1 Supplementary Figure legends

2

3 Supplementary Figure S1. CLDN1 regulates cell mobility by repressing SLUG expression through the ERK1/2 pathway. (A) cDNA microarray data 4 (GSE10309) for CL₁₋₅ cells (overexpressing CLDN1) were used to analyze 5 signaling pathways using the bioinformatics tool, MetaCore. (B) The basal 6 levels of CLDN1 in lung cancer cell lines were detected by RT-qPCR (three 7 technical replicates per experiment). Error bars represent the mean \pm s.d. **p 8 < 0.01, ***p < 0.001 (two-tailed Student's *t*-test). (**C**) CL₁₋₅ cells were transfected 9 10 with empty vector or CLDN1 plasmids. The cells were starved for 8 h and then 11 changed into the complete medium for the indicated time. The expressions of CLDN1, phosphorylated or total ERK1/2, and β -ACTIN were assessed by 12 13 immunoblotting. (D) Immunoblotting for CLDN1, phosphorylated or total ERK1/2, and β -ACTIN in Hop62 cells with CLDN1 silence starved for 2 h or not. 14 (E) Hop62 cells were infected with lentivirus-based shRNA targeting LacZ or 15 16 CLDN1. The shC33 and shC34 represent different shRNAs of CLDN1. The cells were starved for 8 h and then changed into the complete medium (containing 17 10% FBS) for the indicated time. The expressions of CLDN1, phosphorylated 18 or total JNK, and β -ACTIN were assessed by immunoblotting. (F) The 19

20	expressions of these EMT-TFs in CLDN1-silenced cells were checked by RT-
21	qPCR (three technical replicates per experiment). Error bars represent the
22	mean \pm s.d. ** p < 0.01, *** p < 0.001 (two-tailed Student's <i>t</i> -test). NS: non-
23	significant. (G) The expressions of these EMT-TFs in CLDN1-overexpressed
24	cells were checked by Western blot. $\beta\text{-}ACTIN$ serves as the loading control in
25	immunoblots. The samples were the same as Figure 1A and performed
26	Western blot at the same time. (H) CL_{1-5} was starved for 24 h and then treated
27	20 μM PD98059 for 30 min. The expressions of SLUG, phosphorylated or total
28	ERK1/2, and $\beta\text{-}ACTIN$ were assessed by immunoblotting. (I) The SLUG was
29	knockdown by lentivirus-based shRNA in the cells with CLDN1 silence. The
30	expression of CLDN1, SLUG, E-cad and $\beta\text{-}\text{ACTIN}$ was assessed by
31	immunoblotting. $\beta\text{-}ACTIN$ serves as the loading control in immunoblots. (J)
32	Hop62 cells with knockdown of CLDN1 and/or SLUG subcutaneously (shLuc-
33	shLuc, shC34-shLuc, shLuc-shSLUG-S3, and shC34-shSLUG-S3) inoculated
34	in NOD-SCID mice, and lung cancer metastasis was observed for six months
35	(n = 3 or 4 mice per group). The arrowhead indicates lung metastasis.

36

37 Supplementary Figure S2. EPHB6 is upregulated upon CLDN1 38 overexpression as assessed with cDNA microarrays. (A) The receptor 39 tyrosine kinases (RTKs), which suppress distance metastasis were analyzed in our cDNA microarray data. The expression level of RTK in CL₁₋₅ cells 40 41 overexpressing CLDN1 was compared with vector control and got the fold change. The values in the parentheses represent the number of different 42 probes for one gene. The asterisk indicates that only EPHB6 was highly 43 expressed upon the overexpression of CLDN1. (B) The phosphorylation of 44 ERK1/2 was measured by immunoblotting in Hop62 cells and CLDN1 silence 45 46 cells when ephrin B2 treatment.

47

Supplementary Figure S3. CLDN1 represses cancer stemness and 48 49 sensitizes lung adenocarcinoma cells to chemotherapeutic drugs in vitro. 50 (A) The correlation between the stemness score and *CLDN1* expression was 51 analyzed by Pearson correlation in the TCGA-LUAD cohort. (B) The mRNA level of *SLUG* was analyzed by RT-qPCR as CLDN1-knockdown Hop62 cells 52 were incubated in monolayer or sphere condition. (C and D) The quantified data 53 54 of Figures 3C and 3D are shown here. ALDH activity was measured by Aldefluor assay in the cells with CLDN1 knockdown or overexpression. (E) The 55 knockdown efficiency of CLDN1 was measured by RT-qPCR (three technical 56 replicates per experiment). (F) The cytotoxicity of carboplatin and taxol was 57

58	measured in CLDN1-knockdown Hop62 cells, and the IC ₅₀ was calculated by
59	CalcuSyn software. (G) The cytotoxicity of carboplatin and taxol was measured
60	in CLDN1-overexpressing CL1-5 cells, and the IC50 was calculated by CalcuSyn
61	software. (H) The percentage of cell death in figure 3J was shown here. The
62	annexin V/PI assay evaluated the percentage of cell death as CLDN1-
63	overexpressing CL_{1-5} cells were treated with cisplatin. (I) The cell cycle analysis
64	of CL1-5 cells overexpressing CLDN1 or vector was analyzed by PI staining
65	using flow cytometry. The representative image (left) and quantification of the
66	percentage of cell-cycle phases (right) are shown. The <i>n</i> values in B , C , D , F ,
67	G and H were three biologically independent experiments. Error bars indicated
68	in B , C , D , E and H represent the mean \pm s.d. Error bars indicated in F and G
69	represent the mean \pm s.e.m, ** p < 0.01, *** p < 0.001 (two-tailed Student's <i>t</i> -
70	test).

71

Supplementary Figure S4. CLDN1 represses cell proliferation and sensitizes lung adenocarcinoma to cisplatin *in vivo*. (A) The cell proliferation of vector- (p1511) or CLDN1-overexpressing CL₁₋₅ (pc1513 and pc1515) was measured. (B) The representative image (left) and the quantification (right) of anchorage-independent growth of p1511, pc1513 and 77 pc1515 by the soft agar assay are shown. The colonies (the diameter is over 100 μ m) were counted. (C-F) The tumor-bearing mice received cisplatin to 78 79 evaluate the sensitivity of CLDN1-overexpressing cancer cells (pc1515) to cisplatin. The schedule of cisplatin treatment and tumor mass (C), tumor 80 volume (**D**), tumor weight (**E**), and body weight (**F**) of the tumor-bearing mice 81 are shown (n = 8 mice per group). The *n* values in **A** and **B** were three 82 biologically independent experiments. Error bars indicated in A, B, D and F 83 represent the mean \pm s.d., **p < 0.01 (two-tailed Student's *t*-test). 84

85

Supplementary Figure S5. DNA hypermethylation of the CLDN1 promoter 86 87 maintains its transcription by abrogating SLUG-mediated suppression. (A) 88 Immunoblotting showed the protein expression of CLDN1-EPHB6-ERK1/2-89 SLUG axis between CL₁₋₀ and CL₁₋₅. (B) The results of bisulfite sequencing showed the methylation patterns of the *CLDN1* promoter in CL₁₋₀ and CL₁₋₅ (top). 90 The CpG island of the CLDN1 promoter was predicted by the MethPrimer 91 92 website (bottom). Shown are regions of pyrosequencing or methylation-specific PCR. (C) Immuno-blotting showed the ectopic overexpression of SLUG in CL1-93 5. (D) The cell morphology of CL1-5 cells treated with TSA showed the 94 mesenchymal-epithelial transition. (E) CL₁₋₅ cells were treated with TSA and 95

then the ChIP assay was performed using H3K4me3 or H3K27me3 antibodies
and primers which amplified their positive controls, glyceraldehyde-3phosphate dehydrogenase (GAPDH) or hemoglobin beta subunit, respectively
(HBB).

100

Supplementary Figure S6. Ectopic flag-RUNX3 does not influence the 101 degradation of SLUG. (A) The CL₁₋₅ cells ectopically overexpressed RUNX3 102 and were treated with MG132, the proteasome inhibitor. SLUG expression was 103 observed by immunoblotting (left) and the density of bands of SLUG was 104 quantified and normalized to each vector group in the DMSO or MG132 105 106 treatments (right). The *n* values were two biologically independent experiments. 107 NS: non-significant (two-tailed Student's *t*-test). Error bars represent the mean \pm s.d. (**B**) The CL₁₋₅ cells ectopically overexpressed RUNX3 and were treated 108 with the protein synthesis inhibitor cycloheximide (CHX) at different times. The 109 SLUG protein levels were observed by immunoblotting and quantified the 110 111 density of band of SLUG at different time points. The experiment was performed 112 a single time.

113

6

Supplementary Figure S7. Overexpression of CLDN1 and RUNX3 114 enhances the efficacy of chemotherapy and provides a survival benefit 115 for patients with lung adenocarcinoma. (A) GSE 27262 dataset showed 116 CLDN1 expression between normal-tumor paired samples. (B) CL₁₋₅ cells 117 118 overexpressed RUNX3 and CLDN1 and then were treated with 10 µM cisplatin for 8 h. The cleaved PARP was observed by immunoblotting and defined as 119 apoptosis. The *n* values in **A** were shown in each image. ***p < 0.001 (two-120 tailed Student's *t*-test). 121

122

Supplementary Figure S8. Histone inhibitors and cisplatin had a synergistic cytotoxic effect on CLDN1^{low} cancer cells.

125 (A) CL₁₋₅ cells were treated with the serial concentration of TSA which combined with three concentrations of cisplatin (CDDP) (left) or conversely, treated with 126 the serial concentration of cisplatin which combined with three concentrations 127 of TSA (right). The cell viability was measured by WST-1 and normalized to the 128 129 cells with no drug treatment. (B) The cell death (Q2 + Q4) of figure 7K was quantified. n = two biologically independent experiments. Error bars represent 130 the mean \pm s.d. (C) The cell viability of Hs68 cells was treated with a 131 combination of TSA and cisplatin. (D) The cell viability of CL₁₋₅ cells receiving 132

combined treatment of vorinostat (SAHA) and cisplatin was used to calculate the combination index and exhibited the synergistic effect. (E) CLDN1 knockdown in CL₁₋₅ cells increased the cell viability under treatments with combined different ratios of SAHA and cisplatin. The *n* values in **A**, **C**, **D** and **E** were three biologically independent experiments. Error bars indicated in **A**, **C** and **E** represent the mean \pm s.e.m. ***p* < 0.05, ****p* < 0.001 in **B**, and **E** (twotailed Student's *t*-test).

Supplementary Figure S1.

Supplementary Figure S2.

RTKs of distant-metastasis suppressor

Supplementary Figure S3.

PI-A

p1511

pc1513

pc1515

Supplementary Figure S4.

Supplementary Figure S5.

Supplementary Figure S6.

В

Supplementary Figure S7.

Supplementary Figure S8.

Supplementary Table S1. Antibodies

Proteins or secondary antibodies	Assay	Antibody	Origin	Dilution	Incubation period
CLDN1	WB	51-9000, Invitrogen	rabbit	1/1000	overnight, 4 °C
	WB	sc-166338, Santa Cruz Biotechnology, Inc	mouse	1/200	overnight, 4 °C
	IHC	51-9000, Invitrogen	rabbit	1/25	overnight, 4 °C
EPHB6	WB	sc-398795, Santa Cruz Biotechnology, Inc	mouse	1/400	overnight, 4 °C
	IHC	SAB1403784, Sigma- aldrich	mouse	1/500	overnight, 4 °C
RUNX3	WB, ChIP	MABE145, Merck Millipore	mouse	1/1000	overnight, 4 °C
SLUG	IHC	sc-166476, Santa Cruz Biotechnology, Inc	mouse	1/150	overnight, 4 °C
	WB, ChIP	sc10436, Santa Cruz Biotechnology, Inc	goat	1/1000	overnight, 4 °C
Snail	WB	MABE167, Merck Millipore	mouse	1/1000	overnight, 4 °C
Twist 1/2	WB	GTX127310, GeneTex	rabbit	1/1000	overnight, 4 °C
E-cad	WB	610182, BD	mouse	1/1000	overnight, 4 °C
p-ERK	WB	#9101, Cell Signaling Technology Inc	rabbit	1/50000	overnight, 4 °C
ERK	WB	#4695, Cell Signaling	rabbit	1/50000	overnight, 4 °C
p-JNK	WB	#4668, Cell Signaling	rabbit	1/1000	overnight, 4 °C
JNK	WB	#9258, Cell Signaling	rabbit	1/1000	overnight, 4 °C
p-p38	WB	#4511, Cell Signaling Technology, Inc.	rabbit	1/1000	overnight, 4 °C
p38	WB	#9212, Cell Signaling Technology, Inc.	rabbit	1/1000	overnight, 4 °C
caspase 3	WB	IMG-144A, Imgenex	mouse	1/1000	overnight, 4 °C
cleaved PARP	WB	#9546, Cell Signaling Technology, Inc.	mouse	1/1000	overnight, 4 °C
ACTIN	WB	A5441, Sigma-aldrich	mouse	1/200000	overnight, 4 °C
anti-myc tag	WB	05-419, Merck Millipore	mouse	1/5000	overnight, 4 °C
	IP	05-419, Merck Millipore	mouse	1 μg for 0.5 μg	overnight, 4 °C
	ICC	05-419, Merck Millipore	mouse	1/500	overnight, 4 °C
anti-HA.11 tag	WB	MMS-101P, covance	mouse	1/5000	overnight, 4 °C
anti-Flag tag	WB	F1804, Sigma-aldrich	mouse	1/10000	overnight, 4 °C
Histone H3 (tri methtl K27), ChIP Grade	ChIP	ab6002. abcam	mouse	5 μg for 3 x 10^6 cells	overnight, 4 °C
Histone H3 (tri methyl K4), ChIP Grade	ChIP	ab1012, abcam	mouse	2 μg for 3 x 10^6 cells	overnight, 4 °C
Histone H3 (acetyl K9), ChIP Grade	ChIP	ab4441, abcam	rabbit	5 μg for 3 x 10^6 cells	overnight, 4 °C

Proteins or secondary antibodies	Assay	Antibody	Origin	Dilution	Incubation period
Histone H3 (acetyl K14), ChIP Grade	ChIP	ab52946, abcam	rabbit	5 μg for 3 x 10^6 cells	overnight, 4 °C
Histon H3 (tri methyl K9)	ChIP	07-442, Merck Millipore	rabbit	5 μg for 3 x 10^6 cells	overnight, 4 °C
normal mouse IgG	IP, IF, ChIP	12-371, Merck Millipore	mouse	the amount is equal to the test group	overnight, 4 °C
normal rabbit IgG	IP, ChIP	12-370, Merck Millipore	rabbit	the amount is equal to the test group	overnight, 4 °C
normal goat IgG	ChIP	sc-2028, Santa Cruz Biotechnology, Inc	goat	the amount is equal to the test group	overnight, 4 °C
Goat anti-mouse IgG-HRP	WB	115-035-003, Jackson ImmunoResearch	goat	1/5000	1 h, RT
Goat anti-rabbit IgG-HRP	WB	111-035-003, Jackson ImmunoResearch	goat	1/5000	1 h, RT
Bovine anti-goat IgG-HRP	WB	805-035-180, Jackson ImmunoResearch	Bovine	1/5000	1 h, RT
Goat anti-mouse DyLight 594	ICC/IF	ab96873, abcam	goat	1:200	1 h, RT
CD133	Flow	CD133/2 (293C3)- PE,130-090-853, Miltenyi Biotec	mouse	10 μl per 100 μl cell suspenssion (10^7 cells)	10 min, 4 °C

Supplementary Table S2. Sequences of the oligonucleotides

assay	gene		sequence 5'->3'
shRNA			
	shLuc		CAAATCACAGAATCGTCGTAT
	shLacZ		CGCGATCGTAATCACCCGAGT
	shCLDN1-33		CCACAGCATGGTATGGCAATA
	shCLDN1-34		CTGGGAGTGATAGCAATCTTT
	shEPHB6-51		GAGTGAGCAGGAGGTACTAAA
	shEPHB6-52		GAATGACGATACCCGTGACTC
	shPLINX3-674		CCTACCACCATCCCCTATT
	shRUNX3-074		
	should so		
highlite acquencing primero	SHOLUG-00		CCCATTCTGATGTAAAGAAAT
bisume sequencing primers	CI DN1 promoter	forward	ΤΑΤΤΑΛΑΤΤΤΑΛΑΑΤΤΩΤΑΩΤΤΤΤΤΩΛΑΩΩ
	OLDINI promoter	roverse	
		1000130	
Methylation-specific PCR			
The methylated primers	CLDN1 promoter	forward	TTCGTTTTAATTTTTTCGCGGGGTTT
···· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		reverse	CGATAACGCCGATCCATCCC
The unmethylated primers	CLDN1 promoter	forward	TTTTGTTTTAATTTTTTTGTGGGGTTTA
	ozbiti promotor	reverse	
For bisulfite converted sequence		forward	TEGTEATEGAGGAGGTTTAGTAAGT
For bisulite converted sequence	p-ACTIN	rovorso	
nyrosequencing of CnG percentage		1676136	
amplicon1	CLDN1 promoter	forward	GGGAGTAATAGTAGTTTTTAGTATTTAGAT
amplicon	OEDINI promoter	roverse	hintin-ATAAAACCCAACAACTACAACC
		neverse	
		sequencing	GATTTAATTAGATTTAGAGTTT
amplicon?	CI DN1 promoter	forward	CCCACTAATACTACTATTTACTATTTACAT
ampliconz	CEDIAI promoter	rovorso	
		sequencing	AATTITTAGAGGGGTTAGTTAT
amplicon3	CLDN1 promoter	forward	GGGAGTTAGGGTTGTTTATTTGTAAA
	CEBITI promotor	reverse	
		sequencing	GTTTTTGTATTTGTATTTGTATTTTGA
RT-gPCR		ooquonong	
•	CLDN1	forward	CCGTTGGCATGAAGTGTATG
		reverse	AGCCAGACCTGCAAGAAGAA
	EPHB6	forward	ATGATCCGCAAGCCAGATAC-
		reverse	GGGTGAGTCCAGACAAGGAA
	RUNX3	forward	AGTGGGCGAGGGAAGAGTT
		reverse	AGTGGCTTGTGGTGCTGAGT
	SLUG	forward	ACAGCGAACTGGACACACATAC
	0200	reverse	TCTCTGGTTGTGGTATGACAGG
	SNAII	forward	
	SNAL	rovorso	
	7EB1	forward	
		rovorce	
		ferruged	
		lorward	
	NANOO	reverse	
	NANOG	forward	AATACCTCAGCCTCCAGCAGATG
		reverse	
	NES	forward	CAGCIGGCGCACCICAAGAIG
		reverse	AGGGAAGTTGGGCTCAGGACTGG
	OCT4	forward	ACATCAAAGCTCTGCAGAAAGAACT
		reverse	CTGAATACCTTCCCAAATAGAACCC
	GAPDH	forward	TGAAGGTCGGAGTCAACGGATT
		reverse	CCTGGAAGATGGTGATGGGATT
		f	
ChiP primer'i	CLDN1 promoter	rorward	
		reverse	AGGAAGGCGAGAAIGAAGC
ChIP primer2	CLDN1 promoter	forward	IIGGATAATTGGAGTGAATGAATG
		reverse	CAGGACCAGGCACCAGAG
ChIP primer3	CLDN1 promoter	forward	CCTTTCCTTCTCTGTCACCAA
		reverse	IIIIIGTGTGTGGTGCGAGT