EZH2-mediated epigenetic silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis and immune microenvironment remodeling in breast cancer

Huilong Yin^{*}, Yidi Wang^{*}, Ye Wu^{*}, Xiang Zhang, Xiaofang Zhang, Jun Liu, Ting Wang, Jing Fan,

Jianyong Sun, Angang Yang † and Rui Zhang †

[†]Correspondence should be sent to: ruizhang@fmmu.edu.cn

This file includes:

Supplementary Text Supplementary Figures 1 to 7 Supplementary Tables 1 to 4

Supplementary Figure 1. EZH2 inhibitors block cell proliferation. (A) MDA-MB-231 cells were treated with different concentrations of DZNep, GSK343, UNC1999, or EPZ005687 for 48 h. H3K27me3 expression was detected by immunoblotting. **(B)** Colony formation assays of breast cancer cells in the presence of DMSO, DZNep, EPZ005687, GSK343, or UNC1999 on day 14 (upper panel). Quantification of colony formation assays (lower panel). **(C)** Breast cancer cells were treated with DMSO, DZNep, EPZ005687, GSK343, or UNC1999, and the cell viability was determined

using the CCK-8 assay.

Supplementary Figure 2. EZH2 inhibitors decrease LOXL4 expression. qRT-PCR analysis of LOXL4 in 4T1 cells treated with different concentrations of DZNep, EPZ005687, or GSK343.

Supplementary Figure 3. Knock-down of EZH2 blocks cell proliferation and decreases the expression of LOXL4. (A-C) MDA-MB-231 (A), 4T1 (B) and MCF-7 (C) cells were transfected with NC siRNA or EZH2 siRNA. Efficiency of EZH2 siRNAs was examined by Western blotting (upper panel). Cell viability was determined

by the CCK-8 assay (lower panel). **(D)** MCF-7 and 4T1 cells were transfected with NC siRNA or EZH2 siRNA. Cells were harvested 48 h after transfection for analysis of EZH2 and LOXL4 mRNA expression by qRT-PCR. **(E)** qRT-PCR analysis of LOXL1 and LOXL3 in MDA-MB-231 cells transfected with NC siRNA or EZH2 siRNA. **(F)** Relative luciferase activity was conducted after cells were transfected with LOXL1 or LOXL4 promoter (2kb) and pcDNA 3.1-EZH2.

Supplementary Figure 4. LOXL4 knockdown inhibits cell proliferation and migration *in vitro*. (A and B) Western blotting analysis of LOXL4 in MDA-MB-231 and MCF-7 cells transfected with NC siRNA or LOXL4 siRNA. (C) qRT-PCR analysis

of Loxl4 in 4T1 cells transfected with NC siRNA or Loxl4 siRNA. (D) Cell proliferation analysis was performed in 4T1 and MCF-7 cells transfected with NC siRNA or LOXL4 siRNA. (E) Representative images of scratch wound healing assays in 4T1 and MCF-7 cells transfected with NC siRNA or LOXL4 siRNA (left panel). Quantification of wound healing rates (right panel). (F and G) qRT-PCR (F) and Western blotting (G) analysis of LOXL4 in MDA-MB-231 cells with LOXL4 stable knockdown and control cells. (H) Cell proliferation analysis was performed in MDA-MB-231 cells with stable expression of control shRNA or LOXL4 shRNA. (I) Colony formation assays in MDA-MB-231 cells with LOXL4 stable knockdown and control colony formation assays is shown (right panel). (J) Representative images of scratch wound healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of colony formation assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of colony formation assays in MDA-MB-231 cells with healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of colony formation assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of wound healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of wound healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of wound healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of wound healing assays in MDA-MB-231 cells with LOXL4 stable knock down and control cells (left panel). Quantification of wound healing assays (right panel).

Supplementary Figure 5. Increased expression of miR-29b and miR-30d in EZH2-

depleted cells. Knock-down of EZH by siRNAs increased miR-29b and miR-30d gene expression in MCF-7 cells.

Supplementary Figure 6. miR-29b and miR-30d inhibit the proliferation and migration in breast cancer cells. (A) qRT-PCR analysis of miR-29b (left panel) and miR-30d (right panel) in MDA-MB-231 cells transfected with NC mimics, miR-29b mimics or miR-30d mimics. (B and C) CCK-8 assay was used to measure cell

proliferation at the indicated time points in 4T1 (B) and MCF-7 (C) cells transfected with NC mimics and miR-29b mimics or miR-30d mimics. (**D** and **E**) Colony formation assay in 4T1 (D) and MCF-7 (E) cells transfected with NC mimics and miR-29b mimics or miR-30d mimics (upper panel). Quantification of colony formation assays (lower panel). (**F** and **G**) Representative images of scratch wound healing assays in 4T1 (F) and MCF-7 (G) cells transfected with NC mimics and miR-29b mimics or miR-30d mimics (upper panel). Quantification of wound healing rates is shown (lower panel).

Supplementary Figure 7. EZH2-miR-29b/miR-30d-LOXL4 signaling pathway correlates with poor prognosis in human cancers. (A) mRNA expression levels of miR-29b and miR-30d in breast cancer tissues compared with the normal liver tissues using the GSE4589 dataset. **(B)** Probability of overall survival for breast cancer patients

with HER2-positive (HER2+), ER-positive (ER+), luminal A, luminal B or basal breast cancer subtypes according to EZH2 and LOXL4 gene expression levels using Breast Km Plotter online survival analysis. (C) Comparison of overall survival of breast cancer patients with different miR-29b and miR-30d expressions with the Breast Km Plotter online tool.

Case#	TNM stage	Туре	ER	PR	Her	Clinical classification	Grade
		0=DCIS 1=IDC 2=ILC 3=DCIS+I 4=OTHER	0=N 1=1	0=N 1=1	0=- 1=1+		
1	T2N0Mx	1	-	-	0	TN	ΙΑ
2	T2N0M0	2	3	3	2	Luminal B	IA
3	T1cN0M0	1	2	1	3	Luminal B2	IA
4	T2N0M0	1	3	2	0	Luminal B1	IIA
5	T1cN0M0	1	3	2	1	Luminal A	IIIA

Supplementary Table 1. Clinicopathological characteristics of BRCA patients analyzed

Supplementary Table 2. siRNA sequences

	sense (5'-3')	antisense (5'-3')
Ezh2-siRNA-1 (Mus	GAAAGAUCUAGAGGAUAAUTT	AUUAUCCUCUAGAUCUUUCTT
musculus)		
Ezh2-siRNA-2 (Mus	CUCGGUGUCAAACACCAAUTT	AUUGGUGUUUUGACACCGAGTT
musculus)		
Loxl4-siRNA-1	CCAGUCAGACAUCUGUCAATT	UUGACAGAUGUCUGACUGGTT
(Mus musculus)		
Loxl4-siRNA-2	GCUAUGCAUGUGCCAACUUTT	AAGUUGGCACAUGCAUAGCTT
(Mus musculus)		
EZH2-siRNA-1	GACUCUGAAUGCAGUUGCUTT	AGCAACUGCAUUCAGAGUCUU
(Homo sapiens)		
EZH2-siRNA-2	GGAUGGUACUUUCAUUGAATT	UUCAAUGAAAGUACCAUCCTT
(Homo sapiens)		
SUZ12-siRNA-1	GUCGCAACGGACCAGUUAATT	UUAACUGGUCCGUUGCGACTT
(Homo sapiens)		
SUZ12-siRNA-2	GACUACAGAUCUACAAACATT	UGUUUGUAGAUCUGUAGUCTT
(Homo sapiens)		
EED-siRNA-1	AAGCACUAUGUUGGCCAUGGATT	UCCAUGGCCAACAUAGUGCUUTT
(Homo sapiens)		
EED-siRNA-2	UGGUGCUGCUAUUCGACAATT	UUGUCGAAUAGCAGCACCATT
(Homo sapiens)		
LOXL4-siRNA-1	GCUGAAGAGCCUGACGAAUTT	AUUCGUCAGGCUCUUCAGCTT
(Homo sapiens)		
LOXL4-siRNA-2	CCAAGUCUGCGGAUCACAUTT	AUGUGAUCCGCAGACUUGGTT
(Homo sapiens)		
Dicer1 siRNA	GCUUGAAGCAGCUCUGGATT	UCCAGAGCUGCUUCAAGCTT
(Homo sapiens)		

Supplementary Table 3. Cloning primers

pri-miR-29b1	Forward primer	CCGGAATTCCCCTTGCCTCTAAATGAT	
expression	Reverse primer	CGCGGATCCACAAGAAGAAAGTCTGTTCA	
pri-miR-29b2	Forward primer	CCGGAATTCATTTGTAGTGACTGGTGTG	
expression	Reverse primer	CGCGGATCCTGATGGCTGCTAGGAGTC	
pri-miR-30d	Forward primer	CCGGAATTCCTCATGTAGGATATCAGGGT	
expression	Reverse primer	CGCGGATCCAATAGGCGGTGACACTTT	
LOXL4 expression	Forward primer	ATGGCGTGGTCCCCACC	
	Reverse primer	TCAGATGAGGTTGTTCCTG	
miR-29b1 promoter	Forward primer	CTTTTGTACTTCAGTCACTG	
cione	Reverse primer	CTTCATAATGCTCTCTTACA	
miR-29b2 promoter	Forward primer	CCCTCATTTGACAGGATT	
cione	Reverse primer	AAGAGGATCTCAATGAAGA	
miR-30d promoter	Forward primer	AAAAATGGTAAACCTTTAGCT	
cione	Reverse primer	GACTTTCTGAACAAGAAAT	
LOXL4-3'UTR clone	Forward primer	AGCTGTCACTGCACACTC	
	Reverse primer	CAGAGTGTGAGAGGTGAG	
mut-LOXL4-3'UTR	Forward primer	CTAAGTCCACGATTGCAAATGTCTTGGAGGAGTAT	
mutagenesis	Reverse primer	TTGCAATCGTGGACTTAGATGGGGGGACTGGGCCAT	
mut-LOXL4-3'UTR	Forward primer	CTTAGGGTACGACTATGGCCCAGTCCCCCATCTAAG	
551 mutagenesis	Reverse primer	AGTCGTACCCTAAGAAACTGAGAGCTCCTGAATCC	

Supplementary Table 4. qRT-PCR primers

Nos2 (Mus musculus)	Forward primer	GCAGAGATTGGAGGCCTTGTG	
	Reverse primer	GGGTTGTTGCTGAACTTCCAGTC	
Tnf-α (Mus musculus)	Forward primer	CAGGAGGGAGAACAGAAACTCCA	
	Reverse primer	CCTGGTTGGCTGCTTGCTT	
Arg1 (Mus musculus)	Forward primer	AGACAGCAGAGGAGGTGAAGAG	
	Reverse primer	CGAAGCAAGCCAAGGTTAAAGC	
Il-6 (Mus musculus)	Forward primer	CCACTTCACAAGTCGGAGGCTTA	
	Reverse primer	GCAAGTGCATCATCGTTGTTCATAC	
CD206 (Mus musculus)	Forward primer	AAACACAGACTGACCCTTCCC	
	Reverse primer	GTTAGTGTACCGCACCCTCC	
EZH2 (Mus musculus)	Forward primer	AGTGACTTGGATTTTCCAGCAC	
	Reverse primer	AATTCTGTTGTAAGGGCGACC	
LOXL4 (Mus musculus)	Forward primer	GCCAACGGACAGACCAGAG	
	Reverse primer	CCAGGTCAAGGCTGACTCAAA	
EZH2 (Homo sapiens)	Forward primer	AATCAGAGTACATGCGACTGAGA	
	Reverse primer	GCTGTATCCTTCGCTGTTTCC	
SUZ12 (Homo sapiens)	Forward primer	AGGCTGACCACGAGCTTTTC	
	Reverse primer	GGTGCTATGAGATTCCGAGTTC	
EED (Homo sapiens)	Forward primer	GTGACGAGAACAGCAATCCAG	
	Reverse primer	TATCAGGGCGTTCAGTGTTTG	
LOXL1 (Homo sapiens)	Forward primer	GGCTGCTATGACACCTACAATG	
	Reverse primer	GTAGTGAATGTTGCATCTCACCA	
LOXL3 (Homo sapiens)	Forward primer	TGGAGTTCTATCGTGCCAATGA	
	Reverse primer	CCTGAGGCTTCGACTGTTGT	
LOXL4 (Homo sapiens)	Forward primer	CTGGGCACCACTAAGCTCC	
	Reverse primer	CTCCTGGATAGCAAAGTTGTCAT	
Dicer1 (Homo sapiens)	Forward primer	AAAATTGTCCATCATGTCCTCGC	
	Reverse primer	CCACCAGGTCAGTTGCAGTT	
miR-29b1 for ChIP	Forward primer	GCTTTGTCCTATTTGCATGT	
	Reverse primer	CCAGACAAAGGTTCAGCTT	
miR-29b2 for ChIP	Forward primer	GCAGGGCAGTACAAATGTA	
	Reverse primer	TCTACTTGTGATATGACACAG	
miR-30d for ChIP	Forward primer	AGCAGGCATCCATGAAATGT	
	Reverse primer	AAGTGGTTCACCAAGTGCAA	