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Abstract 

Breast cancer (BC) is the most common female malignancy and the second leading cause of cancer- 
related death worldwide. In spite of significant advances in clinical management, the mortality of BC continues 
to increase due to the frequent occurrence of treatment resistance. Intensive studies have been conducted to 
elucidate the molecular mechanisms underlying BC therapeutic resistance, including increased drug efflux, 
altered drug targets, activated bypass signaling pathways, maintenance of cancer stemness, and deregulated 
immune response. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are intimately involved in 
BC therapy resistance through multiple modes of action. Therefore, an in-depth understanding of the 
implication of lncRNAs in resistance to clinical therapies may improve the clinical outcome of BC patients. 
Here, we highlight the role and underlying mechanisms of lncRNAs in regulating BC treatment resistance with 
an emphasis on lncRNAs-mediated resistance in different clinical scenarios, and discuss the potential of 
lncRNAs as novel biomarkers or therapeutic targets to improve BC therapy response. 

Key words: Long noncoding RNA, Breast cancer, Drug resistance, Biomarkers, Therapeutic targets 

Introduction 
Breast cancer (BC) is one of the three most 

frequent cancers worldwide and also the most 
common cancer in females, with approximately one in 
ten women at risk of suffering it during their lifetime 
[1]. Moreover, BC is the leading cause of cancer- 
related death in less developed countries and ranks 
second in more developed countries [1]. Currently, 
the mainstay treatments of BC involve endocrine 
therapy, anti-human epidermal receptor 2 (HER2) 
target therapy and cytotoxic chemotherapy 
depending on individual BC subtypes. Based on 
emerging preclinical and clinical studies, 
combinational treatment of targeted drugs (e.g. 
mTOR inhibitor everolimus [2], cyclin-dependent 
kinase 4/6 (CDK 4/6) inhibitor palbociclib [3]) with 
endocrine therapy has prolonged progression-free 

survival (PFS) in certain BC patients. These 
therapeutic strategies along with early screening tools 
(e.g. mammography [4], tomosynthesis [5] and 
magnetic resonance imaging (MRI) [6]) have partly 
decreased BC mortality; however, the clinical 
therapeutic outcome is far from satisfied. The major 
barrier for complete BC cure is the development of 
therapeutic tolerance. BC cells are equipped with 
numerous mechanisms to cope with different 
treatment strategies, such as increased drug efflux, 
altered drug targets and activated bypass signaling 
pathways, maintenance of cancer stemness, as well as 
deregulated immune response. Therefore, there is still 
an urgent need for extensive research on BC therapy 
resistance to develop novel biomarkers and 
therapeutic targets that could predict therapeutic 
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response or improve clinical outcomes of BC patients. 

Table 1. Mechanisms of BC therapeutic resistance mediated by lncRNAs 

LncRNA Therapeutic strategy Pathway/target Action modes Effection Refs 
HOTAIR Tamoxifen ER Promoting ligand-independent ER activities, increasing 

cancer stemness 
Inducing [11] 

NEAT1 Paclitaxel , cisplatin, 5-FU miR-129/ZEB2, miR-211/HMGA2 CeRNA, regulating apoptosis and cell cycle progression, 
facilitating cell growth 

Inducing [12, 13] 

HOXB-AS5 PI3K/AKT/mTOR inhibitors PI3K/AKT/mTOR Promoting cell growth, migration and invasion Inducing [15] 
Lnc712 CDK inhibitors HSP90 Regulating CDK2 activation and triggering cell proliferation Inducing [16] 
LINK-A Immune checkpoint 

blockers 
PIP3/GPCR, PLC Reducing antigenicity to avoid detection by antitumor 

lymphocytes 
Inducing [17] 

H19 Tamoxifen, fulverstrant ER Regulating ERα expression at the transcript and protein 
levels 

Inducing [19] 

MIR2052HG Aromatase inhibitors EGR1, ER Promoting ESR1 transcription and limiting 
ubiquitin-mediated ERα degradation 

Inducing [20] 

TINCR Trastuzumab miR-125b/ERBB2 CeRNA, regulating the expression level of HER2 Inducing [21] 
Linc-RoR Tamoxifen DUSP7, MAPK/ERK Promoting estrogen-independent cell growth Inducing [25] 
DCST1-AS1 Doxorubicin, paclitaxel ANXA1 Unknown Inducing [37] 
NKILA Immunotherapy NF-κB Facilitating T cell vulnerability to AICD and decreasing CTL 

infiltration 
Inducing [52] 

TMPO-AS1 Endocrine therapy ER Stabilizing ESR1 mRNA through interaction with ESR1 
mRNA 

Inducing [61] 

LINP1 Tamoxifen ER Attenuating the estrogen response Inducing [62] 
DSCAM-AS1 Tamoxifen hnRNPL Unknown Inducing [63] 
GAS5 Tamoxifen miR-222/PTEN CeRNA Reversing [64] 
UCA1 Tamoxifen miR-18a/HIF1α CeRNA, regulating cell cycle Inducing [65] 
CYTOR Tamoxifen miR-125a-5p/SRF, Hippo, MAPK CeRNA, promoting cell survival Inducing [66] 
DSCAM‐AS1 Tamoxifen miR‐137/EPS8 CeRNA, promoting cell proliferation and suppressing 

apoptosis 
Inducing [67] 

HOTAIRM1 Tamoxifen EZH2 Preventing H3K27me3 of HOXA1 Inducing [69] 
AFAP1-AS1 Trastuzumab AUF1/ERBB2 Enhancing HER2 translation, exosome-mediated 

dissemination 
Inducing [75] 

AGAP2-AS1 Trastuzumab hnRNPA2B1 Exosome-mediated dissemination Inducing [76] 
SNHG14 Trastuzumab Bcl-2/Bax, PABPC1 Inhibiting apoptosis, exosome-mediated dissemination Inducing [77, 78] 
AGAP2-AS1 Trastuzumab CBP, MyD88, NF-κB Activating NF-κB signaling pathway, promoting cell growth Inducing [80] 
LINK-A MK2206 AKT Facilitating the enzymatic activation of AKT Inducing [89] 
AK023948 AKT inhibitors DHX9/p85 Sustaining the stability of p85 Inducing [90] 
Linc-ROR mTOR inhibitor (rapamycin) miR-194-3p/ MECP2 CeRNA Inducing [91] 
lncRNA-JADE PARP inhibitors BRCA1, Jade1 Increasing transcription of DNA damage repair-related 

genes 
Inducing [110] 

GUARDIN PARP inhibitors BRCA1, TRF2 Maintaining genome integrity Inducing [115] 
PHACTR2-AS1 PARP inhibitors Ribosome DNA genes Triggering H3K9 methylation-mediated silencing of 

ribosome DNA genes 
Inducing [117] 

FTH1P3 Paclitaxel miR-206/ABCB1 CeRNA Inducing [124] 
Linc00518 Paclitaxel miR-199a/MRP1 CeRNA Inducing [125] 
NONHSAT101069 Epirubicin miR-129-5p/Twist1 CeRNA Inducing [126] 
CASC2 Paclitaxel miR-18a-5p/CDK19 CeRNA Inducing [127] 
MAPT-AS1 Paclitaxel MAPT Increasing the stability of MAPT mRNA Inducing [128] 
NONHSAT141924 Paclitaxel p-CREB/Bcl-2 apoptosis pathway Unknown Inducing [129] 
LINC00968 Paclitaxel, adriamycin WNT2 Inhibiting the Wnt2/β-catenin signaling pathway Reversing [132] 
GAS5 Adriamycin miR-221-3p/DDK2 CeRNA Reversing [133] 
AC073284.4 Paclitaxel miR‐18b‐5p/DOCK4 CeRNA Reversing [134] 

 
 
Basic research on BC therapeutic resistance has 

focused more on protein-coding genes as their 
products are thought to play a central role in 
regulating biological activities. However, only about 
2% of the human transcriptome encodes proteins [7], 
while the remainder of the transcriptome has no 
obvious protein-coding potential (referred to as non-
coding RNAs, ncRNAs). The past few years have 
witnessed exciting advances in the functional and 
mechanistic characterization of ncRNAs, especially 
long noncoding RNAs (lncRNAs) which contain the 
largest percentage of the noncoding transcriptome [8]. 
Since the identification of the first lncRNA H19 in fetal 
liver tissue in 1900 [9], thousands of lncRNAs have 

been found and investigated. Notably, an increasing 
number of lncRNAs have been found to be associated 
with pathological scenarios such as neurodegenera-
tive disorders, cardiovascular diseases and cancers. 
For example, several lncRNAs identified in HOX gene 
foci have been shown to play essential roles in cancer 
initiation and development [10]. 

Although the specific functions and exact under-
lying mechanisms of most BC-related lncRNAs 
remain elusive, there have been increasing studies on 
dysregulated lncRNAs in BC therapeutic resistance 
(Table 1). For example, upregulated expression of 
lncRNA HOTAIR and nuclear paraspeckle assembly 
transcript 1 (NEAT1) are responsible for BC 
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therapeutic resistance to endocrine therapy and 
chemotherapy, respectively [11-13]. In particular, 
Cantile et al. have recently published a comprehensive 
review on the role of HOTAIR in BC therapy, which 
introduces numerous recent and influential studies 
[14]. Furthermore, growing evidence has indicated the 
great potential of lncRNAs to serve as biomarkers to 
predict treatment response, such as HOXB-AS5 [15], 
Lnc712 [16] and the long intergenic non-coding RNA 
for kinase activation (LINK-A) [17]. LncRNAs can also 
be applied as therapeutic targets to help tackle 
treatment resistance in BC. For example, therapeutic 
delivery of locked nucleic acids (LNAs) targeting 
LINK-A has been proven to confer BC sensitivity to 
immune checkpoint inhibitors in a preclinical study 
[17]. 

In this review, we will discuss biological 
functions and underlying mechanisms of dys-
regulated lncRNAs in BC therapy resistance with an 
emphasis on lncRNAs-mediated therapeutic 
resistance in BC clinical scenarios. Additionally, we 
also highlight the advantages and challenges lying 
ahead for the application of lncRNAs as biomarkers or 
targets for restraining treatment resistance in BC.  

LncRNAs-mediated BC therapeutic 
resistance 

The mechanisms of resistance to different BC 
therapeutic strategies share many similarities, 
including increased drug efflux, altered drug targets, 
activated bypass signaling pathways, as well as 
maintenance of cancer stemness. Besides, deregulated 
immune response has also been identified as an 
essential contributor to BC immunotherapy 
resistance. Emerging evidence has demonstrated that 
lncRNAs participate in therapeutic resistance of BC 
through multiple modes of action. As the role of 
lncRNAs in increased drug efflux has been 
comprehensively reviewed elsewhere [18], here we 
focus on the molecular mechanisms of lncRNAs- 
mediated BC therapeutic resistance including the 
alteration of drug targets, downstream bypass 
pathways, cancer stemness, and immune response. 

LncRNAs in drug targets and bypass signaling 
alteration 

Drug efficacy is largely determined by the 
protein level and mutation state of drug targets, as 
well as the activation of bypass signaling pathways. 
One example is the altered expression of estrogen 
receptor α (ERα), which is a target of endocrine 
therapy for BC. It has been reported that Notch and 
HGF signaling-mediated upregulation of lncRNA 
H19 could promote ERα expression at both mRNA 
and protein levels. Thus, H19 counteracts endocrine 

therapy-mediated downregulation of ERα protein 
and is responsible for therapeutic resistance in BC 
cells [19]. Similarly, lncRNA MIR2052HG increases 
the transcription of the ERα encoding gene ESR1 and 
reduces ERα degradation through LMTK3, thus 
resulting in resistance to endocrine therapy [20]. 
LncRNA TINCR upregulated in BC cells sponges 
miR-125b to increase the expression level of HER2, 
resulting in the resistance of BC cells to anti-HER2 
targeted therapy [21]. 

In addition to drug target alteration, lncRNAs 
are implicated in activation of bypass signaling 
pathways to mediate BC therapeutic tolerance. A 
typical example is the ligand-independent ERα 
activation that impedes the efficacy of endocrine 
agents. ERα can be phosphorylated by MAPK and 
AKT independent of the ligand binding, leading to 
endocrine resistance [22-24]. According to a recent 
study, linc-RoR promotes ligand-independent cell 
growth through activating MAPK/ERK pathway and 
results in BC endocrine resistance [25]. Taken 
together, these findings indicate that lncRNAs play 
essential roles in modulating therapeutic resistance by 
bypassing the original drug targets. Further 
investigations are required to unmask the lncRNAs- 
associated redundant pro-resistant signaling path-
ways involved in BC therapeutic strategies. Targeting 
fundamental lncRNAs in these redundant pro- 
resistant signaling pathways may exhibit promising 
effects in clinical situations. 

LncRNAs in cancer stemness maintenance 
CSCs are considered as a self-renewing sub-

population of neoplastic cells among heterogeneous 
tumors and were first documented in 1997 in the 
hematopoietic system [26]. Later in 2003, BC became 
the first solid tumor in which CSCs were discovered. 
The existence of breast cancer stem cells (BCSCs) 
poses a tremendous challenge for BC treatment due to 
their inherent therapeutic resistance to conventional 
therapies. Therefore, more in-depth research is 
required to explore the regulatory networks of BCSCs 
formation and maintenance. 

A recent study reveals that lncRNA Peblr20 can 
enhance pluripotent reprogramming thus 
maintaining pluripotency of induced pluripotent stem 
cells (iPSCs) [27], implicating that lncRNAs may also 
orchestrate the preservation of cancer stemness. 
Previous studies have illustrated a direct nexus 
between epithelial-mesenchymal transition (EMT) 
and cancer stemness, especially in BC [28-29]. 
Emerging studies have revealed that lncRNAs are 
vital novel players in the regulation of EMT- 
associated BCSC stemness [30-31]. For instance, 
several lncRNAs have been demonstrated to maintain 
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or enhance both EMT traits and CSC-like 
characteristics of BC cells, including LINC01638 [32], 
lncRNA RP1 [33], LINC-ZNF469-3 [34] and LINC- 
ROR [35]. A recent study provides a more detailed 
possible mechanism through which lncRNA-Hh 
upregulated by Twist directly targets the hedgehog 
signaling (Hh) enhancer GAS1, to activate Hh and 
increase the expression of Gli1, SOX2 and OCT4 for 
BCSC maintenance [36]. The Twist-lncRNA-Hh-Hh- 
SOX2/OCT4 axis partly explains why epithelial BC 
cells with EMT phenotype also gain CSC-like 
properties. Recently, Tang et al. established the direct 
nexus between lncRNA-regulated EMT and resistance 
to BC therapy. According to their study, DCST1-AS1 
enhances EMT and promotes TNBC chemoresistance 
to doxorubicin and paclitaxel by directly interacting 
with ANXA1 [37]. However, the underlying 
mechanism of DCST1-AS1-ANXA1 axis-mediated 
doxorubicin resistance remains to be further 
elucidated. 

Furthermore, it has been well documented that 
some of the pluripotency factors (e.g. OCT3/4, SOX2, 
KLF4, LIN28) and CSC markers (e.g. ALDH1A3) 
[38-45] are capable of promoting stemness in BCSCs. 
Increasing evidence has implicated the pivotal role of 
lncRNAs in BCSCs maintenance through their inter-
play with these stemness-associated factors. Recently, 
Xu and colleagues have demonstrated that lncRNA 
CCAT2 enhances the expression of OCT4, Nanog and 
KLF4, as well as increases the ALDH+ CSC 
subpopulation in TNBC [46]. In addition, a number of 
lncRNAs have been found to act as competing 
endogenous RNAs (ceRNAs), which compete against 
the limited microRNAs (miRNAs) pool, to regulate 
the expression of pluripotency factors and CSC 
markers. For example, highly expressed lncRNA H19 
in BCSCs acts as a ceRNA to sponge miRNA Let-7, 
resulting in the increased expression of a Let-7 target 
LIN28 thus promoting the preservation of BCSCs [47]. 
Intriguingly, LIN28 reversely inhibits Let-7 
production and maturation, further de-repressing 
H19 expression in BCSCs [47]. The positive feedback 
loop formed by H19, Let-7 and LIN28 maintains the 
stemness of BCSCs, indicating that the disruption of 
this axis may provide opportunities for reversal of 
treatment tolerance. Likewise, mesenchymal stem 
cells (MSCs)-induced lncRNA LINC01133 positively 
regulates KLF4 to promote phenotypic and growth 
characteristics of BCSCs [48]. Moreover, lncRNA-Hh 
promotes the activation of the hedgehog signaling 
molecule Hh to upregulate SOX2 and OCT4 for BCSC 
maintenance [36]. The lncRNA HOTTIP regulates the 
miR-148a-3p/WNT1 pathway to maintain the 
CSC-like properties of BCSCs and facilitate BC growth 
[49]. Notably, NRAD1 was identified as the first 

lncRNA which can be activated by a CSC marker [50]. 
Mechanistically, ALDH1A3 and its product retinoic 
acid positively regulate the expression of NRAD1, 
thus enhancing the interaction between NRAD1 and 
genes involved in differentiation and catabolism, 
eventually promoting cell survival and increasing the 
number of BCSCs [50]. Taken together, lncRNAs are 
widely involved in BCSCs preservation and may lead 
to intrinsic therapeutic tolerance, however, the 
underlying mechanisms and clinical value remain to 
be thoroughly explored. 

LncRNAs in immune response deregulation 
Cancer immunotherapy is an emerging 

treatment option taking advantage of the cytotoxic 
potential of the immune system. In spite of the 
encouraging progress in BC immunotherapy, cancer 
cells have been reported to develop numerous 
mechanisms to evade immune elimination, including 
reduced tumor antigenicity, increased activation- 
induced cell death (AICD) of T lymphocytes and 
re-activation of oncogenic signaling [51]. For example, 
lncRNA LINK-A plays a central role in antigenicity 
loss and immune checkpoints evasion in BC through 
directly interacting with phosphatidylinositol- 
(3,4,5)-trisphosphate and inhibitory G-protein- 
coupled receptor (GPCR). Such interactions lead to 
reduced cyclic AMP (cAMP) concentrations and 
subsequent protein kinase A (PKA)-mediated TRIM71 
phosphorylation. Consequently, phosphorylated- 
TRIM71 enhances proteasome-mediated degradation 
of peptide-loading complex (PLC) components, thus 
resulting in decreased antigen presentation to the 
surface of BC cells [17]. Another independent study 
has revealed that lncRNA NKILA enhances T cell 
vulnerability to AICD by interacting with NF-κB. 
Thus, the apoptosis and subsequent reduced 
infiltration of cytotoxic T lymphocytes (CTLs) might 
contribute to immunotherapy resistance [52]. Overall, 
lncRNAs are intimately related to deregulated 
immune response, thus conferring resistance to 
immunotherapy in cancer cells. Targeting lncRNAs 
may present a promising strategy to reverse 
therapeutic resistance and achieve better clinical 
outcome for BC patients. 

LncRNAs-mediated BC resistance in 
different clinical scenarios 

Based on the expression of specific biomarkers 
including ER, progesterone receptor (PR) and   
HER2, BC has been classified into at least four 
clinically relevant subtypes, including luminal A, 
luminal B, HER2-enriched, and basal like subtype. 
The two luminal subtypes are commonly 
characterized with positive ER or PR (or both) 
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expression and negative HER2 expression, among 
which luminal A subtype is characterized with less 
proliferative potential. HER2 subtype BC is 
characterized by the overexpression of HER2, which 
can be subdivided into non-luminal (ER and PR 
negative) and luminal (ER or PR positive, or both) 
subtype. The basal-like subtype BC shows positive 
basal marker expression and usually negative 
expression of ER, PR and HER2, thus most of basal- 
like subtype BC is triple-negative breast cancer 
(TNBC) [1]. Among the four main subtypes, the 
luminal A subtype shows favorable prognosis, while 
the basal-like subtype exhibits the most aggressive 
clinical behavior. Based on these different clinical 
subtypes of BC, endocrine therapy, anti-HER2 
targeted therapy and chemotherapy constitute the 
backbone of BC treatment (Figure 1). These clinical 
mainstay strategies, along with immunotherapy and 
targeted therapies beyond HER2, have, to a large 
extent, improved the PFS of BC patients. However, 
resistance inevitably occurs due to multifaceted 
factors and thus impedes therapeutic efficacy. Here, 
we highlight the mechanisms responsible for 
treatment resistance to each BC therapeutic strategy in 
the perspective of lncRNAs. 

LncRNAs in the development of endocrine 

resistance 
The underlying mechanism of most BC risk 

factors (e.g. menstrual factors such as early menarche, 
late menopause and short menstrual cycles [53], 
reproductive factors such as late pregnancies [54]) is 
the overexposure of mammary epithelium to ovarian 
hormones, especially estrogens and progesterone [55]. 
This suggests that aberrant female hormones may be 
the primary stimulus for uncontrolled breast cell 
proliferation. In agreement, around 75% of BC 
patients are diagnosed as HER2-negative luminal 
subtypes (with positive expression of hormone recep-
tors), suggesting that the ER signaling pathway 
driven by estrogen is a major oncogenic pathway of 
most BC [56]. For the treatment of these luminal BC 
patients, endocrine therapies including selective 
estrogen receptor modulators (SERMs), selective 
estrogen receptor degraders (SERDs) and aromatase 
inhibitors are highly effective through the disruption 
of receptor binding or estrogen deprivation (Figure 1). 
SERMs such as the first-line endocrine agent 
tamoxifen can bind ER to antagonize the activity of 
estrogen, leading to transcriptional repression of ER 
target genes [57, 58]. SERDs are clinically effective by 
not only antagonizing ERs but also degrading them, 
as exampled by the only FDA-approved drug 
fulvestrant [59]. Aromatase inhibitors such as 

 

 
Figure 1. Clinical therapeutic strategies for BC. Currently, endocrine therapy, anti-HER2 targeted therapy and chemotherapy constitute the backbone of BC treatment 
in clinic. Drugs for endocrine therapies include selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders (SERDs) and aromatase inhibitors. 
SERMs bind ER to antagonize the activity of estrogen, SERDs bind ER to promote its proteasome-mediated degradation, while aromatase inhibitors block the biosynthesis of 
estrogens from adrenal steroids. Drugs available for anti-HER2-targeted therapy include monoclonal antibodies (trastuzumab, pertuzumab and emtansine) and small molecules 
(lapatinib and neratinib). Chemotherapy standards for BC treatment are anthracylines and taxanes. In addition, novel therapeutic strategies including targeted therapies beyond 
HER2 and immunotherapy have been administered in clinical situations (drugs for BC treatment are shown in italic). 
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letrozole, anastrozole, and exemestane block the bio-
synthesis of estrogens from adrenal steroids [60]. 
Unfortunately, most of the patients treated with these 
endocrine therapies finally develop treatment 
resistance accompanied by poor prognosis. Therefore, 
a deeper understanding of the potential mechanisms 
is urgently needed for exploiting new effective 
therapeutic strategies. 

BC cells develop multiple mechanisms to 
promote intrinsic and acquired resistance to 
endocrine therapy. Ligand-independent trans-
activation of ER is one of the major mechanisms 
responsible for de novo endocrine therapeutic 
resistance, in which certain lncRNAs play essential 
roles. It has been long described that ERK-induced ER 
phosphorylation elicits the estrogen-independent 
activation of ER signaling [22, 23]. Recently, it has 
been reported that linc-RoR is able to activate the 
MAPK/ERK signaling pathway through the 
regulation of the ERK-specific phosphatase DUSP7 in 
ER+ BC, which bypasses the ER signaling pathway 
thus facilitating the development of intrinsic 
resistance to endocrine therapy [25] (Figure 2). The 
above study demonstrates an alternative lncRNA- 
dependent pathway to activate ER signaling, further 
illustrating the fundamental role of lncRNAs in BC 
endocrine resistance. Disrupting linc-RoR-mediated 
ER activation may help reverse endocrine resistance. 

In addition, BC cells can survive endocrine 

therapeutic pressures through deregulation of the ER 
signaling components. Accumulating evidence 
indicates the involvement of lncRNAs in this 
mechanism. For example, lncRNA thymopoietin 
antisense transcript (TMPO-AS1) could interact with 
and stabilize the mRNA of the ERα encoding gene 
ESR1, leading to the hyper-proliferation of ER+ BC 
and possible endocrine resistance [61] (Figure 2). 
Besides, some lncRNAs are direct targets of ER and 
can possibly accelerate endocrine resistance resulting 
from ER signaling blockade. For instance, HOTAIR 
[11] and LINP1 [62] are transcriptionally suppressed 
by ER and therefore upregulated upon blocking ER 
signaling following endocrine therapy. Paradoxically, 
upregulated HOTAIR in turn promotes the 
expression of ER at the protein level and facilitates its 
transcriptional activity [11] (Figure 2). However, 
LINP1 overexpression downregulates the protein 
level of ER and diminishes the estrogen response to 
mediate anti-estrogen resistance [62]. The study of 
HOTAIR in endocrine resistance elucidates a positive 
feedback loop between ER and HOTAIR. Disrupting 
this loop may exhibit promising efficacy for the 
reversal of endocrine resistance. Moreover, DSCAM- 
AS1 has been found to be transcriptionally regulated 
by ER and confer tamoxifen resistance in BC by 
interacting with hnRNPL, but the detailed mechanism 
remaining to be determined [63]. 

 

 
Figure 2. LncRNAs-mediated endocrine therapy resistance. LncRNA TMPO-AS1 directly interacts and stabilizes the mRNA of the ERα encoding gene ESR1, leading to 
the hyper-proliferation of ER+ BC and endocrine resistance. In addition, linc-RoR promotes the degradation of the ERK-specific phosphatase DUSP7 thus enhancing ERK 
phosphorylation. The upregulation of MAPK/ERK pathway activates ER signaling independent of estrogen, resulting in intrinsic resistance to endocrine therapy. Furthermore, 
HOTAIR is transcriptionally suppressed by ER. Upon blocking ER signaling through endocrine therapy, HOTAIR is upregulated and promotes the expression of ER at the protein 
level, leaing to enhanced transcriptional activity of ER and accelerated endocrine resistance. 
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Figure 3. Regulatory function of lncRNAs in BC resistance to anti-HER2 targeted therapy. Under trastuzumab exposure, TINCR is upregulated by H3K27 
acetylation and induces trastuzumab resistance through sponging miR-125b and releasing HER2 in BC cells. Moreover, AFAP1-AS1 can be upregulated through H3K27 acetylation 
at its promoter region and guides AUF1 to bind to HER2 mRNA, leading to enhanced translation of HER2. AGAP2-AS1 increases H3K27 acetylation at the promoter region of 
MyD88, resulting in the activation of NF-κB signaling pathway and therapeutic resistance to trastuzumab. Moreover, another lncRNA, known as SNHG14, could inhibit 
trastuzumab-induced apoptosis through upregulating Bcl2. Intriguingly, several lncRNAs have been reported to confer trastuzumab resistance in surrounding cells through being 
engulfed in exosomes and incorporated by neighbor cells. 

 
Remarkably, a large number of lncRNAs 

regulate endocrine resistance in BC through the 
lncRNA-miRNA-mRNA axis, involving GAS5 [64], 
urothelial carcinomaassociated 1 (UCA1) [65], CYTOR 
[66], DSCAM‐AS1 [67] and lncRNA-ROR [68]. This 
indicates that lncRNAs as ceRNAs have profound 
implication in controlling endocrine response of BC. 
In addition, a newly published study has 
demonstrated that lncRNA HOTAIRM1 promotes 
acquired tamoxifen resistance in BC by interacting 
with EZH2, thus preventing the PRC2 complex- 
mediated H3K27me3 of the putative HOXA1 
promoter [69]. This study indicates that HOTAIRM1 
is a promising therapeutic target for BC patients with 
tamoxifen resistance. 

LncRNAs in targeted therapy resistance 
BC patients with HER2 overexpression or 

amplification have benefited significantly from HER2- 
tergeted therapeutics since the first anti-HER2 mono-
clonal antibody trastuzumab was developed in 1990 
[70]. Currently, the first-line treatment for HER2- 
positive metastatic BC is trastuzumab and pertuzu-
mab plus docetaxel [71], while the antibody-drug 
conjugate trastuzumab emtansine (T-DM1) is used as 
second-line therapy [72] (Figure 1). Broader HER2- 

targeted therapies, especially small molecules 
targeting HER2 such as lapatinib [73] and neratinib 
[74], have also been approved for the treatment of 
HER2+ BC patients. Anti-HER2 targeted therapies 
have appreciably prolonged overall survival of BC 
patients. In addition, targeted therapies beyond 
HER2, including inhibitors of PI3K/AKT/mTOR 
pathway, cyclin-dependent kinases (CDKs) and poly 
(ADP-ribose) polymerase (PARP), have been applied 
in clinical practice to prolong the survival for patients 
diagnosed with BC (Figure 1). These targeted 
therapies have exhibited superior efficacy in clinical 
trials and have greatly benefited BC patients. 
However, the effectiveness of targeted therapies has 
been largely restricted by high rates of resistance, and 
lncRNAs are emerging as pivotal regulators to 
mediate therapeutic tolerance. 

Therapies targeting HER2 
LncRNAs have attracted increasing attention as 

pivotal regulators of trastuzumab resistance in BC. 
Some studies have revealed that lncRNAs which 
confer acquired trastuzumab resistance in BC cells can 
be incorporated into exosomes thus disseminating the 
resistance to surrounding cells (Figure 3). For 
example, in trastuzumab resistant BC cells, lncRNA 
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AFAP1-AS1 is upregulated through the H3K27 
acetylation at its promoter region and guides AUF1, 
which improves the translation of target mRNA, to 
bind to HER2 mRNA thus enhancing HER2 
translation and trastuzumab resistance. Strikingly, 
AFAP1-AS1 in trastuzumab resistant cells can be 
packaged into exosomes and promote resistance in 
recipient cells [75]. In addition, lncRNA AGAP2-AS1 
[76] and SNHG14 [77, 78] can also facilitate 
trastuzumab tolerance of BC cells through 
exosome-mediated dissemination. These findings 
reveal that exosomes play fundamental roles in 
lncRNAs-mediated BC resistance to targeted 
therapies. Further, exosomal lncRNAs have also been 
widely documented to modulate cancer therapeutic 
resistance in other types of tumors [79]. Therefore, in 
addition to target lncRNA, blocking the packaging or 
secretion of exosomes may become a promising 
strategy for attenuating therapeutic resistance. 

According to a recent study, another lncRNA, 
TINCR, can be activated by CREB-binding protein 
(CBP)-mediated H3K27 acetylation, leading to 
trastuzumab resistance in BC [21]. Mechanistically, 
TINCR acts as a sponge for miR-125b, thus releasing 
HER2 to compromise the anti-tumor effect of 
trastuzumab [21]. Perhaps the most common 
functional mechanism of lncRNAs is remodeling 
chromatin structure to regulate gene expression, 
through which lncRNAs may enhance the resistance 
to trastuzumab treatment. For example, lncRNA 
AGAP2-AS1 induced by the transcription factor SP1 
binds to CBP and increases H3K27 acetylation at the 
promoter region of MyD88, resulting in the activation 
of the NF-κB signaling pathway and resistance to 
trastuzumab [80]. Other lncRNAs, as exampled by 
H19 [81], UCA1 [82] and GAS5 [83] have been 
documented to be closely related to trastuzumab 
resistance; however, the mechanisms are as yet to be 
determined. In spite of increased understanding of 
lncRNAs-regulated trastuzumab resistance, the 
involvement of lncRNAs in resistance to pertuzumab 
and other small molecules targeting HER2 needs 
further exploration. 

Therapies targeting PI3K/AKT/mTOR pathway 
The PI3K/AKT/mTOR pathway is commonly 

hyperactivated in BC due to frequent somatic PIK3CA 
mutations and HER2-triggered oncogenic signaling. 
Some PI3K inhibitors have been launched for clinical 
use in BC treatment (Figure 1). For example, the novel 
and specific PI3Kα inhibitor NVP-BYL719 is now 
under active preclinical and clinical studies for the 
treatment of BC patients with PIK3CA mutations 
and/or HER2 amplification [84]. In particular, 
alpelisib, which is indicated for use in combination 

with fulvestrant in ER+, HER2- BC patients, is the first 
PI3K inhibitor that has been approved by the FDA 
[85]. The mTOR inhibitor everolimus increases PFS by 
more than twofold in ER+, HER2- advanced BC 
patients after failure of treatment with nonsteroidal 
aromatase inhibitors [2]. In addition, a phase-II 
clinical trial has demonstrated that the pan-AKT 
inhibitor MK2206 could increase pathologic complete 
response rates when combined with standard 
neoadjuvant therapy in ER-/PR- and HER2+ BC [86]. 
The AKT inhibitors capivasertib and ipatasertib in 
combination with first-line paclitaxel therapy 
significantly prolong the PFS of TNBC patients, 
especially those with PIK3CA/AKT1/PTEN- 
alterations [87, 88]. However, the PI3K/AKT/mTOR 
axis may be reactivated by compensatory signaling 
pathways dependent on lncRNAs, resulting in 
resistance to targeted therapies. 

A recent study has shown that LINK-A directly 
binds to AKT and PIP3 to enhance the interaction 
between them, thus facilitating the enzymatic 
activation of AKT. LINK-A-induced hyperactivation 
of AKT is responsible for BC resistance to MK2206, 
which raises a hurdle to AKT targeted therapy in BC 
patients [89] (Figure 4A). Therefore, LINK-A may be a 
promising biomarker and therapeutic target for 
predicting AKT inhibitor efficacy and reversing 
treatment tolerance. Besides, a CRISPR/Cas9-based 
synergistic activation mediator (SAM) system has 
been developed and identified lncRNA AK023948 as a 
positive AKT regulator in BC through interacting with 
ATP-dependent RNA helicase A (RHA/DHX9) and 
p85 to sustain the stability of p85 [90] (Figure 4A). 
Therefore, AK023948-regulated AKT activation may 
facilitate resistance to AKT-targeted therapies in BC 
patients. Recently, Zhou et al. have documented that 
Linc-ROR decreases BC cell sensitivity to mTOR 
inhibitor rapamycin by sponging miR-194-3p and 
releasing methyl CpG-binding protein 2 (MECP2) 
[91]. In spite of the puzzling mechanism, this study 
proves a direct link between lncRNA and BC 
resistance to therapies targeting PI3K/AKT/mTOR 
pathways, again suggesting that lncRNAs are 
promising therapeutic targets to overcome BC 
resistance. In addition, it has been reported that IL-22 
and the lncRNA HOXB-AS5 could synergistically 
activate the PI3K/AKT/mTOR pathway [15] (Figure 
4A). Remarkably, IL-22 and HOXB-AS5 are detectable 
in the serum of BC patients, both of which are 
upregulated and closely related to the clinical stage of 
BC. Therefore, HOXB-AS5 represents an ideal 
biomarker to predict therapeutic response to PI3K/ 
AKT/mTOR targeted therapy, which still requires 
further validation before entering the clinic [15]. Many 
other lncRNAs have also been reported to be capable 
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of regulating PI3K/AKT/mTOR pathway, such as 
PTENP1 [92, 93], MALAT1 [94] and Xist [95], 
indicating the possible involvement of these lncRNAs 
in regulating resistance to the targeted therapies in BC 
(Figure 4A). However, the underlying mechanism 
remains largely unknown and requires further 
elucidation. 

Therapies targeting CDKs 
Preclinical and clinical studies have 

demonstrated the synergistic effect of CDKs inhibitors 
with anti-estrogen agents, probably due to the special 
dependence of ER+ BC cells on cyclin D1 and 
estrogen-mediated activation of CDKs [96]. CDK4/6 
inhibitors such as palbociclib [97], ribociclib [98] and 
abemaciclib [99] combined with endocrine agents 
have exhibited significant PFS benefit and are 
approved by the FDA as the standard treatment for 
ER+, HER2- advanced BC patients (Figure 1). 
Furthermore, a potent dual inhibitor of CDK12/ 
CDK13 has been developed and demonstrated to 
provoke TNBC cell death by suppressing the pivotal 
DNA damage response genes and triggering lethal 
accumulation of DNA damage [100]. This study raises 
the exciting possibility of developing targeted 
therapies for TNBC, but still needs further clinical 
investigation. As with all the other therapeutic 

strategies, the emergence of resistance to CDK 
inhibitors is a major clinical obstacle. 

The most common mechanism underlying 
resistance to CDK4/6 inhibitors is cell cycle 
alterations [101], with some clues implying the 
participation of lncRNAs (Figure 4B). It has been 
shown that the responsiveness of CDK4/6 inhibitor 
palbociclib could be restricted by elevated CDK2 
expression or activity, suggesting that redundant 
CDK functions may predict treatment failure for CDK 
inhibitors [102, 103]. A newly identified lncRNA, 
Lnc712, could activate CDK2 by directly interacting 
with heat-shock protein 90 (HSP90) and forming a 
complex of Lnc712/HSP90/cell division cycle 37 
(Cdc37) in BC [16]. These findings indicate that 
Lnc712 may enhance resistance to palbociclib and 
become a promising biomarker for the prediction of 
drug response in BC. Similarly, lncRNAs associated 
with other CDKs, including MALAT1 [104], TUG1 
[105], CCAT2 [106] and LINC01089 [107], may also 
mediate resistance to CDK inhibitors. Overall, the 
direct nexus between lncRNAs and CDK inhibitors is 
not yet well established. Further investigation focused 
on the regulation of CDK inhibitor responsiveness by 
lncRNAs may help to understand the mechanisms 
underlying treatment resistance. 

 

 
Figure 4. LncRNAs-regulated resistance to targeted therapies beyond HER2. LncRNAs are emerging as pivotal regulators to mediate therapeutic tolerance to 
targeted therapies beyond HER2, including inhibitors of PI3K/AKT/mTOR pathway, CDKs and PARP. (A) LncRNAs-mediated resistance to therapies targeting PI3K/AKT/mTOR 
pathway. LINK-A directly binds to AKT and PIP3 to facilitate the enzymatic activation of AKT, leading to BC resistance to MK2206. AK023948 interacts with DHX9 and p85 to 
positively regulate AKT. In addition, IL-22-induced HOXB-AS5 expression could activate PI3K. Conversely, PTENP1 sponges miR-20a to release PTEN and negatively regulates 
PI3K/AKT/mTOR pathway. Furthermore, XIST can sequester HDAC3 to enhance the transcription of PHLPP1 and dephosphorylation of AKT. (B) LncRNAs-mediated 
resistance to therapies targeting CDKs. Lnc712 activates CDK2 through directly interacting with HSP90 and forming a complex of Lnc712/HSP90/Cdc37. In addition, MALAT1, 
TUG1, CCAT2 and LINC01089 are associated with the altered function of CDKs and Cyclins, which may be required for the drug resistance to CDK inhibitors in BC cells. 
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Therapies targeting PARP 
PARP is an enzyme able to initiate single-strand 

DNA break repair by synthesizing a polymeric 
adenosine diphosphate ribose (PAR) chain and 
recruiting critical DNA-repairing enzymes. PARP 
inhibition leads to DNA double-strand breakage, 
which is normally repaired by homologous 
recombination (HR) dependent on BRCA1 and 
BRCA2 [108]. Since BRCA mutation predisposes to 
certain cancers as exampled by BC, it can be 
anticipated that BRCA-mutated BC will be sensitive to 
PARP inhibitors. Supporting this, two PARP 
inhibitors, olaparib (Lynparza) and talazoparib 
(Talzenna), received FDA approval for the treatment 
of germline BRCA-mutated, HER2- locally advanced 
or metastatic BC in 2018. 

Nevertheless, the benefit of PARP inhibitors has 
been shown to be heavily compromised by drug 
resistance. The main mechanisms of PARP inhibitor 
resistance identified to date include disrupting 
cellular drug availability, affecting (de)PARylation 
enzymes, reactivating HR and restoring replication 
fork stability [109]. Emerging evidence shows the 
intimate correlation between lncRNAs and DNA 
damage repair, strongly supportive of lncRNAs 
involvement in PARP inhibitor resistance. For 
example, ataxia-telangiectasia mutated (ATM)- 
mediated DNA damage response has been found to 
induce the expression of lncRNA-JADE. lncRNA- 
JADE directly binds to BRCA1 and transcriptionally 
activates Jade1, a critical element in human acetylase 
binding to ORC1 (HBO1) histone acetylation complex. 
The Jade1 activation mediated by lncRNA-JADE 
promotes global histone H4 acetylation and increases 
transcription of DNA damage repair-related genes 
[110]. Linc00261 has been demonstrated to be 
epigenetically regulated by FOXA2 and induce 
phosphorylation and activation of DNA damage 
machinery [111]. Other lncRNAs, such as mitotically- 
associated long noncoding RNA (MANCR) [112] and 
transcribed in the opposite direction of RAD51 
(TODRA) [113], are revealed to maintain genomic 
stability and induce HR. Given the capability of these 
lncRNAs to enhance DNA damage repair and sustain 
genomic stability, it can be assumed that lncRNAs 
may play an essential role in PARP inhibitor 
resistance. 

Moreover, in consideration of the key role of the 
tumor suppressor p53 in maintaining genome 
stability [114], it is conceivable that an enigmatic 
nexus may exist between p53 status and PARP 
inhibitor response. Recently, some p53-responsive 
lncRNAs have been reported to play essential roles in 
BC, indicating their potential involvement in PARP 

inhibitor resistance. For instance, the lncRNA 
GUARDIN induced by p53 plays an essential role in 
the maintenance of genome integrity by sustaining the 
stability of telomeric repeat-binding factor 2 (TRF2) 
and BRCA1 [115]. The correlation between GUARDIN 
and p53 as well as the competence of GUARDIN to 
maintain BRCA1 expression imply that GUARDIN 
may confer intrinsic resistance to PARP inhibitor. 
Another lncRNA in the nonhomologous end joining 
(NHEJ) pathway (LINP1) is also regulated by p53 and 
overexpressed in TNBC [116]. LINP1 can facilitate 
DNA double-strand breaks repair, suggesting its 
potential to counteract PARP inhibitor-induced DNA 
damage repair vulnerability [116]. An exciting recent 
study has revealed that downregulated lncRNA 
PHACTR2-AS1 in BC is associated with tumor 
development and poor prognosis. Aberrant activation 
of EZH2 targets and downregulates PHACTR2-AS1, 
which triggers H3K9 methylation-mediated silencing 
of ribosome DNA genes, thus inducing genome 
instability [117]. This finding further implicates the 
involvement of lncRNAs in DNA damage signaling. 
However, the direct correlation between lncRNAs 
and PARP inhibitor resistance remains to be 
established. 

LncRNAs in BC chemoresistance 
Chemotherapy is beneficial to the treatment of 

almost every subtype of BC. Currently, anthracylines 
and taxanes are standard chemotherapy for early 
stage BC [1] (Figure 1). Anthracylines such as 
doxorubicin exert their cytotoxic functions via 
pleiotropic mechanisms including macromolecular 
biosynthesis inhibition, free radical production, and 
DNA damage induced by histone eviction from open 
chromatin [118, 119]. Taxanes (e.g. paclitaxel and 
docetaxel) can bind and stabilize microtubules to 
prevent depolymerization and block mitosis 
progression [120, 121]. For HER2+ metastatic BC, as 
mentioned above, trastuzumab in combination with 
taxane chemotherapy has been found to improve 
overall survival (OS) and has been the first-line 
standard treatment since 2001 [122]. Due to the lack of 
specific biomarkers in TNBC, targeted therapies have 
rarely met the need to improve clinical outcomes. 
Therefore, chemotherapy is always recommended as 
the standard of care for TNBC patients. 

Currently, dysregulated lncRNAs have been 
widely documented to play dual roles in BC chemo-
resistance. Among all the studies available to date, 
most of the lncRNAs enhance chemoresistance in BC 
by acting as ceRNAs to sponge miRNAs, especially 
through targeting the ATP-binding cassette (ABC) 
transporter superfamily. The ABC transporter 
superfamily as drug efflux pumps have been known 
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to mediate multidrug resistance (MDR) in multiple 
cancers [123]. For example, lncRNA ferritin heavy 
chain 1 pseudogene 3 (FTH1P3) and linc00518 
respectively sponge miR-206 and miR-199a, which 
share complementary binding sites with ABCB1 and 
MRP1 mRNA, thus mediating MDR (e.g. paclitaxel, 
doxorubicin and vincristine) in BC [124, 125]. Besides, 
dysregulated NONHSAT101069 is reported to sponge 
miR-129-5p and release Twist1 to confer resistance to 
the anthracycline genotoxic drug epirubicin in BC 
[126], and CASC2 enhances paclitaxel resistance 
through regulation of the miR-18a-5p-CDK19 axis 
[127]. On the basis of several independent studies, 
NEAT1 confers resistance to paclitaxel, cisplatin and 
5-fluorouracil in BC cells through miR-129/ZEB2 and 
miR-211/HMGA2 pathways [12, 13]. Collectively, the 
mechanism whereby lncRNAs act as ceRNAs to 
release specific mRNAs is widely seen in BC 
chemotherapy resistance. Specifically targeting the 
lncRNA-miRNA-mRNA axis may benefit BC patients 
resistant to chemotherapy. 

In addition to acting as ceRNAs, lncRNAs can 
exert their function of mediating BC chemoresistance 
through multiple mechanisms. Of note, a recent study 
has reported a special mechanism of the antisense 
lncRNA MAPT-AS1 to mediate chemoresistance in 
BC [128]. In detail, MAPT-AS1 contributes to 
paclitaxel resistance in ER- BC cells through the 
formation of RNA duplex with its natural comparable 
sense transcripts MAPT. The RNA duplex may alter 
the spatial structure and increase the stability of 
MAPT mRNA, which has been demonstrated to be 
involved in BC chemoresistance [128]. LncRNA 
NONHSAT141924 enhances BC resistance to 
paclitaxel through the p-CREB/Bcl-2 apoptosis 
pathway [129]. Intriguingly, H19 can induce 
doxorubicin resistance in BC, and be engulfed into 
exosomes to disseminate the resistance to 
surrounding sensitive cells [130, 131]. Thus, targeting 
H19 in BC cells as well as blocking its incorporation 
into exosomes may exhibit superior efficacy in 
reversing BC chemoresistance. 

Compared with lncRNAs which promote 
chemoresistance in BC, fewer lncRNAs have been 
found to suppress chemoresistance in BC and the 
underlying mechanisms still remain elusive. For 
instance, LINC00968 targets and silences WNT2 and 
the downstream β-catenin signaling pathway, thus 
sensitizing BC cells to chemotherapeutics [132]. 
LncRNA GAS5 suppresses adriamycin resistance by 
competing with miR-221-3p for DKK2 release, which 
downregulates the Wnt/β-catenin signaling pathway 
[133]. Besides, AC073284.4 attenuates paclitaxel 
resistance via inhibition of miR-18b-5p/dedicator of 
cytokinesis protein 4 (DOCK4) axis [134]. Taken 

together, lncRNAs are extensively involved in BC 
chemoresistance. Modulating the expression of 
chemoresistance-related lncRNAs is a feasible 
strategy for the reversal of resistance. 

LncRNAs in BC immunotherapy resistance 
Currently, there is a growing enthusiasm for the 

application of immunotherapy in BC treatment, with 
the immune checkpoint blockade playing the leading 
role [135] (Figure 1). Agents causing immune 
checkpoint blockade are under active clinical 
investigation, either used alone or in combination 
with other therapeutics. For example, some chemo-
therapeutics and targeted agents appear promising in 
combination with immune checkpoint inhibitors 
because of their competence in T-cell priming and 
immunity activation [135]. Of note, in 2019 the 
immune checkpoint blockade agent atezolizumab 
(Tecentriq) was approved to be paired with cytotoxic 
chemotherapeutic nab-paclitaxel (Abraxane) for the 
first-line treatment of PD-L1+ unresectable locally 
advanced or metastatic TNBC. This initial approval of 
an immunotherapeutic marks a milestone in BC 
treatment, especially in TNBC, since prior to that 
cytotoxic chemotherapeutics were the only treatment 
option for these patients. 

In spite of the encouraging progress in BC 
immunotherapy, cancer cells can develop variable 
mechanisms to escape immunosurveillance and 
generate intrinsic unresponsiveness to immunothera-
peutics. One of the immune-resistant mechanisms 
involves reducing antigenicity that avoids detection 
by antitumor lymphocytes. For instance, TNBC 
exhibits resistance to programmed cell death 
protein-1(PD-1) blockade through downregulation of 
PLC, which enhances antigen presentation to the cell 
surface [136]. More intriguingly, the lncRNA LINK-A 
plays a key role in this process by promoting the 
degradation of PLC. In agreement with this, treatment 
with LINK-A LNAs stabilizes PLC components and 
sensitizes mammary gland tumors to immune 
checkpoint inhibitors [17] (Figure 5). This study gives 
an example of lncRNA-dependent antigenicity 
reduction and intrinsic immunotherapy resistance, 
which underscores the significance of lncRNAs as 
potential therapeutic targets and novel biomarkers to 
predict immunotherapy responses of BC patients. 

In addition to the downregulation of 
antigenicity, transformed cells take advantage of 
AICD of T lymphocytes to escape immunological 
elimination, in which the lncRNAs play an important 
role (Figure 5). For example, a recent study has 
demonstrated that an NF-κB-interacting lncRNA, 
NKILA, facilitates T cell vulnerability to AICD 
through inhibition of NF-κB activity, resulting in BC 
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immune evasion and cancer progression. Moreover, 
knockdown of NKILA in tumor-specific CTLs 
significantly inhibits the growth of BC patient-derived 
xenografts due to increased CTL infiltration [52]. 
Thus, modulating the expression of oncogenic 
lncRNAs such as NKILA in CTL may represent a 
novel immunotherapeutic strategy. Moreover, the 
expression levels of XIST and TSIX are related to 
PD-L1 in the tissues and body fluids of BC patients 
with diverse molecular subtypes, indicating the role 
of the two lncRNAs as predictive biomarkers for 
immunotherapy in BC patients [137]. Emerging 
studies have shed light on the mechanism by which 
XIST attenuates immune suppression. For instance, 
XIST depletion enhances the secretion of exosomal 
miRNA-503 to activate M1-M2 conversion of 
microglia, which is essential for maintaining the 
suppressive immune microenvironment and 
inhibiting T cell proliferation [138]. In addition to 
those lncRNAs mentioned above, multiple lncRNAs 
have been found to be associated with immune 
system regulation, including RP4-583P15.10 [139], 
T-cell leukemia/lymphoma 6 (TCL6) [140], growth 
hormone secretagogue receptor opposite strand 
(GHSROS) [141], and linc00152 [142]. These findings 
demonstrate that lncRNAs may act as promising 

predictive biomarkers and therapeutic targets for BC 
immunotherapy. 

Clinical implications of lncRNAs in BC 
therapy 

Early stage BC is considered to be potentially 
curable while the treatment for metastatic or late BC is 
still challenging, suggesting that early and precise 
diagnosis is extremely important for BC patients. 
Currently, two-view mammography is the sole 
screening method recommended for early detection of 
BC [6]. However, the high frequency of false positives 
or negatives limits the reliability of this clinically used 
screening tool and may impact on survival or impair 
life quality of patients [143]. Interestingly, a deep 
learning-based model can outperform radiologists in 
identifying BC from mammograms, but the clinical 
benefits are not yet fully established [144]. Many 
state-of-the-art imaging methods, including 
abbreviated MRI [6] and digital breast tomosynthesis 
(DBT) [145], are being developed to expand the 
sensitivity profile of early stage BC detection. 
However, the enormous cost, sensitivity and 
specificity of these screening methods remain to be 
optimized. 

 

 
Figure 5. LncRNAs-regulated resistance to immunotherapy. In BC cells, LINK-A promotes the crosstalk between PIP3 and inhibitory GPCR pathways, leading to 
decreased cAMP and PKA-mediated phosphorylation of TRIM71. Decreased phosphorylation of TRIM71 enhances the degradation of PLC, Rb and p53, resulting in 
downregulation of antigenicity and intrinsic tumor resistance to immunotherapy. In stimulated T cells, calcium influx activates calmodulin, thereby removing HDAC and enhancing 
STAT1-mediated transcription of NKILA. NKILA directly binds to p65 and prevents its nuclear translocation as well as following transcription of anti-apoptotic genes. Thus, 
NKILA facilitates T cell vulnerability to AICD, resulting in immune evasion and cancer progression of BC. 
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Although ER, PR, and HER2 provide insight into 
BC molecular classification and clinical management, 
novel biomarkers for BC subtyping are urgently 
needed to facilitate individualized treatment due to 
the high intertumor heterogeneity in BC patients. In 
addition to the lack of effective biomarkers for early 
detection and molecular subtyping, resistance against 
standard therapies has also increased the mortality of 
BC as discussed above. Therefore, sensitive bio-
markers and effective therapeutic targets are urgently 
required to improve the clinical outcomes of BC 
patients. 

LncRNAs as biomarkers to predict therapeutic 
response 

Mining novel biomarkers for BC management is 
extremely important for improving clinical outcomes. 
Some lncRNAs have been found to act as essential 
regulators in BC, indicating their potential to serve as 
biomarkers for early diagnosis and molecular 
subtyping. For instance, Xu et al. has reported that 
lncRNA RP11-445H22.4 in circulating serum is a 
sensitive and specific diagnostic biomarker for BC 
[146]. Liu et al. have developed a novel classification 
system integrating lncRNA and mRNA expression 
profiles for TNBC and demonstrated that subtype- 
specific lncRNAs could act as potential biomarkers for 
BC classification [147]. Another recent study has 
demonstrated that the overexpression of HOTAIR is 
intimately associated with a luminal androgen 
receptor (LAR) subtype of TNBC, which is 
characterized by AR expression [148]. These findings 
indicate the prognostic significance of lncRNAs in BC 
and raise the possibility of establishing novel 
detection strategies for BC patients. 

In addition, many lncRNAs have been found to 
be capable of predicting therapeutic response. High 
expression of HOTAIR and its regulator FOXM1 can 
help identify endocrine therapy non-responders 
among ER+ BC patients, illustrating the role of 
lncRNAs as predictive biomarkers in BC therapy 
[149]. In addition, the histone deacetylase inhibitor 
abexinostat has been demonstrated to induce BCSCs 
differentiation and reduce BCSC population in vivo. 
XIST functions as a predictive biomarker to 
distinguish BC patients sensitive to this 
differentiation therapy [150]. XISTlow BC cells can be 
specifically eliminated by a FDA-approved chemo-
therapy medication fludarabine [138]. Further, multi-
gene signatures incorporating lncRNAs have been 
developed and demonstrated to be capable of 
predicting taxane responsiveness, tumor recurrence 
and clinical outcome in patients diagnosed with 
TNBC [151, 152]. The functionally polymorphic 
lncRNA MIR2052HG can influence the risk of tumor 

recurrence in BC patients treated with aromatase 
inhibitors [153]. These studies reveal that lncRNAs 
can serve as active biomarkers for therapeutic 
response prediction, but need further validation in 
clinical practice. This would be beneficial for 
personalized/precision medicine. 

Interestingly, lncRNAs, including Prostate 
Cancer gene 3 (PCA3), MALAT1, H19, TINCR and 
CCAT2, are emerging as circulating biomarkers for 
early stage cancer detection [154, 155]. A recent study 
has reported that extracellular RNAs (exRNAs) from a 
single droplet (5-7 µL) of serum in a liquid biopsy are 
capable of reflecting human physiological and disease 
states using SILVER-seq (Small Input Liquid Volume 
Extracellular RNA Sequencing). More intriguingly, 
lncRNAs are detectable in this system, and donors 
with or without BC display significant differences 
[156]. These findings indicate that lncRNAs can act as 
sensitive biomarkers in BC non-invasive liquid 
biopsy, but again this needs further clinical 
validation. Unfortunately, the BC patient cohorts used 
in the above studies are relatively small, and larger 
studies are required to validate the clinical value of 
these lncRNAs as biomarkers. 

LncRNAs as promising BC therapeutic targets 
Notwithstanding the several therapeutic 

strategies available for BC patients, overcoming 
treatment tolerance remains a major challenge for 
improving clinical outcome. Theoretically, the 
regulatory roles of lncRNAs in BC therapeutic 
resistance confer them potential to be targeted for 
reversing treatment tolerance. Furthermore, in 
practice, the development of lncRNA-targeting tech-
nologies makes it possible to translate lncRNA-based 
therapies to the clinic. To date, the most general 
approaches for suppressing lncRNA involve antisense 
oligonucleotides (ASOs) and small interfering RNAs 
(siRNAs) [157]. ASOs refer to synthetic single- 
stranded oligonucleotides which are complementary 
to target lncRNAs and can form a DNA/RNA hetero-
duplex which can be cleaved by RNase H. siRNAs are 
double-stranded RNAs, the guide strand of which can 
be loaded into argonaute 2 (AGO2) and then form a 
RNA-induced silencing complex (RISC) to target 
lncRNA for degradation. ASOs predominantly target 
lncRNAs residing in the nucleus while cytoplasmic 
lncRNAs are more sensitive to siRNAs [158]. 

Both of these two methods have been applied to 
silence lncRNAs and have shown considerable 
efficacy against BC in preclinical studies. Genetic 
knockout or knockdown of MALAT1 [159], 
LINC02273 [160] and LINC00673 [161] using ASOs 
has exhibited superior efficacy in attenuating BC 
growth and metastasis in vivo. siRNAs targeting 
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BC-related lncRNAs such as HOTAIR have also been 
demonstrated to inhibit BC growth and invasion 
[162]. Remarkably, silence of lnc-BM with siRNAs 
encapsulated within nanoparticles has shown 
considerable efficacy against brain metastasis in BC 
[163], indicating that ASOs or siRNAs formulated into 
suitable drug delivery vehicles (e.g. liposomes, 
nanoparticles and viruses) may accelerate the clinical 
application of lncRNAs-based treatment strategies. 

LNAs are well accepted as a novel class of RNA 
used in therapeutics. The ribose moiety of the RNA 
nucleotide is locked by an extra oxymethylene bridge 
linking the C (2’) and C (4’) to facilitate base stacking 
and enhance hybridization properties [164, 165]. The 
unique characteristics of LNAs, including high 
binding affinity, high stability and improved 
mismatch discrimination, make them emerging 
approaches for BC treatment [166]. Therapeutic 
delivery of LNAs targeting LINK-A [17] and BCAR4 
[167, 168] has been proven to sensitize BC to immune 
checkpoint inhibitors and attenuate BC growth and 
metastasis in vivo, respectively. Preclinical studies on 
lncRNA-based BC therapy have made substantial 
progress and offered an opportunity to reverse BC 
therapeutic resistance. However, these studies are still 
preliminary and great challenges lie ahead for 
translating these treatment methods into the clinic, 
requiring efforts in oligonucleotide chemistry and 
development of appropriate delivery systems. 

Conclusions 
In the past few decades, studies on lncRNAs in 

the field of oncology have drawn considerable 
attention of researchers, largely due to the rapid and 
substantial progress in high-throughput sequencing 
technologies. Additionally, the aberrant expression 
and multifaceted roles of lncRNAs in cancer have also 
attracted increasing scientific interests. In this review, 
we summarize the dysregulated lncRNAs associated 
with resistance to current BC therapeutic strategies 
and highlight the underlying mechanisms to facilitate 
the understanding of BC treatment tolerance. 

The lncRNAs implicated in BC therapy 
resistance hold potential to serve as predictive 
biomarkers or therapeutic targets to benefit clinical 
management of BC patients. Firstly, lncRNAs have 
been widely documented as biomarkers for BC 
diagnosis, prognosis and therapeutic response 
prediction. The sensitivity and specificity have been 
demonstrated in several cohorts of BC patients. It 
therefore appears that lncRNAs are promising 
biomarker candidates to be translated into clinical 
applications. Unfortunately, the size of many clinical 
studies conducted to date is not large enough to verify 
their clinical value. Thus, larger BC patient cohorts are 

needed to validate the potential of these lncRNAs as 
clinical biomarkers. 

Furthermore, the prerequisite of translating 
lncRNAs to the clinic as therapeutic targets is to 
elucidate their elaborated mechanisms of action in 
vitro and in vivo. However, the major impediment that 
lies ahead is their often obscure mode of action. 
Additionally, the low sequence conservation of 
lncRNAs poses a challenge in validating their 
biological functions. It has been suggested that the 
secondary structure of lncRNAs are evolutionarily 
conserved and could be considered as the major 
functional unit to regulate biological activities [169]. 
However, very few studies focus on the influence of 
lncRNA secondary structure on their biological 
functions. Additionally, the same lncRNA may have 
multiple targets and could even exert opposite 
functions in different types of tumors, resulting in 
dramatic side effects. Lack of animal models remains 
another limitation in mechanistic studies on lncRNAs. 
Further exploration on the character of lncRNAs and 
more technical breakthroughs are required to address 
these problems. Taken together, investigation of 
lncRNAs in BC therapeutic resistance may further 
enhance our understanding of the mechanisms 
responsible for resistance to BC treatment. Hopefully, 
some of the specific lncRNAs will enter the clinic as 
promising prognostic biomarkers or effective 
therapeutic targets. 
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