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Abstract 

Background: Triple-negative breast cancer (TNBC) is an aggressive malignancy with high 
heterogeneity. However, the alternative polyadenylation (APA) profiles of TNBC remain unknown. 
Here, we aimed to define the characteristics of the APA events at post-transcription level among TNBCs. 
Methods: Using transcriptome microarray data, we analyzed APA profiles of 165 TNBC samples and 33 
paired normal tissues. A pooled short hairpin RNA screen targeting 23 core cleavage and polyadenylation 
(C/P) genes was used to identify key C/P factors. 
Results: We established an unconventional APA subtyping system composed of four stable subtypes: 1) 
luminal androgen receptor (LAR), 2) mesenchymal-like immune-activated (MLIA), 3) basal-like (BL), 4) 
suppressed (S) subtypes. Patients in the S subtype had the worst disease-free survival comparing to other 
patients (log-rank p = 0.021). Enriched clinically actionable pathways and putative therapeutic APA events 
were analyzed among each APA subtype. Furthermore, CPSF1 and PABPN1 were identified as the master 
C/P factors in regulating APA events and TNBC proliferation. The depletion of CPSF1 or PABPN1 
weakened cell proliferation, enhanced apoptosis, resulted in cell cycle redistribution and a reversion of 
APA events of genes associated with tumorigenesis, proliferation, metastasis and chemosensitivity in 
breast cancer. 
Conclusions: Our findings advance the understanding of tumor heterogeneity regulation in APA and 
yield new insights into therapeutic target identification in TNBC. 
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Introduction 
Triple-negative breast cancer (TNBC), lacking 

estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 
(HER2) amplification, represents approximately 

15-20% of primary breast cancers [1]. TNBC is a highly 
heterogeneous disease with a high proliferative 
activity [2]. TNBC patients’ clinical courses are 
usually aggressive and the patients experience high 
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rates of both early relapse and distant metastasis. 
Thus far, we have no specific and well-defined target 
therapies for TNBC, and surgery and chemotherapy 
remain the only therapeutic option. In recent years, 
identifying new potential therapeutic targets has 
become one of the hotspots in treating TNBC [3]. 

Alternative polyadenylation (APA) is a highly 
prevalent RNA-processing mechanism that generates 
distinct 3' ends on mRNAs and other RNA 
polymerase II transcripts [4]. Recent studies have 
demonstrated that more than half of mammalian 
genes show APA which is an emerging layer of gene 
regulation [5-7]. Tandem 3' untranslated region 
(3'UTR) APA, the most frequent APA form, results in 
transcripts with varying 3'UTR lengths without 
affecting the protein encoded by the gene [8, 9]. APA 
events in the 3'UTR of mRNAs are correlated with 
multiple biological processes, including proliferation, 
tumorigenesis and differentiation [4, 10]. Enhanced 
proliferation was associated with 3'UTR shortening 
and up-regulation of polyadenylation factors [11-13]. 
However, the tandem 3'UTR APA events of TNBC has 
not been well characterized. Given the important role 
of APA events in proliferation and tumorigenesis, 
elucidation of APA patterns might improve our 
understanding of the nature of TNBC. 

Even though TNBC is considered a single clinical 
entity, molecular profiling with ‘omics’ technologies 
have revealed an remarkably high level of 
heterogeneity as well as common features in TNBC 
[14]. As an approach to decode the molecular patterns 
of cancers with complex genotypic characteristics, 
gene expression profiles have been analyzed. A more 
comprehensive understanding of cancer etiology can 
be obtained by identifying a series of “driver” 
signaling pathways (for example, cell cycle, DNA 
damage response, and immune cell processes). Due to 
high-throughput technologies, emerging roles of the 
transcriptome have been identified in the cellular 
processes that are associated with carcinogenesis. 
Different groups independently reporting genomic 
profiling of TNBC identified four to six intrinsic 
subtypes displaying unique gene signatures and 
ontologies [15-17]. Thus, we hypothesize that TNBC 
has the interpatient heterogeneity in APA profiles. 

However, whether APA patterns can be utilized 
in TNBC subtyping is unclear. In this study, we 
analyzed the transcriptome array data of 165 TNBC 
and 33 normal adjacent tissues for patterns of APA 
and gene expression and identified 4 stable TNBC 
subtypes: (i) luminal androgen receptor (LAR), (ii) 
mesenchymal-like immune-activated (MLIA), (iii) 
basal-like (BL), and (iv) suppressed (S). Furthermore, 
using pooled short hairpin RNA (shRNA) library 
screening, we identified CPSF1 and PABPN1 as the 

key regulators of cell proliferation and APA in TNBC. 
These results reveal an active role of the 3'UTR in 
regulating biological processes and provide a 
potential therapeutic target for TNBC. 

Methods 
Patients and specimens 

This prospective observational study was 
initiated on January 1, 2011. A total of 165 consecutive 
patients, treated in the Department of Breast Surgery 
at Fudan University Shanghai Cancer Center (FUSCC, 
Shanghai, China) from January 1, 2011 to December 
31, 2012, were recruited according to the following 
inclusion criteria: (i) female patients diagnosed with 
unilateral disease; (ii) patients with histologically 
confirmed invasive ductal carcinoma (IDC) with a 
triple-negative (ER-/PR-/HER2-) phenotype; (iii) 
patients with no evidence of metastasis at diagnosis; 
and (iv) patients with no treatment prior to surgery. 
The exclusion criteria were as follows: (i) ductal 
carcinoma in situ (with or without microinvasion); (ii) 
inflammatory breast cancer; and (iii) percentage of 
tumor cells less than 80%. The ER, PR, and HER2 
status was assessed individually by two pathologists 
at the Department of Pathology in FUSCC according 
to the American Society for Clinical 
Oncology/College of American Pathologists 
guidelines [18, 19]. We also collected 33 paired 
adjacent normal breast tissues from the FUSCC tissue 
bank. Tissue samples were obtained with the 
approval of an independent ethical committee / 
institutional review board at FUSCC, Shanghai 
Cancer Center Ethical Committee (Shanghai, China), 
and written informed consent was provided by all 
patients. 

Microarray data 
Total RNA was isolated from 165 frozen TNBC 

samples and 33 adjacent normal tissues using the 
RNeasy Plus Mini Kit (Qiagen). The Affymetrix 
GeneChip Human Transcriptome Array 2.0 (HTA 2.0) 
was used to quantify transcriptome expression 
profiles after quality control according to the manuals. 
The CEL files were processed with ‘aroma.affymetrix’ 
using RMA background correction and quantile 
normalization [20]. The processed probe intensities 
were extracted from the intermediate CEL files and 
log2 transformed to allow probe-level analysis. A 
PLATA-like approach was used to normalize the 
probe-level data as previously described [12, 21]. The 
probe intensities were normalized to the median 
intensity of all probes mapped to the transcript in 
each sample. Gene expression analyses are detailed in 
Supplementary Methods. Microarray data were 
deposited into the Gene Expression Omnibus (GEO) 



Theranostics 2020, Vol. 10, Issue 23 
 

 
http://www.thno.org 

10533 

database (GSE76250). 

Tandem 3′UTR analysis 
To identify the set of transcripts with tandem 

3'UTRs that could be profiled with the Affymetrix 
GeneChip HTA 2.0, we first queried the Ensembl 
database with the following filters: 1) transcript count 
≥ 4; and 2) HTA 2.0 probeset IDs. We then retrieved 
the 3'UTRs of the returned Ensembl Transcript IDs 
using Ensembl annotation data (Ensembl release 75, 
GRCh37.p13). The genomic coordinates of each 3'UTR 
were compared. Transcripts with the same 3'UTR 
start position and different APA sites were identified 
as tandem 3'UTRs. The probes of HTA 2.0 were 
mapped to the hg19 genome and the uniquely 
mapped probes in each tandem 3′UTR were kept. The 
tandem 3'UTRs with at least four probes before and 
after APAs were retained for subsequent 3'UTR APA 
analysis, resulting in 15,264 tandem 3'UTRs. The 
sample probe intensities were first normalized to the 
median probe intensities of the normal sample. The 
probes were partitioned into common and extended 
groups using Bayesian analysis of the change point 
(BCP), which is implemented by R package ‘bcp’ 
(version 4.0.0)[22]. This approach treated all samples 
with a tandem 3'UTR as a multivariate series with a 
common change point. The algorithm input is an n 
(number of probes for the 3'UTR) by m (number of 
samples) matrix. The probe position with the largest 
posterior probability was identified as the change 
point. The short 3′UTR index (SUI) for sample i was 
defined as following: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑤𝑤𝑐𝑐𝑖𝑖∗) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑤𝑤𝑒𝑒𝑖𝑖∗) 
where wi* 

c  and wi* 
e  are the posterior probabilities of 

common and extended regions for sample i. The 
larger the value of the SUI, the higher the proportion 
of the short 3′UTR isoform is and vice versa. Because 
89% of the significant changes in isoform abundance 
occur at the first functional APA site [23], we focus 
our analyses on genes with one APA site. We 
discarded the tandems with more than one peak of 
posterior probability (multiple APAs) and manually 
examined Bayesian change point plots. After manual 
verification, the following tandem 3'UTRs were 
excluded: (1) tandem 3'UTRs with multiple peaks of 
posterior probability (multiple APAs); (2) tandem 
3'UTRs with instable posterior means before or after 
the change point. As a result, 2,869 tandem 3′UTRs 
were obtained for subsequent analyses. 

The tandem-3′UTR-based TNBC subtyping 
Tandem 3′UTRs were sorted by the coefficient of 

variation (CV) of SUI across all samples and the top 
25% most variant tandem 3′UTRs were chosen for the 
subsequent clustering analysis. The unsupervised 

non-negative matrix factorization (NMF) method was 
used to determine the optimal number of stable TNBC 
subtypes. We used a non-smooth NMF (nsNMF) 
algorithm and applied 50 and 200 iterations for the 
rank survey and the clustering runs, respectively. The 
ideal rank basis and factorization was determined 
based on the review of consensus matrices, the 
cophenetic and dispersion coefficients and silhouette 
widths from clustering solutions with 2 to 10 ranks. 
The robustness of the classification system was 
verified by consensus clustering, which involves 
k-means clustering by resampling (1,000 iterations) 
randomly selected tumor profiles. Visual 
representation of the consensus matrix reveals the 
proportion of times in which two samples are 
clustered together across the resampling iterations. To 
determine the optimal number of tandem 3'UTRs in 
NMF clustering, we examined the clustering results 
by selecting genes based on the absolute CV from the 
top 5% to the top 45% and finally chose the top 25% 
absolute CV to perform NMF clustering (Figure S1). 

The R package ‘NMF’ (version 0.20.6) was used 
to perform the NMF analysis. We then used MATLAB 
2015a (MathWorks, Natick, MA, USA) to conduct the 
principal component analysis (PCA). 

Extrapolating the clustering results to TNBC 
cell lines 

We extrapolated the APA-based subtypes TNBC 
cell lines, including MDA-MB-231 and MDA-MB-468, 
using the R package ‘pamr’ [24]. Briefly, ‘pamr’ uses 
nearest shrunken centroids method to assign the 
subtypes of each cell line. The SUI values were 
normalized using quantile normalization before we 
using the ‘pamr.train’ and ‘pamr.predict’ functions. 

The Lehmann/Pietenpol classification 
We assigned TNBC samples to Lehmann/ 

Pietenpol subtypes using the TNBCtype tool (http:// 
cbc.mc.vanderbilt.edu/tnbc/) [15, 25]. Fisher’s exact 
test was implemented to evaluate the relationship 
between the Lehmann/Pietenpol subtyping system 
and our tandem-3′UTR-based system. 

Reverse phase protein arrays (RPPA) data 
The RPPA data (level 4) of breast cancer samples 

from the Cancer Genome Atlas (TCGA) were 
downloaded from the Cancer Proteome Atlas (TCPA, 
https://tcpaportal.org/tcpa/) [26, 27]. 

Pathway and co-expression network analyses 
See Supplementary Methods. 

Pooled shRNA screening 
pLKO.1 lentiviral plasmids encoding shRNAs 

targeting 3' processing factors and nontargeting 
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controls were each used as a pool. shRNA lentiviruses 
were designed according to the information in the 
RNAi Consortium (Broad Institute of MIT and 
Harvard) and generated from HEK293T cells. As 
previously reported [28], MDA-MB-231 and MDA- 
MB-468 cells were infected with lentiviral supernatant 
containing shRNAs with a multiplicity of infection 
(MOI) of 0.3. Detailed methods are provided in 
Supplementary Methods. 

Cell culture, stable cell line construction and 
Western blotting 

See Supplementary Methods. 

Cell proliferation, apoptosis and cell cycle 
analyses 

See Supplementary Methods. 

RNA-seq data analysis and profiling APA 
events from RNA-seq data 

See Supplementary Methods. 

Statistical analysis 
All experiments were repeated at least three 

times. The data are presented as the mean of 
biological replicates unless otherwise indicated. Error 
bars represent the standard deviation from the mean, 
unless otherwise indicated. Continuous variables 
were analyzed using t test, Mann-Whitney test or 
analysis of variance (ANOVA). The time-dependent 
receiver operating characteristic (ROC) curve analysis 
was performed using R package ‘timeROC’ [29]. All 
statistical analyses were completed using R 3.2.3 (R 
Development Core Team, Vienna, Austria) with 
two-sided tests. P-value < 0.05 was considered to be 
statistically significant. Detailed methods are 
provided in Supplementary Methods. 

Results 
Characterization of the tandem 3'UTR 
landscape in TNBC 

We aimed to profile the genome-wide APA 
patterns in the TNBC transcriptome. To achieve this, 
we developed algorithms based on a Bayesian 
approach to analyze tandem 3'UTR APA events. We 
focused on tandem 3'UTRs because a series of studies 
have identified their active roles in carcinogenesis [13, 
30, 31]. Using transcriptome arrays of 165 tumors and 
33 paired normal adjacent tissues, we characterized 
the tandem 3'UTR landscape of TNBC. The 
transcriptome array probes were first mapped to hg19 
using PLATA-like methods [12, 21] (Figure 1A). The 
tandem 3'UTRs were profiled using a multivariate 
Bayesian approach, which considered all samples in 
the same calculation (see Methods). This algorithm 

assessed the posterior probability and mean of each 
probe as the change point in the same Bayesian 
procedure, which substantially reduced the number 
of statistical calculations (Figure 1B; Figure S2). We 
termed the estimated 3'UTR shortening or 
lengthening as the “short 3'UTR index” (SUI). Because 
89% of the significant changes in APA isoform 
expression occur at the first APA site [23], we focused 
on genes with one APA site in this study. After 
computational selection and manual verification, 
2,869 tandem 3'UTRs with only one significant APA 
site were identified (Figure S3). Figure 1C shows the 
distribution of the z-score of the SUI. 

To investigate the consequence of tandem 3'UTR 
APA events, we compared gene expression between 
TNBC and adjacent normal tissues. As shown in 
Figure 1D, genes with shorter 3'UTRs in cancers are 
likely to be more highly expressed in cancer samples 
than those with longer 3'UTRs, which suggests that 
transcripts losing elements in the 3'UTR prone to be 
upregulated. Using a large dataset, we determined the 
correlation coefficient between tandem 3'UTR APA 
events (measured by the SUI) and gene expression, 
which apparently followed a bimodal distribution 
(Figure 1E). The majority of genes demonstrated a 
strong positive correlation, which supports the 
negative correlation between 3'UTR length and gene 
expression. Out of 1631 significant APA events, 68.5% 
(1118 of 1631) were 3′UTR shortening, whereas 31.5% 
(513 of 1631) were 3′UTR lengthening events (Figure 
S4A). Gene Ontology (GO) enrichment analysis of 
genes with APA events revealed enrichment in 
overall proliferation-associated functions and 
metabolic pathways (Figure S4B-C). This is consistent 
with the microarray study of APA events in breast 
cancer conducted by Akman et al [32]. To compare the 
difference of APA quantification between microarray 
data (SUI) and RNA-seq data (percentage of distal 
poly(A) site usage index, PDUI), microarray assays 
coupled with RNA-seq were performed on 
MDA-MB-231. We observed a weak correlation 
between the two data sets (ρ = − 0.0575, p < 0.001; 
Figure S5). Based on the SUI and the PDUI calculation 
formula, the SUI depicted differential length of 
tandem 3'UTR in tumor tissues relative to normal 
tissues whereas the PDUI reflected the proportion of 
distal poly(A) site (PAS) of a transcript in a sample 
regardless of normal control. Furthermore, analysis of 
RPPA data and PDUI data from TCGA breast cancer 
cohort revealed a weak correlation between protein 
expression and APA events in 41 / 175 proteins 
(Figure S6; Table S1). The highest correlation 
coefficient was observed for PARP1 (r = −0.37, false 
discovery rate [FDR] < 0.001). 
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Profiling tandem 3′UTRs of TNBC reveals four 
stable subtypes 

A total of 165 TNBC patients were recruited in 
this study based on inclusion and exclusion criteria. 
Using tandem 3′UTR profiling, we explored the TNBC 
molecular phenotypes. The NMF method was 
performed on 717 tandem 3′UTRs with the top 25% 
CV of the SUI across all samples to optimize the 
separation of stable intrinsic subtypes. After visual 

inspection of the consensus heatmaps (Figure 2A), the 
TNBC samples were most stably divided into 4 
clusters by silhouette, cophenetic and dispersion 
metrics (Figure 2B and C). Unsupervised dimension 
reduction using PCA revealed fundamental 
differences in the tandem 3'UTR APA events between 
TNBC intrinsic subtypes identified by NMF and 
consensus clustering (Figure 2D). Tandem 3′UTRs 
with different SUIs from each subtype (Benjamini- 

 

 
Figure 1. Bayesian change point (BCP) approach for alternative polyadenylation (APA) analysis of transcriptome array data. (A) Mapping of Human Transcriptome Array 2.0 probes 
to the SUZ12 3′UTR. (B) BCP analysis results. The upper panel represents the input probe intensities (dots) and posterior probe mean intensities (lines) for all samples. The lower 
panel reveals the probabilities of the posterior change point. (C) The histogram represents the distribution of the z-score of the short 3′UTR index (SUI) and the red line is the 
estimated density. (D) The fold-changes in expression between TNBC and normal adjacent tumor tissues are plotted against the ΔSUI values. The genes significantly up- and 
down-regulated in TNBC are shown in red and blue, respectively. The red and blue bars indicate the number of up- and down-regulated genes, respectively. (E) The correlation 
coefficient between 3′UTR shortening and gene expression follows a bimodal distribution. The histogram represents the distribution of the correlation coefficient and the estimated 
densities are shown for individual (red line) and combined (blue line) distributions. Abbreviations: 3′UTR, 3′ untranslated region; APA, alternative polyadenylation; BCP, Bayesian 
change point; HTA, human transcriptome array; SUI, short 3′UTR index. 
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Hochberg adjusted p < 0.001 from linear models for 
microarray and RNA-seq data) were computed and 
analyzed for pathway enrichment. Figure 2E shows 

the 3′UTR signature for these canonical pathways 
enriched in each TNBC subtype. 

 

 
Figure 2. Classification of triple-negative breast cancers (TNBCs) by alternative polyadenylation (APA) profiling reveals 4 stable subtypes. (A) Consensus heatmaps showing the 
robustness of sample classification using non-negative matrix factorization (NMF) clustering. (B) Silhouette plot displaying the composition (n = number of samples) and stability 
(average width) of clustering. (C) Cophenetic and dispersion metrics for NMF across 2 to 10 clusters with 50 runs suggest 4 stable subtypes. (D) Principal component analysis 
depicts fundamental differences in the short 3′UTR index (SUI) between the TNBC APA subtypes. (E) The heatmap displaying the top 20 differentially polyadenylated 3′UTRs 
with most different SUIs in each subtype. Abbreviations: APA, alternative polyadenylation; NMF, non-negative matrix factorization; TNBC, triple-negative breast cancer; SUI, 
short 3′UTR index. 
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Figure 3. Alterations of alternative polyadenylation (APA) events in clinically actionable therapeutic targets in triple-negative breast cancer (TNBC). (A) Gene Set Enrichment 
Analysis (GSEA) of four APA subtypes (LAR, MLIA, BL and S). (B) Distribution of the interquartile range (IQR) of the short 3′UTR index (SUI) of clinically actionable genes across 
APA subtypes. (C) Distribution of the IQR of the SUI of clinically actionable genes across Lehmann subtypes. Abbreviations: APA, alternative polyadenylation; BL, basal-like; FDR, 
false discovery rate; GSEA, Gene Set Enrichment Analysis; IQR, interquartile range; LAR, luminal androgen receptor; MLIA, mesenchymal-like immune-activated; NES, normalized 
enrichment score; S, suppressed; SUI, short 3′UTR index; TNBC, triple-negative breast cancer. 

 

Subtype 1: the luminal androgen receptor (LAR) 
subtype 

Subtype 1 TNBCs displayed heavily enriched 
hormonally regulated pathways (Figure 2E and 3A) 
but ER-negative immunochemical staining. Steroid 
hormone biosynthesis, the AR pathway, oxidative 
phosphorylation and the peroxisome proliferator- 
activated receptor (PPAR) signaling pathway were 
significantly activated in this subtype. Notably, 
twenty-eight enriched pathways of subtype 1 were 
elevated in the LAR subtype of the Lehmann/ 
Pietenpol classification as well. As shown in Figure 
S7, subtype 1 is uniquely enriched in AR-driven genes 
(AR, DHCR24, ALCAM, FASN, FGFR4, FKBP5, 
SPDEF, SPOD, PIP and CLDN8) and cytokeratin 
genes (KRT8, KRT18 and KRT19). The results suggest 
that tumors in subtype 1 exhibit luminal gene 

expression patterns and may respond to anti- 
androgen and anti-estrogen therapies. In concordance 
with previous studies [15], we termed subtype 1 the 
LAR subtype. 

Subtype 2: Mesenchymal-like immune-activated 
(MLIA) subtype 

Subtype 2 exhibited a variety of signaling 
pathways combining mesenchymal-like and 
immunomodulatory gene expression patterns. 
Enriched pathways in the MLIA subtype included 
extracellular matrix (ECM) glycoproteins, the JAK/ 
STAT signaling pathway, the ERK1/2 pathway, 
cytokine-cytokine receptor interactions, the platelet- 
derived growth factor (PDGF) pathway, the IL8/ 
CXCR2 pathway, the innate immune system and 
antigen procession and presentation pathways 
(Figure 2E and 3A). As illustrated in Figure S7, cell 



Theranostics 2020, Vol. 10, Issue 23 
 

 
http://www.thno.org 

10538 

growth and differentiation is characterized by 
elevated expression of growth factors (FGF1, FGF2, 
FGFR1, FGFR2, IGF1, IGF2, IGFBP4, IGFBP5, IGFBP6, 
IGFBP7, NGFR, PDGFA, PDGFRA, PDGFRB, PDGFC, 
PDGFD and IGF1R), epithelial-mesenchymal 
transition (EMT)-associated genes (MMP2, ACTA2, 
SNAI2, SPARC, TAGLN, TWIST1, ZEB1, COL3A1, 
COL5A2, GNG11, ZEB2 and CDH1), Wnt signaling 
(DKK2, SFRP4, TCF4, FZD4, CAV1, CAV2 and 
CCND2), and angiogenesis genes (KDR, TFK, TIF1 
and EPAS1). In addition, the MLIA subtype displayed 
low levels of genes related to cell proliferation, DNA 
damage response and cytokeratin, which were 
accompanied by enrichment of immune signal 
transduction genes (IRF8, IRF1, IRF7, ITK, JAK1, JAK2, 
LCK, LYN, NFKB1, NFKBIA, STAT4, STAT5A, BTK 
and ZAP70), stem-cell associated genes (ABCA8, 
PROCR, ENG, PER1, ABCB1, TERF2IP, BCL2, BMP2, 
THY1, NT5E and VCAM1) and HOX genes (MEIS1, 
MEIS2, MEOX1, MEOX2 and MSX1). Thus, we 
named subtype 2 the MLIA subtype. 

Subtype 3: Basal-like (BL) subtype 
The top gene ontologies for subtype 3 were 

remarkably enriched in cell cycle and cell division 
related pathways (cell cycle, cell cycle checkpoints, G1 
to S cell cycle, DNA replication, DNA repair), which 
represent distinct basal-like signatures (Figure 2E and 
3A). Tumors of this subtype comprised the highest 
proportion of TNBCs (40.6%). Increased proliferation 
genes (AURKA, AURKB, CENPA, CENPF, BUB1, TTK, 
CCNA2, PRC1, MYC, NRAS, PLK1, BIRC5 and MKI67) 
were observed, which was consistent with the high 
expression levels of DNA damage genes (CHEK1, 
FANCA, FANCG, RAD54B, RAD51, NBN, EXO1, 
MSH2, MCM10, RAD21 and MDC1), as represented in 
Figure S7. Therefore, we named subtype 3 the BL 
subtype. 

Subtype 4: Suppressed (S) subtype 
This subtype accounted for 15.8% of the TNBCs 

in the cohort. In contrast to the LAR, MLIA and BL 
subtypes, subtype 4 showed downregulation of 
multiple classic TNBC pathways, including immune- 
related pathways, cell growth, and cell apoptosis 
(Figure 2E and 3A). As shown in Figure S7, tumors in 
this subtype expressed decreased growth factor genes 
(FGF2, IGF1, IGF2, IGFBP4, IGFBP7, PDGFRA, 
PDGFRB, PDGFC and PDGFD), EMT-associated 
genes (MMP2, ACTA2, SNAI2, SPARC, ZEB1, 
COL3A1, GNG11 and ZEB2), Wnt signaling genes 
(CTNNB1, DKK2, SFRP4, TCF4, FZD4 and CAV1), 
angiogenesis genes (KDR, TEK and EPAS1), 
AR-driven genes (AR, ALCAM, FKBP5, SPDEF, 
APOD, PIP and CLDN8) and stem-like genes (ABCA8, 

PROCR, ENG and THY1). Due to the suppressed 
pathways and genes, we named subtype 4 the S 
subtype. 

Then, we computed differentially expressed 
tandem 3′UTRs in each subtype by comparing the SUI 
of tandem 3′UTRs in one subtype with the others. 
Median SUI values were significantly differed 
between the four subtypes (ANOVA, F = 23.319, p < 
0.001; Figure S8). Average median SUI was the 
highest in the BL subtype and the lowest in the S 
subtype. Comparing 3'UTR APA profile between the 
S subtype and the BL subtype, we identified 669 
shortening tandem 3'UTRs (631 genes) and 644 
lengthening tandem 3'UTRs (621 genes) with 
|ΔSUI|≥0.2 and FDR < 0.05 in the S subtype. 
Enrichment analysis of these genes were performed 
using Metascape and the results are shown in Figure 
S9-10. Differentially shortened tandem 3′UTRs in each 
subtype are shown in Figure S11. In the LAR subtype, 
the most shortened 3′UTR was SERHL2, which was 
associated with 4 mRNAs (Figure S11A). RBP4 was 
significantly shortened in the MLIA subtype, and 38 
mRNAs were tightly correlated with the tandem 
3′UTR (Figure S11B). PLEKHG4B was highly 
shortened in the BL subtype, and the SUI of 
PLEKHG4B correlated with the expression of 
PLEKHG4B itself alone (Figure S11C). In the S 
subtype, ITSN1 was remarkably shortened, and there 
was a positive correlation between the SUI of ITSN1 
and 3 mRNAs, including ITSN1 gene itself (Figure 
S11D). Differential expression analyses indicated that 
these co-expressed mRNAs altered in the subtype to 
which the subtype-specific APA belongs (Table S2). 

Next, we investigated the 479 tandem 3′UTRs of 
clinically actionable genes, including potential as well 
as FDA-approved drug targets and their associated 
genes (Table S3) [33-35]. The percentage of tandem 
3′UTRs that showed relatively large variances 
(interquartile range [IQR] ≥ 0.8) was 15.9%, 13.6%, 
17.5% and 21.1% for LAR, MLIA, BL and S subtypes 
according to the FUSCC APA classification, 
respectively, and was 19.6%, 17.5%, 14.6%, 20.0%, 
10.9%, 17.5% and 18.3% for BL1, BL2, IM, M, MSL, 
LAR and UNS subtypes based on Lehmann subtypes, 
respectively (Figure 3B and C). This suggests APA 
events may add an additional regulatory level to 
clinical actionable genes in TNBC. 

Comparison of our FUSCC APA subtypes and 
Lehmann subtypes based on mRNA expression 
profiles showed that subtype 1 (LAR) contains 93.8% 
of all Lehmann LAR tumors and that subtype 3 (BL) 
contains 64.5% Lehmann BL1 and BL2 tumors, 
whereas subtype 2 (MLIA) is mainly composed of the 
Lehmann M, MSL and IM subtypes (Figure S12; 
Table S4). 
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Table 1. Clinicopathological characteristics of the alternative 
polyadenylation (APA) subtypes of TNBC 

Characteristics Number of 
patients (%) 

FUSCC APA subtypes p-value 
LAR MLIA BL S 
n (%) n (%) n (%) n (%) 

Total 165 36 36 67 26  
Age           0.001 
≤ 50 years 68 (41.2) 7 (19.4) 10 (27.8) 38 (56.7) 13 (50.0)  
> 50 years 97 (58.8) 29 (80.6) 26 (72.2) 29 (43.3) 13 (50.0)  
Menopausal status           0.006 
Premenopause 64 (38.8) 7 (19.4) 12 (33.3) 36 (53.7) 9 (34.6)  
Postmenopause 101 (61.2) 29 (80.6) 24 (66.7) 31 (46.3) 17 (65.4)  
Tumor size           0.370  
≤ 2 cm 58 (35.2) 14 (38.9) 12 (33.3) 21 (31.3) 11 (42.3)  
> 2 cm 104 (63.0) 22 (61.1) 24 (66.7) 45 (67.2) 13 (50.0)  
Unknown 3 (1.8) 0 (0.0) 0 (0.0) 1 (1.5) 2 (7.7)  
Lymph node           0.336 
Negative 86 (52.1) 14 (38.9) 19 (52.8) 38 (56.7) 15 (57.7)  
Positive 79 (47.9) 22 (61.1) 17 (47.2) 29 (43.3) 11 (42.3)  
Grade           0.071 
I-II 32 (19.4) 12 (33.3) 9 (25.0) 10 (14.9) 1 (3.8)  
III 104 (63.0) 20 (55.6) 19 (52.8) 46 (68.7) 19 (73.1)  
Unknown 29 (17.6) 4 (11.1) 8 (22.2) 11 (16.4) 6 (23.1)  
Ki-67           0.042 
< 30% 32 (19.4) 12 (33.3) 8 (22.2) 10 (14.9) 2 (7.7)  
≥ 30% 132 (80.0) 23 (63.9) 28 (77.8) 57 (85.1) 24 (92.3)  
Unknown 1 (0.6) 1 (2.8) 0 (0.0) 0 (0.0) 0 (0.0)  
Neurovascular 
invasion 

          0.551 

Negative 70 (42.4) 13 (36.1) 13 (36.1) 32 (47.8) 12 (46.2)  
Positive 95 (57.6) 23 (63.9) 23 (63.9) 35 (52.2) 14 (53.8)  
EGFR           0.067 
Negative 107 (64.8) 17 (47.2) 24 (66.7) 49 (73.1) 17 (65.4)  
Positive 54 (32.7) 18 (50.0) 12 (33.3) 17 (25.4) 7 (26.9)  
Unknown 4 (2.4) 1 (2.8) 0 (0.0) 1 (1.5) 2 (7.7)  
CK5/6           0.002 
Negative 72 (43.6) 20 (55.6) 20 (55.6) 28 (41.8) 4 (15.4)  
Positive 90 (54.5) 15 (41.7) 16 (44.4) 39 (58.2) 20 (76.9)  
Unknown 3 (1.8) 1 (2.8) 0 (0.0) 0 (0.0) 2 (7.7)  
CK14           <0.001 
Negative 94 (57.0) 31 (86.1) 26 (72.2) 29 (43.3) 8 (30.8)  
Positive 68 (41.2) 4 (11.1) 10 (27.8) 38 (56.7) 16 (61.5)  
Unknown 3 (1.8) 1 (2.8) 0 (0.0) 0 (0.0) 2 (7.7)  

Abbrevations: BL: basal-like; CK: cytokeratin; EGFR: epidermal growth factor 
receptor; LAR: luminal androgen receptor; MLIA: mesenchymal-like 
immune-activated; S: suppressed. 

 

Clinical relevance of tandem 3′UTRs in TNBC 
We investigated the clinicopathological 

characteristics of the 165 participants, who were 
predominantly (61.2%) postmenopausal with an 
average age of 53.5 years (standard deviation [SD] 
10.8 years, median 54 years, range 27 to 83 years). All 
TNBCs were histologically confirmed invasive ductal 
carcinoma with no evidence of metastasis at 
diagnosis, and 63% of tumors were >2 cm at 
diagnosis. After a median follow-up time of 73.1 
months, 35 of 165 patients experienced recurrence or 
death. As shown in Table 1, the APA subtype was 
associated with age at diagnosis, menopausal status, 
Ki-67, CK5/6, CK14 and Lehmann subtype (p < 0.05 
for all). As shown in Figure S13, the highly 
proliferative nature of BL and S subtypes was 
supported by the high-intensity nuclear Ki-67 staining 
evaluated by immunohistochemistry analysis (mean 
Ki-67: LAR 38.8%, MLIA 47.2%, BL 57.7%, S 66.7%; p < 

0.001, one-way ANOVA). 
As shown in Figure 4A, patients in the S subtype 

had the worst disease-free survival (DFS) comparing 
to other patients (log-rank p = 0.021). Multivariate Cox 
analysis identified the S subtype (hazard ratio [HR] = 
2.65, 95% confidence interval [CI]: 1.23-5.68, p = 0.013) 
and lymph node (HR = 2.99, 95% CI: 1.46-6.12, p = 
0.0028) as independent prognostic factors (Table 2). 
Time-dependent ROC analysis indicated that the 
addition of APA subtype to the Cox proportional- 
hazards model significantly increased the prognostic 
efficacy of 6- (area under the curve [AUC]: 0.77 vs 0.92, 
p = 0.0047), 12- (AUC: 0.71 vs 0.80, p = 0.034), 18- 
(AUC: 0.72 vs 0.80, p = 0.0079), 24- (AUC: 0.67 vs 0.73, p 
= 0.019) and 30-month (AUC: 0.65 vs 0.71, p = 0.028) 
recurrence (Figure 4B). 

 

Table 2. Univariate and multivariate Cox proportional hazard 
model for disease-free survival 

Variables Univariate Multivariate 
HR (95% CI) p-value HR (95% CI) p-value 

Age (> 50 years vs ≤ 50 years) 0.61 (0.31–1.18) 0.14 – – 
Tumor size (> 2 cm vs ≤ 2 cm) 1.41 (0.67–2.97) 0.36 – – 
Lymph node (positive vs 
negative) 

2.81 (1.37–5.75) 0.0046 2.99 (1.46–
6.12) 

0.0028 

Ki-67 (≥ 30% vs < 30%) 1.03 (0.45–2.37) 0.94 – – 
APA subtype (S vs others) 2.37 (1.11–5.08) 0.026 2.65 (1.23–

5.68) 
0.013 

Abbrevations: APA: alternative polyadenylation; CI: confidence interval; HR: 
hazard ratio; S: suppressed. 

 

A pooled shRNA library screening identifies 
CPSF1 and PABPN1 as key cleavage and 
polyadenylation factors in TNBC 

High proliferative activity is an important 
parameter of TNBC biology [2]. Given the association 
of tandem 3'UTRs with cell proliferation [12], we 
speculated that modulating 3'UTR length might affect 
tumor progression. Cleavage and polyadenylation 
(C/P), resulting in different transcripts with different 
3'UTR lengths, are regulated by 23 core trans-factors 
involving several single proteins and four 
multi-subunit protein complexes, which contain 
cleavage and polyadenylation specificity factor 
(CPSF), cleavage stimulation factor (CSTF), cleavage 
factor I (CFI) and cleavage factor II (CFII) [4, 36]. Thus, 
we hypothesized that the aberrant expression of core 
C/P factors may lead to high proliferative tumor 
growth and dysregulated APA patterns. To address 
this hypothesis, we first investigated the gene 
expression of 23 core C/P factors within our 
microarray data. Twelve core C/P genes were more 
highly expressed (mean log2 fold change = 0.28; range 
0.12 to 0.59) in TNBC tissues than in normal adjacent 
tissues (Figure S14A). The expression of the gene set 
exceeded that of the background set (p = 7.3 × 10-7; 
Figure S14B). The significantly up- and 



Theranostics 2020, Vol. 10, Issue 23 
 

 
http://www.thno.org 

10540 

down-regulated core C/P factors between TNBC and 
matched normal adjacent tissues in each APA subtype 
are indicated by red and blue, respectively (Figure 
S15). The aberrant level of core C/P factors is 
expected to induce cleavage at inefficient proximal 
PASs, resulting in APA events. Thus, our data suggest 
that differential 3′-end processing could at least 
partially explain the APA events in TNBC. 

Next, we used a proliferation-based shRNA 
library screening system to identify potential key 
3'UTR modulatory factors in TNBC. Nearest shrunken 
centroids method identified MDA-MB-231 and 
MDA-MB-468 as BL subtype, the majority APA 
subtype, using tandem 3'UTR profiles. Thus, these 
two TNBC cell lines were chosen as a model in 
subsequent screening experiments. We screened 95 
shRNAs targeting the 23 core C/P factors and 3 
control hairpins in MDA-MB-231 and MDA-MB-468. 
After infecting the cells with lentiviruses expressing 
the shRNA library (MOI = 0.3) and subjecting them to 
selection, we continuously cultured the cells for 21 
days and harvested cellular DNA for deep sequencing 
(Figure 5A). The abundance of each barcoded hairpin 
was quantified to identify shRNAs that were 
selectively depleted during cell proliferation. As 
expected, after 21 days a significant reduction in the 
diversity of shRNAs was observed in the surviving 
MDA-MB-231 and MDA-MB-468 cells (Figure 5B; p = 
0.003 and 0.002, respectively). The read counts for 
most of the shRNA hairpins were consistent in two 
separate replicates of the proliferation assays (Figure 
5C). As a result, the depletion of shRNA CPSF1 and 
PABPN1 was statistically significant after the 21-day 
proliferation assay in both MDA-MB-231 and 
MDA-MB-468 cells (p < 0.05; Figure 5D-E). Figure S16 
shows the number and percent of tandem 3′UTRs 
correlated with the 23 core C/P factors. CPSF1 and 
PABPN1 regulated a number of tandem 3′UTRs of 

clinically actionable genes. For example, the tandem 
3′UTRs of PIK3C2G, IL21A and RAD51D were 
correlated with CPSF1 mRNA expression (Figure 
S17A), whereas the tandem 3′UTRs of NUDT5, 
HDAC7 and HDAC1 were correlated with PABPN1 
mRNA expression (Figure S17B), which highlighted 
the potential drug targets of APA events in TNBC. We 
ranked the mean normalized read counts of the 
shRNAs identified in the proliferation assays on day 
7, 14 and 21. A small number of shRNA hairpins were 
depleted in these screens, whereas most of the 
shRNAs showed few changes (Figure 5F; Figure S18). 
The enrichment scores for all shRNA hairpins in 
MDA-MB-231 and MDA-MB-468 are illustrated in 
Figure 5G. The hierarchical clustering heatmaps 
based on the enrichment score signature showed that 
the shRNAs were consistently changed in the 
replicates, indicating that shRNA library screening 
provides reliable results for identifying important 
C/P factors in TNBC. 

CPSF1 and PABPN1 knockdown reduces 
TNBC proliferation 

Because TNBC is a highly proliferative cancer, 
we reasoned that TNBC cell lines might be sensitive to 
changes in the CPSF1 and PABPN1 levels. To validate 
the screening results stated above, we assessed the 
effects of CPSF1 and PABPN1 knockdown in MDA- 
MB-231 and MDA-MB-468 cells. We successfully 
constructed stable cell lines with CPSF1-knockdown 
using lentivirus shRNA infection (Figure 6A). As 
expected, the proliferation of CPSF1-knockdown cells 
was hampered relative to the proliferation of control 
knockdown cells (Figure 6B). Consistent with this 
observation, the apoptosis level was increased in 
CPSF1-knockdown TNBC cells (Figure 6C; Figure 
S19A). We found that knockdown of CPSF1 induced 
cell cycle arrest at the S phase in MDA-MB-231 

 

 
Figure 4. Prognostic significance of alternative polyadenylation subtype in triple-negative breast cancer. (A) Kaplan–Meier survival curves of disease-free survival (DFS) among the 
alternative polyadenylation (APA) subtypes. (B) Comparison of the area under the curve (AUC) of time-dependent  receiver operating characteristic  (ROC) curves with two Cox 
proportional-hazards models. blue: lymph node; red: lymph node + APA subtype. Data are shown as mean ± standard error. *p < 0.05, **p < 0.01. Abbreviations: APA, alternative 
polyadenylation; AUC, area under the curve; DFS, disease-free survival; ROC,  receiver operating characteristic. 
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(Figure 6D) and MDA-MB-468 (Figure S19B). 
Moreover, an increase in the percentage of cells in 
G2/M phase was observed in CPSF1-depleted MDA- 
MB-231 cells (Figure 6D). These results indicate that 
CPSF1 depletion leads to weakened cell proliferation 
and increased rates of apoptosis and cell cycle 
redistribution, which supports the hypothesis that 
CPSF1 is a novel pro-proliferative gene whose levels 
may be enhanced in human cancer. 

To further identify the targets of CPSF1 in TNBC, 
we performed RNA sequencing (RNA-seq) with a 
depth of > 1 × 108 reads after knocking down CPSF1 in 
parallel with a control knockdown. Differential 
expression genes were determined, and 356 
up-regulated genes and 501 down-regulated genes 
were identified in CPSF1-knockdown cells (Figure 
S20). Pathway analysis revealed that several classic 

TNBC pathways, including the JAK/STAT signaling 
pathway, ECM receptor pathway and PI3K/Akt 
pathway, were affected in CPSF1-knockdown cell 
lines (Figure 6E). Then, we used the well-established 
algorithm DaPars to examine the 3'UTR alterations 
between control and CPSF1 knockdown cells. DaPars 
identified 579 transcripts possessing a significant shift 
in 3'UTR usage in response to CPSF1 depletion 
(Figure 6F). However, there was no statistically 
significant correlation between APA events and gene 
expression in CPSF-knockdown cells (Figure 6G). We 
observed 21 initial 3'UTR shortening or lengthening 
events in TNBC samples were reversed in 
CPSF1-depleted TNBC cells (Figure S21 A-B). Figure 
6H shows several genes (MMS22L, SPIDR, MTA3 and 
MIA3) whose APAs were altered by CPSF1 
knockdown. We observed not only shortening of 

 

 
Figure 5. A pooled shRNA screen identifies CPSF1 and PABPN1 as key cleavage and polyadenylation factors in triple-negative breast cancer (TNBC). (A) Summary of the pooled 
shRNA screen in TNBC cell lines. (B) Cumulative frequency of shRNAs 0 and 21 days after transduction. The shift in the day 21 curve indicates the depletion in a subset of shRNAs. 
(C) Rank correlations of normalized read counts between biological replicates and culture days. Spearman’s correlation coefficient was used for comparisons. (D) P-value for shRNA 
depletion in proliferation. (E) Scatterplot showing the depletion of specific shRNAs after 21 days of proliferation, highlighting CPSF1 in red and PABPN1 in blue. (F) Waterfall chart 
showing the enrichment of shRNAs in Day 7, 14 and 21 normalized to Day 0 read counts in MDA-MB-231 and MDA-MB-468 cells. For each cell line, the shRNAs were ranked on 
the basis of the mean normalized log2(Day 7/Day 0) ratios, log2(Day 14/Day 0) ratios and log2(Day 21/Day 0) ratios of the read counts. (G) The heatmap of enrichment score of each 
gene in two cell lines. Abbreviation: TNBC, triple-negative breast cancer. 
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3'UTRs, but also lengthening and no changes, 
indicating that the CPSF complex regulates many, but 
not all, genes capable of APA. In TCGA cohort, the 
3'UTR shortening of SPIDR was associated with poor 

survival whereas no survival difference was observed 
when patients were divided by APA events of MTA3 
or MIA3 (Figure S22). 

 

 
Figure 6. CPSF1 depletion results in decreased proliferation, enhanced apoptosis, cell cycle redistribution and alternative polyadenylation (APA) events. (A) Western blot 
analysis of MDA-MB-231 and MDA-MB-468 lysates infected with control and shRNA lentivirus targeting CPSF1. (B) Growth of MDA-MB-231 cells and MDA-MB-468 cells was 
measured after infection with CPSF1 shRNA lentivirus and control shRNA lentivirus. The results shown are the means ± standard deviation (s.d.) (n = 3). (C) CPSF1 knockdown 
increased the apoptosis rate in MDA-MB-231 cells (n = 3). (D) CPSF1 depletion led to cell cycle redistribution in MDA-MB-231 (n = 3). (E) Enriched pathways in CPSF1 
knockdown MDA-MB-231 cells. (F) Scatterplot of percentage of distal poly(A) site usage index (PDUI) in control and CPSF1 knockdown MDA-MB-231 cells, where mRNAs 
were significantly shortened (n = 243) and lengthened (n = 336) after CPSF1 knockdown. (G) Correlation between distal poly(A) site usage and gene expression levels of control 
and CPSF1 knockdown MDA-MB-231 cells. (H) Representative RNA-seq density plots along with ΔPDUI values for genes whose 3′UTR was unchanged (MMS22L), lengthened 
(SPIDR and MIA3) and shortened (MTA3) in response to CPSF1 knockdown. **p < 0.01, ***p < 0.001. Abbreviations: APA, alternative polyadenylation; PDUI, percentage of distal 
poly(A) site usage index. 
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PABPN1 has been proven to be the master factor 
regulating the APA profile across multiple cancer 
types [37]. Using the pooled shRNA library screening 
system, we re-identified PABPN1 as a key regulator in 
TNBC. The PABPN1-knockdown stable cell lines 
showed lower proliferation rate than control TNBC 
cells (Figure S23). Enhanced apoptosis was observed 
in PABPN1-depleted MDA-MB-231 and 
MDA-MB-468 cells (Figure S24). PABPN1 
knockdown also resulted in S phase arrest in 
MDA-MB-468 cells, but this phenotype was not 
verified in MDA-MB-231 cells (Figure S25), whereas 
an accumulation of cells at the G2/M phase was 
observed in PABPN1-depleted MDA-MB-231 cells 
(Figure S25A). RNA-seq analysis revealed 789 
up-regulated genes and 640 down-regulated genes in 
PABPN1-depleted cells (Figure S26). The altered 
genes were enriched in BL characteristic pathways 
(cell cycle, DNA replication) and LAR classic 
pathways (tryptophan metabolism, tyrosine 
metabolism) (Figure S27). DaPars identified 858 
shortened 3′UTRs and 321 lengthened 3′UTRs in 
PABPN1-knockdown cells (Figure S28A). No 
correlation between APA events and gene expression 
in PABPN1-knockdown cells was observed (Figure 
S28B). Forty initial 3'UTR shortening or lengthening 
events were reversed in PABPN1-depleted TNBC 
cells (Figure S21C-D). Five genes (SLC9A1, SPIDR, 
ZFP62, OSGEPL1 and NUCB2) displayed 3'UTR 
shortening in TNBC samples and lengthened in both 
CPSF1- and PABPN1-knockdown TNBC cells. 
SLC9A1 is a promising drug target of TNBC. It 
encodes a major pH regulatory protein, which 
facilitates metastasis of TNBC. Preclinical studies 
have shown pharmacological inhibition of SLC9A1 
can amplify the anti-cancer effects of paclitaxel in 
MDA-MB-231 and MD-MB-468 cells [38]. NUCB2 is a 
potential biomarker for breast cancer metastasis [39]. 
There, focusing on the APA regulation in TNBC may 
provide new insights for designing novel targeted 
drug therapies. Figure S28C illustrates the 3'UTR 
alterations of multiple genes (shortening: MMS22L, 
DHX36 and MUM1; lengthening: PHF21A) after 
PABPN1 knockdown. However, there was no 
survival difference when patients were dichotomized 
according to the APA events of DHX36, PHF21A and 
MUM1 (Figure S29C). Collectively, CPSF1 and 
PABPN1 knockdown recapitulates changes in APA 
patterns and retards proliferation in TNBC. 

Discussion 
The emerging role of 3'UTR APA in carcino-

genesis has provided a new approach for multilayer 
analysis of cancer. With the large-scale microarray 
transcriptome data from our center, we provided a 

comprehensive view of the APA landscape in TNBC. 
In this study, we developed a Bayes-based strategy to 
study the APA events in a large TNBC cohort using 
transcriptome microarray technology. With the NMF 
method, TNBCs were classified into four stable 
subtypes (LAR, MLIA, BL and S) according to the 
tandem 3'UTR signature. These findings highlight the 
molecular heterogeneity and complexity of the APA 
profiles in TNBCs. Furthermore, a pooled shRNA 
library screening identified CPSF1 and PABPN1, two 
alternative C/P factors, as potential targets of TNBC 
linking APA to tumor proliferation. To our 
knowledge, this study is the first to profile the 3'UTR 
landscape using transcriptome microarrays in a large 
TNBC cohort with well-recorded clinical annotations, 
leading to the identification of a novel potential 
therapeutic target. 

The 3'UTR length is known to undergo dynamic 
changes under malignant conditions in diverse 
physiological and pathological conditions. We 
focused our study on TNBC, because this subtype of 
highly heterogeneous breast cancer possesses high 
proliferative indices and often presents an aggressive 
clinical course. Recent studies identified multiple 
3'UTRs displaying length preferences in TNBC 
compared with non-TNBC or adjacent breast tissue 
[32, 40, 41]. Furthermore, a probe-based meta-analysis 
using 3'-based chips reported shorter 3'UTRs in TNBC 
[32]. A mechanistic study reported that APA in TNBC 
allows NRAS and c-JUN to bypass PUMILIO 
post-transcriptional regulation [42]. Conversely, 
deep-sequencing of cell lines revealed preferential 
lengthening of the 3'UTRs in TNBC tissues compared 
with luminal breast cancers and normal breast tissues 
[41]. Several small-scale studies recently investigated 
the APA landscape of breast cancer. Kim and 
colleagues dissected APA patterns using RNA 
sequencing from 515 single cells from 11 patients with 
breast cancer and identified cell type specific APA 
[43]. Besides, a modified polyadenylation site 
sequencing (PAS-seq) , direct capture of mRNA 3' 
ends , was used to characterize the APA events in 12 
pairs of HER2-negative breast cancer and adjacent 
normal samples (six ER-positive and 6 ER-negative 
cancers) [44]. Gillen et al. revealed the APA event in 
PRELID1 is a strong subtype-dependent predictor of 
breast cancer patients clinical outcomes [44]. Fu et al. 
profiled APA sites in two breast cancer cell lines 
(MCF7 and MDA-MB-231) and one cultured 
mammary epithelial cell line (MCF10A) using 
sequencing APA sites (SAPAS) method and 
demonstrated the genes with APA events and the 
enriched pathways, including cell cycle, apoptosis 
and metabolism [41]. However, conventional APA 
characterization has not been extensively adopted, 
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and the large-scale data of global APA events in a 
specific cancer subtype are relatively limited. We 
previously established the prognostic value of both 
3'UTR shortening and lengthening in TNBC [40]. Our 
previous study also proved that the 3'UTR-based 
model could predict nodal status in TNBC [45]. Here, 
using transcriptome arrays, we determined that the 
direction of 3'UTR length changes varies in genes, 
although more than half of the tandem 3'UTRs prefer 
shortening isoforms. In addition, the multimodal 
correlation between gene expression and the 3'UTR 
length contributes to transcriptome complexity and 
provides an indispensable layer of gene regulation. 

Considering the emerging roles of APA in 
carcinogenesis, we subtyped TNBC using APA 
profiles to systematically understand the hetero-
geneous nature of TNBC. Intriguingly, compared to 
the Lehmann system generated from mRNA 
expression profile [15], the APA subtypes had 
considerable overlaps between the two systems. For 
example, APA subtype 1 (LAR) contains 93.8% of 
Lehmann LAR cancers. APA subtype 3 (BL), 
characterized by distinct basal properties, is enriched 
in cell cycle and cell division related pathways. 
Moreover, the BL subtype showed high Ki-67 
staining, supporting its highly proliferative nature. 
Using a lncRNA-mRNA comprehensive signature, we 
previously demonstrated that cell division and cell 
cycle related pathways were enriched in the basal-like 
and immune-suppressed (BLIS) subtype (FUSCC 
classification)[17]. Most recently, we have re-identifed 
BLIS subtype using genomic and transcriptomic 
landscape of TNBC [46]. Burstein and his colleagues 
[16] also proposed four TNBC subtypes based on 
RNA and DNA profiles, including two basal-like 
clusters as well. Thus, the TNBC subgroups identified 
on the basis of APA signatures reflect the intrinsic 
phenotypes with different pathway features. In 
addition, the 3'UTR length of cell cycle-related genes 
is dysregulated in both normal tissue (testis and 
embryonic stem cells) [23] and cancerous lesions 
(colorectal cancer) [30], which suggests that the 3'UTR 
length of cell cycle genes is associated with the 
pathway activation status. 

Purification of 3' processing complexes and 
subsequent proteomic and structural characterization 
identified over 80 proteins, of which ~ 20 are core 3' 
processing factors, which consists of four protein 
complexes (CPSF, CSTF, CFI and CFII) and several 
single proteins, including symplekin, retinoblastoma- 
binding protein 6 (RBBP6) [4, 36, 47]. PABPN1 might 
also be considered to be a core factor [4]. It disrupts 
the interaction between CPSF and the poly(A) 
polymerase via binding to the growing poly(A) tail 
when the tail is ~250 nucleotides, and thus the poly(A) 

tail length is controlled [48-50]. In this study, we 
performed shRNA pooled library screening and 
identified CPSF1 and PABPN1 as key C/P factors 
involved in tumor proliferation. PABPN1 has been 
proven to be the master factor regulating APA 
profiles across multiple cancer types in a large TCGA 
cohort [37], which supports the efficacy of our 
proliferation screening system. PABPN1 regulates 
APA by preventing the usage of weak proximal PASs 
[51]. PABPN1, together with CPSF and poly(A) 
polymerase (PAP), is required for efficient poly-
adenylation in vitro [49, 50]. CPSF1 (CPSF-160) 
recognizes the polyadenylation signal (most 
frequently AAUAAA) and is a key member of CPSF, a 
multisubunit complex that plays a central role of the 
polyadenylation machinery in metazoans [52]. Recent 
studies independently observed the global 
up-regulation of genes encoding 3' processing factors 
in cancer cells [13, 30, 31]. CPSF1 and CSTF2 display 
the most striking differences in expression [13]. 
NUDT21 inhibits bladder cancer progression by 
regulation of APA-mediated 3'UTR alterations [53]. 
These data suggest that the regulation of APA by 
altering the levels of core processing factors 
(especially CPSF1 and PABPN1) may be a general 
mechanism. Significantly, the data extend our 
understanding of APA in regulated gene expression 
and pathway activation by demonstrating that 
extensive 3'UTR shortening is enriched in cell cycle 
genes, and that the intervention of APA regulation 
inhibits cell proliferation in TNBC. Intriguingly, we 
observed a reversion of APA events occurred after 
CPSF1 or PABPN1 knockdown. The involved genes 
participate in drug resistance (SCL9A1 [38], CCSAP 
[54], NUP98 [55], PLD1 [56]), tumorigenesis (DEPDC5 
[57]), proliferation (MED15 [58], STX3 [59]) and 
metastasis (ARHGEF26 [60], ATP6V0A2 [61], MBD4 
[62]) in breast cancer and are breast cancer biomarkers 
(ITPR1[63], NUP98 [55], GATA3 [64, 65], DOCK4 [66], 
OSR1 [67]) and potential drug targets for TNBC 
(SCL9A1 [38], LRP8 [68, 69]). It suggests 
understanding APA regulation mediated by the core 
3' processing factors, especially the target specificity 
and directionality, may provide new ideas for 
targeted therapy in TNBC. 

We profiled the APA events of TNBC using 
publicly available HG-U133 series microarrays before 
[40, 45]. However, 3'-based chips severely limit the 
number of genes, and only 1,933 (~9.7%) of human 
protein-coding genes were investigated. Here, we 
provide a less biased 3'UTR landscape of TNBC using 
transcriptome arrays with high probe intensity. We 
applied Bayesian change point analysis rather than a 
modified t test to individuals. The multivariate 
Bayesian approach estimated the probes’ posterior 
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probabilities and the posterior means simultaneously, 
which substantially reduced the number of statistical 
calculations. Next-generation sequencing has also 
been used for 3'UTR analysis with other bio-
informatics algorithms, including DaPars [70], SAPAS 
[41], and 3'-Seq [30]. However, complicated library 
preparation procedures and the high expenditure for 
deep sequencing depth (×1000 or more for some 
algorithms) limit the use for large cohort profiling and 
analyses. The Bayes-based microarray analysis 
strategy balances measuring accuracy and economy 
and is suitable for large-scale detection of APA events. 

Our study has several limitations. First, 
transcriptome microarray data limited the analyses at 
the level of the transcript. We investigated correlation 
patterns between 3'UTR length and mRNA 
expression, rather than protein level, which 
constitutes a primary limitation of this study. Second, 
because probe-intensity-based analysis is limited by 
the original chip design, the APA-based 3'UTR length 
alterations we report here are likely to 
under-represent the actual complexity. Compared 
with RNA-seq, HTA 2.0 cannot identify novel APAs. 
Future experiments with RNA-seq or expanded 
mRNA probe sets paired with protein arrays would 
therefore help to confirm and expand our findings. 
Third, due to the limited data on tandem 3'UTRs in 
TNBC, the new subtyping system has not been 
validated in other independent cohorts. In addition, 
the follow-up time of our cohort is relatively short. In 
spite of the large computational effort, our analysis 
was the first step to understand the APA regulations 
across different TNBC subtypes. Therefore, our future 
work will focus on recruiting independent TNBC 
cohorts to validate the APA classifier, updating the 
follow-up data and investigating the functions of 
novel APA events in each subtype. 

Collectively, we profiled the APA landscape in 
TNBC and developed a novel TNBC subtyping 
system, assigning patients with TNBC to four distinct 
subtypes based on the APA signature. In addition, we 
established CPSF1 and PABPN1 as key C/P factors 
involved in tumor proliferation and APA regulation 
in TNBC. Once further validated in a larger 
population, the APA classification system could 
improve personalized treatment of TNBC. 
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