Pharmacological depletion of microglia and perivascular macrophages prevents vascular cognitive impairment in Ang II-induced hypertension

Danielle Kerkhofs^{1,2,5}, Britt T. van Hagen^{3,6}, Irina V. Milanova^{4,5}, Kimberly J. Schell^{2,5}, Helma van Essen⁵, Erwin Wijnands^{2,5}, Pieter Goossens^{2,5}, W. Matthijs Blankesteijn^{4,5}, Thomas Unger⁵, Jos Prickaerts^{3,6}, Erik A. Biessen^{2,5,7}, Robert J. van Oostenbrugge^{1,5,6}, Sébastien Foulquier^{4,5,6}

Supplementary Figures

- Figure S1: Internal diameters of podocalyxin-positive brain capillaries.
- Figure S2: FACS analysis from whole brain homogenates.
- Figure S3: Microglial morphological analysis.
- Figure S4: Microglia activation in the cortex in absence of BBB leakage.
- Figure S5: Myelin intensity.

Supplementary Figure S1. Internal diameters of podocalyxin-positive brain capillaries. (A) Representative images of podocalyxin-positive capillaries (green) with the cortex and corpus callosum (scale bar = 50 μ m). (B) Internal diameters of cortical capillaries (2-W ANOVA p_{int} >0.05; p_{plx5622} >0.05; p_{Angll} > 0.05). (C) Internal diameters of capillaries in the corpus callosum (2-W ANOVA p_{int} >0.05; p_{plx5622} >0.05; p_{Angll} > 0.05). n=5-6 mice per group.

Supplementary Figure S2. FACS analysis from whole brain homogenates. (A) Representative flow cytometry gating of microglia population (CD45^{int},Cx3Cr1^{hi},CD11b^{hi}). (B) Proportion of microglia as percentage of total cells (2-W ANOVA $p_{int} > 0.05$; $p_{plx5622} < 0.001$; $p_{AngII} > 0.05$; Tukey's multiple comparison test: *p < 0.05 vs. control). (C) Proportion of MHCII^{hi} microglia (2-W ANOVA $p_{int} > 0.05$; $p_{plx5622} > 0.05$; $p_{AngII} > 0.05$ (C). n=4-5 per group.

Supplementary Figure S3. Microglial morphological analysis. (A) Representative pictures of Iba1⁺ cells in cortical areas before (first column), and after automatic analyzes using WIS-NeuroMath software (second column) (scale bar = 50 μ m). (B) Microglial cell soma size (2-W ANOVA p_{int} = 0.027; p_{plx5622} < 0.001; p_{AngII} > 0.05; Sidak's multiple comparison test: *p < 0.01 vs. control). (C) Microglial ramification lengths (2-W ANOVA p_{int} > 0.05; p_{plx5622} < 0.001; p_{AngII} = 0.07; Sidak's multiple comparison test: *p < 0.001 vs. control). n=5-6 per group.

Supplementary Figure S4. Microglia activation in the cortex in absence of BBB leakage. (A) Representative pictures of Cx3Cr1⁺ cells (green) and CD68⁺ cells (red) (scale bar = $50 \mu m$). (B) Cx3Cr1⁺CD68⁺ densities in cerebral cortex (2-W ANOVA p_{int} >0.05; p_{plx5622} < 0.001; p_{Angll} > 0.05; Sidak's multiple comparison test: *p < 0.001 vs. Control). n=5-6 per group.

Supplementary Figure S5. Myelin intensity. (A) Representative Fire lookup table representation of a stitched coronal brain section stained for Myelin Basic Protein (MBP). (B) Average MBP intensity signal in corpus callosum (2-W ANOVA $p_{int} > 0.05$; $p_{plx5622} > 0.05$; $p_{AngII} > 0.05$). (C) Average MBP intensity signal in Striatum (2-W ANOVA $p_{int} > 0.05$; $p_{plx5622} = 0.10$; $p_{AngII} > 0.05$). n=6 per group.