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Abstract 

Rationale: To reduce upgrading and downgrading between needle biopsy (NB) and radical prostatectomy 
(RP) by predicting patient-level Gleason grade groups (GGs) of RP to avoid over- and under-treatment. 
Methods: In this study, we retrospectively enrolled 575 patients from two medical institutions. All patients 
received prebiopsy magnetic resonance (MR) examinations, and pathological evaluations of NB and RP were 
available. A total of 12,708 slices of original male pelvic MR images (T2-weighted sequences with fat 
suppression, T2WI-FS) containing 5405 slices of prostate tissue, and 2,753 tumor annotations (only T2WI-FS 
were annotated using RP pathological sections as ground truth) were analyzed for the prediction of 
patient-level RP GGs. We present a prostate cancer (PCa) framework, PCa-GGNet, that mimics radiologist 
behavior based on deep reinforcement learning (DRL). We developed and validated it using a multi-center 
format. 
Results: Accuracy (ACC) of our model outweighed NB results (0.815 [95% confidence interval (CI): 
0.773-0.857] vs. 0.437 [95% CI: 0.335-0.539]). The PCa-GGNet scored higher (kappa value: 0.761) than NB 
(kappa value: 0.289). Our model significantly reduced the upgrading rate by 27.9% (P < 0.001) and downgrading 
rate by 6.4% (P = 0.029). 
Conclusions: DRL using MRI can be applied to the prediction of patient-level RP GGs to reduce upgrading and 
downgrading from biopsy, potentially improving the clinical benefits of prostate cancer oncologic controls. 

Key words: prostate cancer, Gleason grade groups, deep reinforcement learning, prostate cancer grading, 
magnetic resonance imaging 
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Introduction 
Originally introduced in the 1960s, the Gleason 

score (GS) remains the most powerful prognostic 
factor for prostate cancer (PCa) [1]. In 2014, a new 
five-category GS grade group (GG) system was 
established. Gleason categories having similar 
prognoses are grouped into certain GGs: GS 3 + 3 = 6 
is GG 1; GS 3 + 4 = 7 is GG 2; GS 4 + 3 = 7 is GG 3; GS 4 
+ 4 = 8 is GG 4, and GS 9-10 is GG 5 [2]. This system 
has been widely adopted and was recently validated 
[3-5]. 

However, PCa was diagnosed mainly by 
applying systematic needle biopsies (NB), which has 
limited prognostic power. Accurate identification of 
GGs from the biopsy was essential to risk 
stratification and decision-making in clinical practice. 
Discrepancies between the GS of NB and radical 
prostatectomy (RP) pathology have been reported 
worldwide. The upgrading rates of NB to RP range 
from 26% to 36% and downgrading rates range from 
5% to 14.7% [6-8]. Such changes have led to over-
treatment or undertreatment for patients. 

Magnetic resonance imaging (MRI) has been 
adopted for PCa diagnosis and staging. MRI can 
overcome bias and insufficiency by sampling in a 
non-invasive manner to elucidate the inherent nature 
of tumoral heterogeneity [6-8]. Several studies have 
shown the efficacies of using MRI to predict GS/GG 
[10,11]. The Prostate Imaging Reporting and Data 
System (PI-RADS V2.1) has demonstrated potential 
for GS/GG prediction, but sensitivity and specificity 
remained at approximately 70%, according to 
previous studies [12-14]. Moreover, several studies 
correlated texture and shape features based on 
radiomics [15] were developed for GS/GG 
predication. The area under curves (AUCs) of these 
studies were from 0.64 to 0.83 [16,17]. Therefore, there 
is an acknowledged need to improve the accuracy to a 
clinical-grade level in future iterations of methods. 

Deep learning and big data [18] were powerful 
tools for further increasing the diagnostic quality of 
GS/GG independent of human annotations. Studies 
that have implemented deep learning algorithms to 
predict GS/GG in prostatectomy specimens, biopsies, 
and microarrays have been recently reported [19,20]. 
In these, attention was paid primarily to GS-7 cases at 
biopsy core specimens. Unfortunately, few studies 
have attempted to build a patient-level hierarchical 
prediction model to support clinical decision-making 
by addressing up-/downgrading alterations [21]. 
Notably, deep reinforcement learning (DRL) has an 
advantage with complex reasoning tasks because of 
its environmental perception, which could provide an 
analysis approach from slice-level results to patient- 

level results [22]. DRL has shown its potential in 
lesion detection, diagnosis, and segmentation [23]. 
However, it has not been effectively applied to grade 
prediction using MRI. 

In this study, we developed and validated an 
interpretable framework that mimicked human- 
behaviors to decrease the risk of up-/downgrading 
from NB to RP pathologies. Our framework predicted 
the final GG at the “patient-level” without manual 
annotations. Additionally, with the aid of our 
algorithm, clinical benefits based on predicted GG 
results were evaluated and validated against multi- 
center datasets. 

Materials & Methods 
Patients 

From the hospital information system of Peking 
University Third Hospital (PUTH) and Peking 
University People's Hospital (PUPH), we enrolled 
patients who underwent RP between January 1, 2010 
and December 31, 2019. All patients underwent 
ultrasonography-guided transrectal systematic biopsy 
(SBx) with a maximum of 14 cores at each hospital. 
Patient-level GS of needle biopsies and 
prostatectomies were documented and converted to 
GG form. All patients received magnetic resonance 
(MR) exams 1-7 days before the biopsy. We performed 
systematic biopsy in a transrectal manner using 
ultrasonography guidance, which is likely known to 
cause prostate-rectus adhesion. To avoid rectal injury, 
we opted to perform the RP at least one month after 
the biopsy. Our inclusion criteria were as follows: 1) 
prebiopsy 3T MRI of T2-weighted image with fat 
suppression (T2WI-FS); 2) complete documentation of 
clinical parameters, including total prostate-specific 
antigen (PSA), clinical T stage, biopsy core-level 
documentation, pathological tumor node metastasis 
staging system and relevant perioperative 
parameters; and 3) pathologically confirmed prostate 
adenocarcinoma. 4) pathological specimens of needle 
biopsy and RP. The exclusion criteria were as follows: 
1) incomplete clinical information (the lack of GG or 
pathological specimen); 2) presence of other 
pathological types; 3) presence of distal metastasis; 
and d) neoadjuvant androgen deprivation therapy 
(ADT) cases (Figure 1). 

We included 575 patients with pretreatment MR 
images, biopsy pathological results, and pathological 
results of RP from two Chinese hospitals. Patient 
characteristics are listed in Table 1. Patients were 
divided into a primary cohort (PC, N = 279, from 
PUTH-p1), internal verification cohort (VC, N = 31, 
from PUTH-p1), external testing cohort 1 (TC1, N = 
178, from PUTH-p2) and external testing cohort 2 
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(TC2, N = 87, from PUPH) (Table S2). PC was used for 
model training. VC was used for internal verification. 
TC1 and TC2 were used for multi-center validation 
(Figure 1, Figure 2A). 

 

Table 1. Patient characteristics 

 PUTH PUPH P-value 
Number of patients 488 87  
Age, median (IQR) 70 (65) 70 (64) 0.104 
Total PSA, median (IQR) 11.5 (7.30) 14.7 (9.09) 0.596 
Free PSA, median (IQR) 1.48 (0.87) 1.70 (0.89) 0.855 
Clinical T stage   0.022 
2a-2c 211 (43.2) 51 (58.6)  
3a 175 (35.9) 20 (23.0)  
3b 102 (20.9) 16 (18.4)  
Positive needle, median (IQR) 5 (2) 5 (3)  
GG-NB, N (%)   0.017 
1 123 (25.2) 30 (34.5)  
2 98 (20.1) 23 (26.4)  
3 73 (15.0) 16 (18.4)  
4 99 (20.3) 11 (12.6)  
5 95 (19.5) 7 (8.0)  
GG-RP, N (%)   0.464 
1 68 (13.9) 14 (16.1)  
2 126 (25.8) 26 (29.9)  
3 96 (19.7) 21 (24.1)  
4 75 (15.4) 10 (11.5)  
5 123 (25.2) 16 (18.4)  
Note: PUTH, Peking university third hospital; PUPH, Peking university people's 
hospital; GG-NB, grade group for pathological assessment of needle biopsy; 
GG-RP, grade group for pathological assessment of radical prostatectomy; N, the 
number of patients. 

 

Imaging data acquisition and annotations 
based on computational pathology registration 

All MRIs were performed before SBx using 3T 
MR scanners (Magnetom Trio, Siemens Healthcare, 

Erlangen, Germany/Discovery MR750, GE 
Healthcare, USA) without an endorectal coil. Only 
DICOM data of T2WI-FS (turbo-spin echo or fast- 
recovery fast-spin echo with fat suppression) were 
used for analysis in this study (Table S1). 

Pathological hematoxylin-eosin sections of each 
patient from RP were scanned at 40× magnification to 
computational pathological sections (NanoZoomer 
S360, HAMAMATSU, Hamamatsu City, Japan). First, 
a pathologist having 22 years of urology expertise 
patched all the pieces into whole-mount sections and 
delineated the lesions that were responsible for 
diagnosis on each section. Second, our pathologist 
and one urological radiologist (12 years of experience) 
together recognized and delineated lesions on MRI 
correlated to whole-mount images, by using the 
knowledge of shape, texture, location of both the 
prostate and the tumors, which is knowing as 
cognitive registration. Of note, only lesions 
responsible for patient-level GG assessment were 
delineated. Very small satellite lesions or lesions 
contribute little to the final diagnosis were ignored. 
Five different examples are shown in Figure 2B 
(Supplementary Information I). 

In our study, the T2WI-FS contained 24 [18-24] 
(Median [Min-Max]) slices per patient, in which 9 
[8-12] (Median [Min-Max]) slices containing prostate 
gland were included. The number of annotations per 
case was 5 [4-10] (Median [Min-Max]). There was no 
significant difference between datasets in the 
distribution of the five-category GG-RP (P > 0.05). 

 

 
Figure 1. Patient recruitment and study design. 
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Figure 2. Dataset and annotations. (A) Multi-center datasets. (B) Tumor segmentation based on whole slide images of hematoxylin-eosin staining sections from different cases 
of RP. 

 

GSs/GGs of NB and RP 
All patients received transrectal systematic 

biopsy at both centers. No targeted biopsy was 
performed. The number of cores ranged from 12 to 14. 
Subsequently, laparoscopic RP was performed one 
month after biopsy at either PUTH or PUPH. GS/GGs 
of NB and RP were reported at core, specimen, and 
patient levels according to the 2016 World Health 
Organization five-tier criteria [2]. Each pathology 
report was read and verified by two board-certified 
pathologists having PCa experiences of 6 and 22 
years, independently. For cases having different 
assessments, a thorough discussion was conducted to 
reach a final agreement (Figure S1). 

Deep CNN for slice-level analysis using 
identified tumor slices 

First, we performed a pixel-wise analysis to 
obtain slice-level prediction and CNN features using 
tumor slices of T2WI-FS (Figure 3A, 3D). A PNASNet- 
5-large [24]-based progressive search strategy was 
adopted as the structure for constructing a 
classification model (generator-net), which earned 
state-of-art performance for image classification with 
an accuracy of 1,000-category on the ImageNet [25] 
test set: 82.9% (top-1) and 96.2% (top-5). Model 
parameters of the model trained by ImageNet were 
used for the pre-training network and for transfer 
learning [26], in which the filter parameters of the 
network were frozen, except for the last five layers. 
Next, the model was trained with semi-supervised 
learning, and the label of each slice was consistent 
with patient-level GGs. During model training, data 

augmentation was used to restrict overfitting, 
including random rotation, mirror transformation, 
and affine transformation. The central point of the 
original image window was the anchor point and the 
area with a window size of 200 × 200 (pixels × pixels) 
near the anchor point was selected as the region of 
interest (ROI) to focus the network's attention on the 
prostate area. The ROI was then scaled to 331 × 331 
(pixels × pixels) via bilinear interpolation as input. 

Additionally, inputs were converted into a 
three-channel image, and each channel was 
standardized with a mean of 0.5 and a variance of 0.5. 
CNN features related to PCa GGs were then extracted 
from the last fully connected layers, providing a 
vector (𝑓𝑓) of 4,320 × 1. The output of the classifier was 
generated by softmax, having a vector (𝑘𝑘) of 5 × 1, 
including the corresponding prediction probability of 
the five-grade GG, 𝑝𝑝𝑖𝑖,𝑘𝑘.  The category having 
maximum prediction probability contained the 
predicted GGs. During training, the batch size of 
every interaction was 64, and the loss function was 
defined by the cross-entropy of multiple 
classifications to update filters via backpropagation 
(F-1). The consistencies between labels and predicted 
results were binary (𝑦𝑦𝑖𝑖,𝑘𝑘). The learning rate was set to 
0.01 with an exponential reduction of 0.97, and the 
momentum was adjusted at 0.9. When the epoch 
training finished, the VC was employed for internal 
validation and early stopping to prevent overfitting. 
The model training was terminated and saved until 
the overall ACC of five consecutive epochs was 
stagnant, giving us the generator net. 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌,𝑃𝑃) = − log Pr(𝑌𝑌|𝑃𝑃) = − 1
𝑁𝑁
∑ ∑ 𝑦𝑦𝑖𝑖,𝑘𝑘 log𝑝𝑝𝑖𝑖,𝑘𝑘𝐾𝐾−1

𝑘𝑘=0
𝑁𝑁−1
𝑖𝑖=0  (F-1) 
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Figure 3. Workflow of PCa-GGNet. (A) The input of PCa-GGNet, for which only one slice was input per operation. The initial input was the median slice of the whole T2WI-FS 
sequence. (B) Action rules for attentional slice searching, which included direction and step length of actions. (C) The illustration of attentional slice searching and updating. (D) 
The workflow and architecture of PCa-GGNet. PNAS refers to a progressive neural architecture search. In the first step, we selected the median slice of T2WI-FS as input for 
the convolutional neural network (CNN)-based model to predict GG-RP on each slice. For the second step, we used features from the first step of the DRL-based model to 
generate an action for updating input. For the third step, a checkpoint was used to determine whether the results of the current input could be used as patient-level predictions. 
If so, the input was a decision slice. If not, our attention was changed through actions to find a new slice as an input. The framework was a sequential method to predict 
patient-level GG-RP. The gray arrow shows a forecasting process. See Methods for complete details. 

 

DRL for simulating radiologist reading 
behavior to search for attentional slices 

We used a DRL strategy to mimic the diagnostic 
behavior of radiologists and to improve slice-level-to- 
patient-level prediction. The model slid each slice of 
the 3D T2WI-FS forward or backward using an 
attention mechanism. It then associated the memory 
of the browsing path to empower the attentional slice 
searching strategy. A slice was finally obtained as the 
decision slice, identifying the most critical slice for the 
patient-level GG-RP. For the experiments, we adopted 

the deep-Q network (DQN) [22], which has been used 
to replicate the human-level player performance in 
sports video games, as the basic structure. We 
redesigned the game mechanism and reward function 
for the GG prediction problem. The DQN consists of 
current and target nets having the same configuration 
as an artificial neural network with two hidden layers. 
The input of net (s) is a 4,320 × 1 vector (denoted as 
the status), and the output (Q) is a 7 × 1 vector that 
indicates different orders of action (a) (Figure 3B, 3D). 
The two hidden layers were constructed with 50 and 
30 neurons, respectively. The current net was used to 
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collect experiences into a pool during training and to 
update their parameters using Q_loss (F-2). The 
collected experience included the rewards, r, 
underlying the current status, and actions. Rewards 
are defined by their predicted probability, Ps,a, and the 
consistency between the predicted and true labels 
(F-3). The basic reward (ys,a,) and the reward rate (α) of 
predicted probability (Ps,a) were set as 1 and 0.5. When 
the experience pool overflowed, the benefits of a 
single action in the experience pool were randomly 
recorded, and the neuron parameters of the current 
net were assigned to the target net when the number 
of accumulations reached 100. The training 
environment included patients who provided 3D 
T2WI-FS slice imagery with identified CNN features. 
We changed the training environment by randomly 
selecting the starting slice to achieve data 
augmentation, which increased the robustness of the 
model. During the attentional slice searching phase, 
only the target net was used as a decision agent to 
determine the probability of actions and to select the 
action having the highest probability. 

Q_loss = 𝐸𝐸 ��𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑄𝑄 − 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑡𝑡𝑄𝑄�
2
� = 𝐸𝐸 ��𝑇𝑇 + 𝛾𝛾max𝑎𝑎′ 𝑄𝑄(𝑠𝑠′,𝑇𝑇′;𝜃𝜃) − 𝑄𝑄(s, a; θ)�

2
� (F-2) 

𝑇𝑇 = 𝑦𝑦𝑠𝑠,𝑎𝑎�𝑏𝑏 + 𝛼𝛼𝑦𝑦𝑠𝑠,𝑎𝑎𝑃𝑃𝑠𝑠,𝑎𝑎� (F-3) 

Patient-level prediction of PCa-GGNet 
framework 

To construct a GG prediction indicator at the 
patient-level, a three-stage PCa-GGNet framework 
was developed. Two basic units (i.e., generator and 
action net) were prepared during the training phase. 
A slice was the framework's input. A classifier based 
on the tumor slice was established for five-category 
prediction at the slice-level (i.e., generator net) (Figure 
3D). Inputs for the training generator net included 
tumor slices, and their labels reflected the patient- 
level GG-RP. Next, the action net was trained for 
attentional slice searching using features and 
classification results, as generated by the generator 
net. To train the action net, we defined the T2WI-FS 
slices as the environment, for which labels included 
patient-level GG-RP and flags of tumor slices. The 
generator net and action net were built step-by-step. 
During the prediction phase, three steps were 
required for the PCa-GGNet framework to predict 
patient-level GG. In this first step, the middle slice 
was selected as the input to the generator net (Figure 
3A), and CNN features and predictions based on 
slices were generated from the generator net. During 
the second step, CNN features were employed for the 
action net to produce an action order based on rules 
(Figure 3B). Lastly, a checkpoint was set to draw a 
conclusion based on the action order from the action 
net. If the framework-running circle was not satisfied 

with the condition of the checkpoint, which would 
experience an early stop or stay-in-place action, the 
framework would update the current attentional slice 
and repeat steps 1 and 2 (Figure 3C). Otherwise, the 
patient-level prediction would adopt the result of the 
attentional slice generated from the last circle. The 
initial input was the median slices, which recorded 
the radiological information of the prostate area. 

Evaluation 
Quantitative statistics were summarized as mean 

± standard deviation. Categorical variables were 
achieved via the χ2 test or Fisher's test. The reported 
statistical significance levels were all two-sided, with 
the statistical significance level set to 0.05. ACC and 
quadratic Cohen's kappa coefficient were used to 
evaluate the overall performance of the multi- 
category classification. Precision (F-5), recall (F-6), and 
F1-score (F-7) were used for evaluation within the 
category. The 95% confidence interval (CI) values 
were calculated using a bootstrap strategy (N = 1,000). 
Statistical analyses were performed using Python’s 
(v.3.6.5) scikit-learn package (v.0.21.3) and R (v.3.1.0). 

Precision = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇+𝐹𝐹𝑎𝑎𝑙𝑙𝑠𝑠𝑇𝑇 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇)

 (F-5) 

Recall = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇+𝐹𝐹𝑎𝑎𝑙𝑙𝑠𝑠𝑇𝑇 𝑛𝑛𝑇𝑇𝑙𝑙𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇)

 (F-6) 

F1 − score = 2 ∙ 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑛𝑛∙𝑇𝑇𝑇𝑇𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑙
(𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑛𝑛+𝑇𝑇𝑇𝑇𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑙)

 (F-7) 

Results 
Inconsistency between biopsy assessment and 
RP pathology 

The consistencies between the Cohen's kappa 
values of GG-NB and GG-RP were 0.364 and 0.289 at 
PUTH and PUPH, respectively. The mean accuracy 
(ACC) between GG-NB and GG-RP on the total 
patients was 0.484 (95% CI: 0.379-0.588). The overall 
upgrading rate reached 40.4%, which was 
significantly higher than the downgrading rate of 
14.7% (P < 0.001) (Figure 4). The upgrading and 
downgrading of each GG-NB are shown on the left 
side of Figure 5. Apart from GG 1, the second-largest 
proportion of upgrading was in GG 3, and the largest 
downgrading cases were in GG 4. Importantly, more 
than 50% of GG-NB 3 upgrades shifted to GG-RP 5, 
and some patients in GG-NB 4 or 5 downgraded to 3 
or lower. Consistency analysis of GGs between 
GG-NB and GG-RP is shown in Table S3 for different 
cohorts. 

Assessment of generator net for slice-level 
GG-RP prediction based on lesion slice analysis 

To construct a multi-classification model for 
predicting patient-level GG-RP, we first built a five- 
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category prediction model (i.e., generator net) based 
on lesion-level analysis to distinguish different GG- 
RPs as accurately as possible. During the training 
phase, a total of 1,484 T2WI-FS tumor slices in PC 
were used for the model's parametric learning. A total 
of 160 tumor slices from VC were used as internal 
verification and were regarded as the model's early 
terminating conditions to prevent overfitting. 

The ACC of generator net for the five-category 
(GG-RP 1-5) classification in PC and VC were 0.73 
(95% CI: 0.711-0.749) and 0.615 (95% CI: 0.545-0.686), 
respectively (Table S4). More details (i.e., precision, 
recall, and F1-score) at each grade are listed in Table 
S5. We also tried to merge slices without tumor 
annotations into original samples as a separate 
category to construct a six-category model to not only 
distinguish five levels of GG-RP, but also to filter-out 
slices without tumors. Although the overall ACC of 
the classifier was improved to 0.838 (95% CI: 
0.83-0.847) in PC and 0.803 (95% CI: 0.777-0.829) in 
VC, the ACC for GG-RP prediction (slice-level) 
significantly dropped to 0.54 in PC (95% CI: 
0.517-0.562) and 0.523 (95% CI: 0.451-0.594) in VC 
(Table S4), respectively. Therefore, the five-category 
model containing tumor annotations of training 
samples was adopted as the generator net for 
predicting GG-RP at the slice-level. We also compared 
the classification performance of different network 
structures in Table S4, and the most optimal basic 
network structure was the PNASNet-5-large net. 

Performance of discriminator net for 
attentional slice searching 

Based on features from the generator net output, 
the action net was modeled for attentional slice 
searching to update the input of the generator net in a 
new prediction period and to draw the final decision. 
The ACC of the action net (designed to identify slices 

containing tumors in the 3D T2WI-FS) was 0.862 (95% 
CI: 0.85-0.874) in PC by five-fold cross-validation 
(Table S6). According to the rules, no matter whether 
if we received a “stay at the place” status at the last 
step, we adopted the last-searched slice as the 
attentional slice, so that the model would keep the 
sensitivity of 100%. The specificity of the model was 
0.86 (95% CI: 0.848-0.872) on PC. In the experimental 
attempts, the four-circle was set as the terminating 
condition of the action net, in which the slice at the 
fourth act was used as the basis for the final decision. 
Next, we verified the action net in VC with an ACC of 
0.797 (95% CI: 0.754-0.841) and a specificity of 0.797 
(95% CI: 0.754-0.841) (Table S6). The ACC of the 
GG-slice to the finally selected slices was 0.86 (95% CI: 
0.846-0.874) in PC and 0.832 (95% CI: 0.784-0.88) in VC 
(Table S6). 

Assessment of PCa-GGNet for predicting 
GG-RP at patient-level and restriction of 
upgrading and downgrading risks 

To explore whether the PCa-GGNet using T2WI 
could construct a prediction index highly related to 
the GG-RP at the patient-level, we first constructed a 
computing framework and trained it in PC. The 
prediction process is visualized in Figure S2. The 
predicted GG from PCa-GGNet (GG-Pre) obtained a 
five-category ACC of 0.847 (95% CI: 0.826-0.867) in PC 
and 0.83 (95% CI: 0.762-0.898) in VC (Table S3). The 
kappa consistency between the GG-Pre and GG-RP 
was 0.804 (95% CI: 0.752-0.857) and 0.777 (95% CI: 
0.599-0.954) in PC and VC, respectively. The F1-score 
of each GG (1-5) was 0.893 (95% CI: 0.767-1.018), 0.79 
(95% CI: 0.697-0.883), 0.62 (95% CI: 0.341-0.899), 0.868 
(95% CI: 0.725-1.012), and 0.877 (95% CI: 0.732-1.022), 
respectively (Table S7). Furthermore, to validate the 
reliability of the PCa-GGNet, the model was tested on 
multi-center datasets obtaining ACCs of 0.781 (95% 

 

 
Figure 4. Performance of PCa-GGNet against GG-NB for upgrading or downgrading evaluation. (A) Overall performance. The bar chart and ratio at the top indicate the 
number of people upgraded or downgraded in the dataset. (B) Comparison of the rates of upgrading or downgrading between biopsy and our method. 
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CI: 0.751-0.811) in TC1, and 0.815 (95% CI: 0.773-0.857) 
in TC2 (Table S3). The kappa consistency in TC1 was 
0.713 (95% CI: 0.632-0.794) and 0.761 (95% CI: 
0.656-0.865) and TC2, respectively. The confusion 
matrix between GG-Pre and GG-RP under multi- 
center settings are shown in Figure 6E-H. ROC 
analysis was used for evaluating the performance of 
GG-Pre according to different subgroups, AUCs of 
low-grade (grade 1 vs. 2,3,4,5), medium-grade (grade 
1,2 vs. 3,4,5) and high-grade (grade 1,2,3 vs. 4,5) 
groups were all greater than 0.8 in PC, TC1, and TC2 

(Figure S3). 
For assessing the restriction of upgrading and 

downgrading risks, the inconsistency of PCa-GGNet 
in all testing samples decreased to 12.5% (upgrading) 
and 6.3% (downgrading) (Figure 4A). Consistency 
ratios of PCa-GGNet at each GG (1-5) were 90.5%, 
66.3%, 89.4%, 84.4%, and 82.3%, respectively (Figure 
5). Top-2 predictions of PCa-GGNet were in grade 1 
with an F1-score of 0.876 (95% CI: 0.805-0.947) and in 
grade 5 with an F1-score of 0.884 (95% CI: 0.826-0.942) 
(Table S7). 

 

 
Figure 5. Comparison between our method and GG-NB at each grade. (A) Grade 1 of GG-RP. (B) Grade 2 of GG-RP. (C) Grade 3 of GG-RP. (D) Grade 4 of GG-RP. (E) 
Grade 5 of GG-RP. The upper bar chart and ratio at the top indicate the number of people who were upgraded or downgraded in the dataset. The color bar represents the 
detailed type of upgrading and downgrading group. The black arrow indicates the target of the GG-RP corresponding to the pie chart. 
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Figure 6. Assessment of PCa-GGNet in multi-center for multi-category prediction. (A-D) Proportion distribution of five levels of GG-RP in the primary cohort (PC), validation 
cohort (VC), testing cohort 1 (TC1), and testing cohort 2 (TC2). (E-H) Confusion matrix. 

 
Compared with GG-NB, GG-Pre reduced the 

overall upgrading rate by 27.9% (P < 0.001) and 
reduced the overall downgrading rate by 6.4% (P = 
0.029). The risks of upgrading and downgrading were 
diminished (Figure 4B). The consistency in GG 1 
increased to 90.5% by applying our method (P < 
0.001). Furthermore, the proportion of GG 1 shifting to 
GG 5 was eliminated (Figure 5A). Compared with 
GG-NB, the upgrading rate in GG 2 decreased by 15% 
in our prediction (P = 0.093). Moreover, shifts from 
GG 2 to 4 or 5 were significantly reduced. In GG 3, the 
upgrading rate dropped from 53.1% to 4.3% (P < 
0.001), and the downgrading rate decreased from 
16.3% to 6.4% (P = 0.201) (Figure 5C). The 
up-/downgrading rates of GG 4 were reduced by 
18.5% (P = 0.112) and 32.6% (P = 0.002), respectively, 
and the proportion of shifting from GG 4 to 5 
decreased by one third (P = 0.012) (Figure 5D). 
Among all cases, the rates of GG raising two or more 
levels were reduced from 18.5% to 4.5%. Shifts from 
below GG 3 to 4 or 5 were reduced by 48.1%, among 
which the ratio of GG 1 shifting to 5 was eliminated. 
Among all grades, GG 3 was the group that obtained 
the highest cumulative gains for both upgrading and 
downgrading improvements. 

Discussion and Conclusion 
For the past six decades, GS has remained one of 

the most powerful predictive factors for biochemical 
relapse and overall survival of PCa. Current treatment 
options are mainly decided via risk stratifications or 
nomograms, which consist of total PSA level, clinical 
T stage, NB Gleason GGs, and other clinico-
pathological parameters. Thus, precise assignments of 
biopsy GGs are crucial when making optimal 
treatment choices for patients. However, 

discrepancies between NB and RP pathology are 
common, and the latter is considered to reflect more 
accurate information about the nature of the tumor. 
Upgrading from NB to RP was reported to be as high 
as 36% [27], whereas downgrading was reported to 
have a lower average of 5% [1,8]. Tumor 
aggressiveness was usually underestimated in 
NB-upgraded cases, followed by worse prognoses of 
biochemical-free survival. Corcoran et al. reported 
that 28.6% of upgrading cases correlated with a higher 
risk of biochemical recurrence [28]. Boorjian et al. 
constructed a multivariate model to predict 
biochemical recurrence following RP in a cohort of 
over 8,000 patients, and the NB results demonstrated 
minimal additional value as compared with RP 
Gleason results [29]. Similar situations were observed 
in a Korean population cohort, in which upgraded 
cases demonstrated worse biochemical-free survival 
and worse metastasis-free survival [30]. 

The reasons for discordance between NB and RP 
are variable, such as tumor heterogeneity, sampling 
bias on needle biopsies, erroneous interpretation on 
inadequate tissue, and different practices of GG 
assignments at the core- or patient-levels. To achieve 
more accurate results of NB pathology, numerous 
attempts have been made. Several studies have tried 
to incorporate multiple clinical parameters (e.g., PSA, 
core length, percentage of Gleason pattern 4) to 
develop models or nomograms to predict final RP 
results. However, the robustness and discriminative 
power of these models remained below the desired 
threshold of 0.70 [31-33]. This situation was improved 
with the adoption of MRI in targeted biopsies (TBx). 
Level-1 evidence from the PRECISION trial 
demonstrated that MR fusion TBx improved the 
detection rate of clinically significant PCa [34]. TBx 
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can reduce upgrading and improve tumoral 
percentage at each core, compared with SBx [35-38]. 
Additionally, there is an increasing trend regarding 
the application of data science for automated GG 
scoring. Several automated deep learning algorithms 
for GG have been proposed on biopsy histology or 
tissue microarrays, producing accuracy ranges from 
80% to 98% [39-41]. However, most of these studies 
focused on biopsy samples, and limited works have 
addressed upgrading NBs. Furthermore, to the extent 
of our knowledge, few works have been accomplished 
for predicting the final GG from an MRI to elucidate 
better discrepancies between NB and RP pathology 
[42-45]. 

The black-box feature of deep learning is often 
regarded as the main drawback of these artificial 
systems, especially for treatment-related decision- 
making in clinical practice. The method of voxel 
analysis has generally not been recommended for 
modeling the prostate MRI because of the weakened 
anatomical consistency caused by the distance 
between imaging layers and computational costs. 
Overwhelmed by redundant information, pixel-wise 
analysis of slices has also been a big challenge, owing 
to the naive statistics of slice-level results. To make 
our algorithm more interpretable and accurate, we 
proposed a radiologist-like computing framework for 
MRI for end-to-end prediction of GG-RP, named 
PCa-GGNet. This tool combined the dual advantages 
of the pixel-wise analysis of deep learning [46] and the 
dynamic programming of DRL [47]. In the current 
design, we defined each patient's T2WI-FS as a game, 
each imaging layer as a frame and each action as a 
gamer's movement. The current framework was only 
designed for a single sequence (T2WI-FS) in MRI, in 
which Diffusion-weighted imaging (DWI) or apparent 
diffusion coefficient (ADC) was not involved. The 
pre-process of center cropping in the original image 
expanded the proportion of the prostate in the input 
so that the model paid more attention to the prostate 
area. Quantitative and robust features combined with 
artificial intelligence, helped the framework draw a 
path for decision-making more quickly and 
accurately. First, to generate a patient-level result, the 
model's decisions were based not only on a specific 
single layer but also on the entire "impression" of 
imaging data at every previous step. This is how the 
human brain works. Second, the construction of the 
final decision consisted of both tumor volume and 
histological aggressiveness information to improve 
the discriminative power for the final GG 
(Supplementary Information II). For example, when 
there were two isolated lesions within one case at 
different layers (minor: 4 + 4; major: 3 + 3), if we 
choose the slice containing maximum tumor volume 

as the decision basis, the patient-level decision would 
be 3 + 3. Otherwise, if we select the layer having the 
highest score, it would be 4 + 4 (Figure S3). 
Obviously, neither of the aforementioned two 
answers can be called accurate. However, by adding 
both tumor volume and histological ranking into the 
formula, our model successfully optimizes the recipe 
to mimic patient-level results (3 + 4), which is 
precisely the way radiologists do it. 

Compared with radiomics [48]-based machine 
learning, PCa-GGNet better reflects the characteristics 
of RP pathology and avoids the restrictions of tumor 
segmentation. It improved the fitting quality of 
weakly supervised models and further reduced the 
dependence of annotated data. The primary principle 
of our design required the use of high-information 
entropy input modeling to compensate for the 
excessive reliance on supervisory information. This 
system should function well in scenarios that lack 
domain knowledge, especially for non-prominent 
tumors such as PCa. The transfer learning method [26] 
provided a powerful tool to artificial intelligence- 
based models for expanding advantages of the 
algorithm to different image types and have been 
proven in many clinical applications. The prediction 
model based on mp-MRI for multi-sequence (DWI, 
ADC, etc.) information joint was hopeful to be further 
constructed. The framework also has the potential to 
be extended to other medical image analysis tasks 
based on different modality images. 

On our total dataset, the consistency rate of NB 
to RP was only 44.9%. Approximately 40.4% of NB 
cases upgraded to RP, and 14.7% finally downgraded. 
Patients falling in GG 1 are usually considered for 
active surveillance (AS) [49]. With the increasing 
percentage of Gleason pattern 4, patients are more 
likely to be referred to RP and other definitive 
therapies. Thus, upgrading from GG grade 1 to 2/3 is 
crucial to the selection between AS and definitive 
treatment. In our testing cohort, 64.6% of patients in 
GG 1 experienced upgrading at RP, which indicates 
that there is a possibility for a group having the same 
biopsy conditions to face insufficient treatment if they 
are recommended for AS. In contrast, when 
considering the implication of extended pelvic lymph 
node dissection (ePLND), upgrading from GG 2/3 to 
4/5 is of great significance. In our testing cohort, over 
23% of GG 2 and 53% of GG 3 upgraded to 4/5, 
meaning that the prognosis of these patients might be 
compromised, owing to the lack of ePLND. On the 
contrary, 14% of patients in GG 5 and 35.7% in GG 4 
downgraded to GG 3 or below, which suggested that 
these patients might not benefit from ePLND during 
radical prostatectomy. Our developed algorithm 
significantly reduced both upgrading and down-
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grading for every group. Our model obtained an ACC 
of approximately 0.85 with internal and external 
validation. Additionally, due to extended indication 
of RP in our institutions, we were lucky to have more 
proportions of lower Gleason patients in our cohorts 
(15% GG 1), which let our network more adaptive 
with low-grade GG cases. The critical function of our 
network was to find out and testify the internal 
correlations between imaging and pathological 
appearance. Thus, PCa-GGNet was also potential to 
be extended to a larger population with multiple 
objectives such as benign and malignant 
discrimination, significant and insignificant PCa 
distinguish tasks, and so on. 

To further evaluate the additional benefits in real 
clinical practice, we stratified all patients in the 
validation cohort by total PSA, clinical T stage, and 
GG-NB/GG-Pre and constructed confusion metrics 
based on the 3-tier protocols of the National 
Comprehensive Cancer Network (NCCN) 
(Supplementary Information III, Figure S4). When 
compared with the GG-Pre-based stratifications, 
28.4% (23/81) of the medium-risk patients in the 
GG-NB model would require ePLND for oncological 
control, and 4.4% (8/180) of the high-risk patients in 
the GG-NB model might not benefit from ePLND. The 
distribution differences between groups in the NCCN 
model were not as high as those in the GG metrics 
(Figure 6), which have the ability to reduce deviations 
derived from any individual parameter to achieve 
better performance for the whole system. 
Nevertheless, by improving the discriminative 
accuracy GG grading in the current study, we can 
achieve much better performance of the entire system 
(approaching the GG-RP model). 

Several limitations must be mitigated. First, our 
current version only involved T2WI-FS data because 
of image standards and data scales. Future work 
should include more sequences (e.g., non-fs T2WI, 
DWI, ADC, and DCE) to provide better multi-tier GG 
prediction by transfer learning [26] and verify the 
proposed method on more international public data 
sets for different clinical applications (e.g., ProstateX 
dataset [50]). Second, multi-center validations at a 
larger scale of populations and prospective data were 
considered in the future. Third, the current study only 
involved systemic biopsy results. Thus, more work 
needs to be done to explore the discriminative power 
between our method and the targeted biopsy. 
Additionally, of all biopsy proved prostate cancer 
patients, only those who received radical 
prostatectomy had been enrolled in this study, which 
brought selection bias neglecting patients without RP 
surgery. Last, the decision-making process from 
core-level, specimen-level, to patient-level results is 

variable. Some doctors tend to adopt the highest 
core-/specimen-level result for risk evaluation, 
whereas others tend to select the GG of the index 
lesion or provide a tertiary clinical decision. Ideally, it 
might be the best case to report precise percentages of 
each Gleason pattern for every lesion of all specimens. 
However, such work is nearly impossible for human 
efforts in clinical routines. During the deep learning 
era, further work on the quantitative Gleason pattern 
[51,52] evaluation at gland- or pixel levels should be 
explored. 

In summary, we proposed a human-like 
PCa-GGNet framework to predict patients' final GG 
of RP. According to the multi-center validation, our 
method demonstrated high reliability of reducing 
risks of upgrading and downgrading from biopsy to 
RP pathology. This framework will facilitate clinicians 
by providing more precise treatment options, and it 
has the potential for application to other MRI-based 
tumor research. 
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