accumulation of 

PFC in the spleen and livers of patients and animal models was known since systemic studies 

were performed [3, 14, 44]. At very high doses used for artificial blood, the particles elicited flu-

like symptoms due to cytokine release from engorged phagocytes, which was sometimes 

ameliorated with adjunctive steroids or nonsteroidal anti-inflammatory medications in patients. 

Phagocytosis by macrophages leads to enzymatic metabolism of surfactant components. 

However, the subset of particles that home to the αvβ3-integrin presented by the M2-like 

macrophages undergo rapid irreversible membrane fusion and direct translocation of the 

prodrug into the cells, by passing the phagocytic pathway.  

The development of the Sn 2 prodrugs in the context of CFDD in our lab occurred when 

pharmacokinetic studies tracking fumagillin and other drugs relative to the PFC core and the 



αvβ3-homing ligand in circulation using HLPC-MS/MS showed inadequate retention of the 

dissolved drugs [45]. After extensive testing of different prodrug concepts, a Sn 2 approach was 

adopted to embed and protect the drugs in the lipid membrane during circulation and to release 

the drug into the cytosol after targeting and membrane hemifusion.  

Prior research on Sn2 lipids was first conceived by David Thompson and further developed 

by Thomas Andressen et al in the context of liposomes as reviewed in Pan et al [46]. The use of 

this prodrug approach failed with liposomes, which required polyethylene glycol coatings to 

extend circulatory half-life.  It was effective for nonpegylated PFC nanoparticles for two reasons. 

The first was that natural phospholipid membrane are resistant to water, including liposomes, 

unless they are pegylated. Pegylation creates a water corona around the particle that wicks into 

the membrane, allowing enzymes access to the glycerol ester bonds. This initiates rapid 

premature drug release. The second, specifically for PFC particles, is the fact, demonstrated by 

computational simulation of the particle self-assembly process, which indicated that the 

perfluorocarbon core penetrates between the phospholipids to the particle-water interface [47]. 

Water is immiscible with PFC; almost nothing is miscible in PFC.  We have previously 

demonstrated that the Sn2-lipase labile prodrugs (docetaxel) are stable in PFOB particles using 

dissolution with HPLC [48].  Only after the PFC nanoparticle is “cracked” with isopropyl alcohol 

in the presence of plasma or excess phospholipase enzyme can the prodrug be metabolized. 
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