Supplementary information

Aichi virus 3C protease modulates LC3- and SQSTM1/p62-involved antiviral response

Ming-Hsiang Kung, You-Sheng Lin, Tsung-Hsien Chang

Table S1. Primer sequences for AiV viral gene cloning.

Target	Pri	mer sequences (5' to 3') Cloning site			
AiV-L	F	CCGC <u>GAATTC</u> A ATG GCTGCAACACGGGTTTCA	EcoR I		
	R	CCCG <u>GGATCC</u> TCA TTGCCGTTGGAGGTTGGT	BamH I		
AiV-VP0	F	CCGC <u>GAATTC</u> A ATG GGCAACTCGGTCACCAAC	EcoR I		
	R	CCCG <u>GGATCC</u> TCA CTGTGGGGCGAGGTAG	BamH I		
AiV- VP3	F	CGAT <u>AGATCT</u> G ATG CACTGGAAGACTCGCACC	Bgl II		
	R	CCCG <u>GGATCC</u> TCA CTGGGAAGTGAGGGCAG	BamH I		
AiV- VP1	F	CCGC <u>GAATTC</u> A ATG ACCCTCACCGAAGACCTC	EcoR I		
	R	CCCG <u>GGATCC</u> TCA GTAGGTGGGGCGCTG	BamH I		
AiV- 2A	F	CCGC <u>GAATTC</u> A ATG GTCCACTGGGCCATCC	EcoR I		
	R	ATCC <u>TCTAGA</u> TCA CTGTCGCCTGATGCCTGG	Xba I		
AiV- 2B	F	CGAT <u>AGATCT</u> G ATG GGCCTCCTCACCCTCT	Bgl II		
	R	CCCG <u>GGATCC</u> TCA TTGAGGTTCAAGGGTTGCC	BamH I		
AiV- 2C	F	CCGC <u>GAATTC</u> A ATG GGGCTCAAAGACTTCAACG	EcoR I		
	R	CCCG <u>GGATCC</u> TCA CTGGCGTTTGATGAGGGA	BamH I		
AiV- 3A	F	CCGC <u>GAATTC</u> A ATG GGTAACCGGGTCGTCG	EcoR I		
	R	CCCG <u>GGATCC</u> TCA TTGGGGTTCCCGTGGC	BamH I		
AiV- 3B	F	CCGC <u>GAATTC</u> A ATG GCTGCCTACTCTGCTATC	EcoR I		
	R	CCCG <u>GGATCC</u> TCA TTGGCGCTGGATGTGGC	BamH I		
AiV- 3C	F	CCGC <u>GAATTC</u> A ATG GGAATCTCCCCCGCTG	EcoR I		
	R	CCCG <u>GGATCC</u> TCA TTGCTGGGTGGTGGCAAAT	BamH I		
AiV- 3D	F	CCGC <u>GAATTC</u> A ATG TCTCTCATTGTCCCCACTG	EcoR I		
	R	CCCG <u>GGATCC</u> TCA GGCAGCCAGCAGATTGAG	BamH I		
AiV-3C H42D		TACCTTCTGGTCCCCACCGACCTCCGTGAACCCCA	Site-directed mutagenesis		
AiV-3C C143S		CGACCTTCGAAGGTCTGTCCGGATCCCCGCTTGT	Site-directed mutagenesis		

F: forward primer; R: reverse primer

Bold letter: Insert other nucleotides for transcription start site

Below line: Insert restriction enzyme sequences for gene cloning

Table S2.	Primer	sequences	for c	PCR.
-----------	--------	-----------	-------	------

X 7' 1					
Viral gene	Primer sequences (5' to 3')				
Human IFNα1	F	CCTCGCCCTTTGCTTTACTG			
	R	GCCCAGAGAGCAGCTTGACT			
Human IFNB	F	TGA GCA GTC TGC ACC TGA AA			
	R	GCT TGA AGC AAT TGT CCC GT			
Human RIG-I	F	GCA GAG GCC GGC ATG AC			
	R	TGT AGG TAG GGT CCA GGG TCT TC			
Human MDA5	F	TGC TTC TCT AAG TGG GCA GC			
	R	TTT TCA CCC TGG CCC TGA AG			
Humon TPV 1	F	GGA GAC CCG GCT GGT ATA A			
	R	TGA ACA TCC ACT GGA CGA AGG			
Lumon IDE2	F	GAC CTT CCA TCG TAG GCC G			
numan IKr 5	R	AAT CCT CCT GCT GTG CAT CC			
LL IDE7	F	AGC TGT GCT GGC GAG AAG			
Human IKF /	R	TGG AGT CCA GCA TGT GTG TG			
II IVV -	F	AAG AGC CGG GAT CAG GTA CA			
Human IKKE	R	CAT CTT GTC CAA ACA GCA CTG AA			
11. 10015	F	GGT GGA CAA ATG CGA CGA A			
Human 18G15	R	ATG CTG GTG GAG GCC CTT A			
	F	GCT GAA GGA GAG CAG TTT GTT GA			
Human IFI13	R	AGG ACA TCT GTT TGG CAA GGA			
TT T7'''	F	CAA GGA AGA ATG TGA GCA AGA GTA GA			
Human Viperin	R	TGA TAT GGT GAC ATG GCT TCA CT			
	F	GAG CTG GCG GGC ATC AC			
Human MyD88	R	TCG AAA CGC TCA GGC ATA TG			
	F	GCC TGG AAC TCC TGA CAC AAC			
Human Irim5a	R	CAT GGA CTT CTT GTG GTT TGC A			
II. T. 25	F	CGA GGT GGA ACT GAA CCA CA			
Human Trim25	R	GTG GAT TTG TGT GTG GAC GC			
	F	GGC GCT TAC AGC TCA ATG C			
Human LC3	R	ACC ATG CTG TGT CCG TTC AC			
	F	CCA TGT CCT ACG TGA AGG ATG A			
Human p62	R	CCG CCG GCA CTC TTT TT			
	F	TGC TCC TCA CCC ACA CCA T			
Human TNFa	R	GGA GGT TGA CCT TGG TCT GGT A			
	F	GCT GCA GGC ACA GAA CCA			
Human IL-6	R	GCT GCG CAG AAT GAG ATG AG			
	F	CTG GCC GTG GCT CTC TTG			
Human IL-8	R	CTT GGC AAA ACT GCA CCT TCA			
	F	CCT GCA AGC CAA TTT TGT CCA			
Human CXCL10	F	TGC ATC GAT TTT GCT CCC CT			
	F	CAA CTG GTC GTG GAC AAC CAT			
Human GAPDH	R	GCA CGG ACA CTC ACA ATG TTC			

F: forward primer; R: reverse primer

Figure S1

Figure S1. Evaluation of regulation effect of Atg conjugation system in RLR pathway. (A) Luciferase reporter assay of IFN β , NF κ B, AP-1 and ISRE in A549 cells (1×10⁵) with overexpression of Atg5, Atg7, Atg12 and mAtg16L1 expression vectors or polyI:C stimulation for 24 h. (B) Immunoblotting assay of RLR signaling, LC3 and p62 protein levels in A549 cells with Atg5, or mAtg16L1. GFP-p62 and V5-MAVS were the positive control.

Figure S2

Figure S2. Analysis of RLR signaling in LC3- and p62-knockdown cells. (A and B)

Immunoblotting assay of RLR signal proteins in shCtrl, shLC3 or shp62 A549 cells with polyI:C stimulation.

Figure S3

Figure S3. AiV attenuates polyI:C-promoted RLR response. (A) A549 cells were cotransfected with IFNβ-Luc reporter and pRL-TK for 24 h, and then infected by AiV (MOI = 1). Cells were then stimulated with polyI:C for 24 h and dual luciferase assay was performed. (B) Mock- or AiV-infected A549 cells were stimulated with polyI:C, cell lysates were subjected to immunoblotting with the indicated antibody. (C) IFNβ-Luc reporter, pRL-TK and RIG-I expression vector (300, 600, 1200 ng) were transfected into A549 cells for 24 h, which were then infected by AiV (MOI 1). Dual luciferase assay was performed at 24 h after infection. Data are mean±SD from three independent tests. RIG-I expression and AiV VP1 expression are shown in panel (D). (E) A549 cells were co-transfected with RIG-I expression vector (1200 ng) and AiV 3C vector (300, 600, 1200 ng). Post-transfection 24 h, cell extracts underwent immunoblotting analysis.