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Abstract 

Prognostic biomarkers that can reliably predict early disease progression of non-small cell lung cancer 
(NSCLC) are needed for identifying those patients at high risk for progression, who may benefit from 
more intensive treatment. In this work, we aimed to identify an imaging signature for predicting 
progression-free survival (PFS) of locally advanced NSCLC.  
Methods: This retrospective study included 82 patients with stage III NSCLC treated with definitive 
chemoradiotherapy for whom both baseline and mid-treatment PET/CT scans were performed. They 
were randomly placed into two groups: training cohort (n=41) and testing cohort (n=41). All primary 
tumors and involved lymph nodes were delineated. Forty-five quantitative imaging features were 
extracted to characterize the tumors and involved nodes at baseline and mid-treatment as well as 
differences between two scans performed at these two points. An imaging signature was developed to 
predict PFS by fitting an L1-regularized Cox regression model.  
Results: The final imaging signature consisted of three imaging features: the baseline tumor volume, the 
baseline maximum distance between involved nodes, and the change in maximum distance between the 
primary tumor and involved nodes measured at two time points. According to multivariate analysis, the 
imaging model was an independent prognostic factor for PFS in both the training (hazard ratio [HR], 1.14, 
95% confidence interval [CI], 1.04-1.24; P = 0.003), and testing (HR, 1.21, 95% CI, 1.10-1.33; P = 0.048) 
cohorts. The imaging signature stratified patients into low- and high-risk groups, with 2-year PFS rates of 
61.9% and 33.2%, respectively (P = 0.004 [log-rank test]; HR, 4.13, 95% CI, 1.42-11.70) in the training 
cohort, as well as 43.8% and 22.6%, respectively (P = 0.006 [log-rank test]; HR, 3.45, 95% CI, 1.35-8.83) 
in the testing cohort. In both cohorts, the imaging signature significantly outperformed conventional 
imaging metrics, including tumor volume and SUVmax value (C-indices: 0.77-0.79 for imaging signature, and 
0.53-0.73 for conventional metrics).  
Conclusions: Evaluation of early treatment response by combining primary tumor and nodal imaging 
characteristics may improve the prediction of PFS of locally advanced NSCLC patients. 

Key words: locally advanced NSCLC; pre and mid-treatment PET; radiomics; imaging model; PFS 

Introduction 
Lung cancer ranks first in cancer-related deaths 

throughout the world [1]. Non-small cell lung cancer 
(NSCLC) accounts for about 85% of all lung cancer 
cases and is a rapidly proliferating tumor. Thirty 
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percent of NSCLCs are diagnosed at a locally 
advanced TNM stage (stage III) [2], for which 
concurrent chemoradiotherapy (CCRT) is the clinical 
standard treatment regimen according to National 
Comprehensive Cancer Network guidelines [3]. 
Nevertheless, the median overall survival remains 
poor for locally advanced NSCLC (10-14 months) [4]. 
In these patients, tumor heterogeneity is a crucial 
factor for poor prognosis, with intra-tumoral 
heterogeneity and tumor evolution resulting in 
therapy resistance and disease progression [5]. Even 
in patients diagnosed at identical clinical stages, the 
distinct biological components and evolution 
trajectories of individual tumors lead to significant 
discrepancies in their response to standard treatment 
regimens [5, 6]. Therefore, biomarkers that can 
effectively predict treatment failure at individual 
patient level are of great value for precisely treating 
them. Results of a phase 3 randomized clinical trial 
(RTOG 0617) underscored the importance of 
prognostic biomarkers. In that study, patients with 
locally advanced NSCLC who received high-dose 
radiotherapy (RT) did not have a survival benefit 
when compared with those receiving standard-dose. 
Contrary to the original hypothesis of the trial, 
escalating RT dose or adding cetuximab for all 
enrolled stage III NSCLCs was harmful, whereas 
adverse events of grade 3 or higher adverse events 
occurred in 79% of cases in treatment intensified 
group [7]. In such situations, reliable biomarkers are 
urgently needed to identify NSCLC patients at high 
risk for disease progression and who may benefit 
from a RT dose boost or other intensive treatments.  

In recent years, 18F-fluorodeoxyglucose 
(18F-FDG) positron emission tomography (PET) has 
been increasingly applied to clinical management of 
NSCLC, including diagnosis, staging, target volume 
delineation before RT, treatment response assessment, 
and progression risk stratification for patients [8-10]. 
In preliminary studies, some univocal imaging 
features of PET, such as the maximum standardized 
uptake value (SUVmax) and metabolic tumor volume 
(MTV), demonstrated prognostic values for NSCLC 
[11-15]. However, these results were not universally 
consistent. For example, according to the ACRIN 
6668/RTOG 0235 trial, pretreatment MTV as assessed 
by 18F-FDG PET/CT is a prognostic factor in patients 
with stage III NSCLC after definitive chemoradiation 
[11]. However, Guberina et al. failed to validate this 
result in the German phase 3 trial ESPATUE, and they 
reported no differences in the survival curves for 
patients with high and low MTVs [12]. Additionally, 
treatment individualization according to MTV was 
not supported by this study [12]. However, Huang et 
al. studied 53 patients with stage IIIA-IIIB NSCLC 

who underwent radical chemoradiotherapy and 
reported that decreased MTV during treatment was 
associated with improved overall survival (OS) [14]. 
Furthermore, in a study by Kong et al., a greater 
reduction in mid-treatment 18F-FDG PET volume 
predicted worse survival of locally advanced NSCLC 
[15]. Possible reasons accounting for these conflicting 
results are that simple volumetric features may not 
represent the landscape of complicated, 
heterogeneous NSCLC tumors. In addition, up to 
date, most of radiomics studies have focused on the 
analysis of primary tumors and neglected involved 
lymph nodes, which contain critical information for 
staging and treatment planning and are closely linked 
with prognosis for stage III NSCLC [16]. 

Computational radiomics analysis has extracted 
diverse information from images acquired in routine 
clinical practice and played increasingly essential 
roles in the response prediction and survival 
prognostication for several types of cancer, including 
NSCLC [17-20]. Therefore, in the present work, we 
sought to determine the prognostic ability of 
combined pre-RT and mid-RT PET imaging features 
in stage III NSCLC patients in the most extensive such 
series reported to date. We hypothesized that a 
radiomic signature integrating quantitative imaging 
characteristics of the tumors and lymph nodes 
extracted from 18F-FDG PET and CT scans to depict 
their longitudinal variations can provide a complete, 
dynamic evaluation of the disease burden and thus 
better predict clinical outcomes at the individual level 
than conventional imaging metrics.  

Methods 
Study design 

As Figure 1 shows, this retrospective study was 
conducted in four steps. First, non-small cell lung 
tumors and involved nodes were segmented on both 
baseline and mid-treatment fused 18F-FDG PET/CT 
scans. Second, quantitative image features were 
extracted from PET/CT scans. Third, an imaging 
signature was developed to predict progression-free 
survival (PFS) by fitting an L1-regularized Cox 
regression model based on a training cohort of the 
study patients. Fourth, the model performance was 
assessed in the training cohort and validated in a 
testing cohort. The C-index and receiver operating 
characteristic curve (ROC) were applied to evaluate 
the performance of the imaging model.  

Study population 
With Institutional Review Board approval, we 

retrospectively collected data on patients with stage 
III NSCLC treated consecutively at Stanford 
University Medical Center from October 2005 to July 
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2017. The inclusion criteria were 1) biopsy-confirmed 
NSCLC, 2) 6-7 weeks of radiation therapy (RT) with 
concurrent platinum-based doublet chemotherapy, 
and 3) a baseline 18F-FDG PET/CT scan before 
treatment and a second 18F-FDG PET/CT examination 
half-way through RT. Exclusion criteria included 1) 
previous induction chemotherapy or surgery, 2) no 
primary tumor (T0), and 3) incomplete or 
poor-quality 18F-FDG PET/CT. After balancing 
various clinical and pathological risk factors, patients 
were equally divided into the training cohort (n=41) 
and testing cohort (n=41). To mitigate random effects 
and ensure balanced splitting, patients were stratified 
by matching them according to age, sex, TNM stage, 
and Karnofsky performance score (KPS). 

18F-FDG PET/CT image acquisition and 
segmentation 

The PET/CT scans were performed using either 
a Siemens Biograph mCT scanner (Siemens, Erlangen, 
Germany) or a GE Discovery scanner (GE Medical 
Systems, Milwaukee, WI, USA). CT scans were 
acquired at a tube potential of 120 kV and current of 
250 mA. CT images had a slice thickness of 1.25 mm, 
and in-plane spatial resolution of 1.02×1.02 mm2. 

Patients fasted for at least 8 hours before the 
examinations to ensure their blood glucose levels 
were below 180 mg/dL. Afterward, each patient 
received an intravenous injection of 10-18 mCi of 
18F-FDG and underwent PET/CT 45-60 min later. The 
PET images were then reconstructed with 
time-of-flight and point-spread function modeling or 
an ordered set expectation maximization algorithm 
expectation method, with the CT data for attenuation 
correction. The original PET image spatial resolution 
was 2.34 × 2.34 × 3.27 mm3. The detailed imaging 
protocols were reported in previous studies [21, 22]. 

PET/CT images archived in the PACS were 
exported in DICOM format. The mediastinal staging 
was evaluated by PET/CT imaging and image-guided 
biopsy according to the specific location of lymph 
nodes. The primary tumors and involved lymph 
nodes were separately delineated on pre-RT and 
mid-RT PET/CT scans by an attending radiation 
oncologist specializing in lung cancer. The contour 
structure data were extracted for further analyses 
using validated in-house software in MATLAB 
(MathWorks, Natick, MA, USA) [23].  

 

 
Figure 1. The overall study design. The study was conducted in four steps. Step 1: tumors and lymph nodes were segmented and delineated on both baseline and mid-RT 
fused PET/CT scans. Step 2: quantitative image features were extracted from 3D ROIs. Step 3: we developed an imaging signature to predict progression-free survival by fitting 
an L1-regularized Cox regression model. Step 4: the model performance was assessed in the training cohort and validated in the testing cohort. The C-index and receiver 
operating characteristic curve were applied to evaluate the performance of the imaging model. ROI = region of interest. 
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Extraction of quantitative image features of 
primary tumors and involved lymph nodes  

High-throughput parameter-based extraction of 
regions of interest (ROI) on pre-RT and mid-RT 
PET/CT scans and assessment of the differences 
between the two scans were performed using 
MATLAB. All imaging features were calculated based 
on 3D ROIs. To reduce variability in the PET SUV 
map, the PET SUV was normalized according to the 
average background activity in a circular region of 
interest in the aortic arch. All images were then 
resampled at an isotropic spatial resolution of 1.0 mm3 
using the imresize3 function in Matlab (version 
R2017b).  

 

Table 1. Forty-five radiomic features extracted from patients’ 
PET/CT scans. 

Tumor at pre- and 
mid-RT 
 (n=22) 

Lymph Node at pre- and 
mid-RT 
(n=18) 

Δ Features, mid - pre (n=5) 

Morphology Morphology Tumor  
 Volume (Tmorph.vol)  Volume (Nmorph.vol)  Δ Volume (Δ. Tmorph.vol) 
 Sphericity 
(Tmorph.sphericity) 

 Number (Nmorph.num) Lymph Node  

Boundary Sharpness  Nodal Spread (Nmorph.spread1)  Δ Volume (Δ.Nmorph.vol) 
 Mean (Tbound.mean)  Node-Tumor Spread 

(Nmorph.spread2) 
 Δ Number (Δ. Nmorph.num) 

 Standard Deviation 
(Tbound.std) 

Boundary Sharpness  Δ Nodal Spread (Δ. 
Nmorph.spread1) 

Intensity  Mean (Nbound.mean)  Δ Node-Tumor Spread (Δ. 
Nmorph.spread2) 

 Mean (Tih.mean)  Standard Deviation 
(Nbound.std) 

 

 Standard Deviation 
(Tih.std) 

Intensity  

 Entropy (Tih.entropy)  Mean (Nih.mean)  
GLCM Texture  Standard Deviation (Nih.std)  
 Contrast (Tcm.contrast)  Entropy (Nih.entropy)  
 Homogeneity 
(Tcm.homogeneity) 

  

 Correlation (Tcm.corr)   
 Energy (Tcm.energy)   

 
As shown in Table 1, 45 quantitative imaging 

features were extracted, including morphology, 
boundary sharpness, intensity, and gray-level 
co-occurrence matrix (GLCM) texture features 
measuring intra-tumoral heterogeneity of primary 
tumors, as well as volume, border sharpness, and 
intensity of lymph nodes. A similar set of features has 
been used in the assessment of breast and head and 
neck cancer [23, 24]. For lymph nodes, three 
additional features were used to characterize the 
nodal burden and locoregional invasion of disease: 1) 
the total number of involved lymph nodes 
(Nmorph.num); 2) nodal spread, which is the maximum 
distance among the lymph nodes (Nmorph.spread1); and 
3) node-tumor spread, which is the longest distance 
from the tumor border to the edge of the farthest 
lymph node (Nmorph.spread2). The changes in tumor 
volume, lymph node volume, node number, nodal 

spread, and node-tumor spread during treatment 
were also calculated as important Δ radiomics 
features, which reflect the early therapeutic response 
as determined between the pre-RT and mid-RT 
PET/CT scans.  

Construction of an imaging signature for 
predicting NSCLC progression 

Based on the 45 quantitative imaging features, a 
multivariate Cox proportional hazard regression 
model was fitted to predict PFS in the training cohort. 
To avoid over-fitting, the Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm was used 
to select features. During this process, the 10-fold 
cross-validation scheme was performed 100 times to 
minimize selection bias. The importance of these 
features was determined during the model 
construction as to be their selection probability. Image 
features with a selected frequency greater than 90% 
were used to re-fit the final imaging model.  

Evaluation of the imaging model 
The value of imaging signature in predicting PFS 

was validated in the hold out testing cohort. The 
ability to predict 2-year PFS was assessed using 
survival receiver operating characteristic (ROC) 
analysis and area under the curve (AUC). In a 
previous study, the 5-year overall survival rate in 
stage IIIA NSCLC patients was 19%, whereas that in 
stage IIIB patients was 7% [4]. The performance of the 
proposed imaging signature was compared to 
different TNM stage, i.e. stage IIIA versus stage IIIB. 
Next, the prognostic performance of the proposed 
imaging signature was compared to conventional 
PET/CT metrics, including pre-RT tumor volume, 
mid-RT tumor volume, Δtumor volume, pre-RT 
SUVmax, mid-RT SUVmax, and ΔSUVmax. The survival 
data were censored at 2 year as a clinically meaningful 
endpoint. Moreover, we have carried ablation study 
to include the proposed imaging features solely from 
pre-RT PET/CT (n=20) or mid-RT PET/CT (n=20), 
and repeated the whole process of model 
construction. The ablated models were compared to 
the model constructed with all 45 radiomics features. 

Statistics 
The Cox proportional hazards model was used 

to calculate C-index, hazard ratio (HR), and 95% 
confidence interval (CI). Kaplan-Meier analysis and 
log-rank test were used for evaluating patient 
stratification into different risk groups regarding 
disease progression, where their survival differences 
were measured by HR and 95% CI. Receiver operating 
characteristic analysis was applied to evaluate the 
prognostic accuracy of the predictive models. In these 
analyses, P values less than 0.05 were considered 
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significant, and all statistical tests were two-sided. 
Statistical analysis was performed in the R (R 
Foundation, Vienna, Austria). 
Results  
Patients characteristics 

Eighty-two patients with stage III NSCLC were 
enrolled in this study (Figure 2). Patients received an 
initial radiation doses ranging from 60.0 Gy to 80.4 Gy 
(median, 66.0 Gy). PET/CT scans were performed 
half-way through RT for re-planning purpose. By the 
time of mid-RT PET/CT, the radiation doses ranged 
from 22.0 Gy to 48.4 Gy. The patients’ clinical 
characteristics are shown in Table 2. In the training 
cohort, the median age of patients was 68.2 years 
(range, 41.5-89.2 years). Twenty of these patients 
(48.8%) had stage IIIA disease, and 21 patients (51.2%) 
had stage IIIB disease. Forty-four percent of the 
patients had adenocarcinoma, and 39% of them had 
squamous cell carcinoma. In the testing group, the 
median age was 67.9 years (range, 47.2-89.7 years). 
Eighteen of these patients (43.9%) had stage IIIA 
disease, and 23 patients (56.1%) had stage IIIB disease. 
Also, 44% of these patients had adenocarcinoma, and 
24.4% had squamous cell carcinoma. At the end of the 
follow-up period, the disease progression rates were 
48.8% in the training cohort and 51.2% in the testing 
cohort. We did not observe significant differences in 

the clinical factors between the stratified training and 
testing cohorts. 

 

Table 2. Demographic and clinical characteristics of the study 
patients 

Parameter Training (n=41) Testing (n=41) P value 
Age (years) 68.2 (41.5-89.2) 67.9 (47.2-89.7) 0.253 
Sex     0.736 
 Male 25 (61.0%) 23 (56.1%)  
 Female 16 (39.0%) 18 (43.9%)  
T Stage     0.121 
 T1 12 (29.2%) 9 (22.0%)  
 T2 9 (22.0%) 15 (36.6%)  
 T3 5 (12.2%) 11 (26.8%)  
 T4 15 (36.6%) 6 (14.6%)  
N Stage     0.493 
 N0 2 (4.9%) 1 (2.4%)  
 N1 2 (4.9%) 2 (4.9%)  
 N2 24 (58.5%) 21 (51.2%)  
 N3 13 (31.7%) 17 (41.5%)  
TNM Stage     0.732 
 IIIA 20 (48.8%) 18 (43.9%)  
 IIIB 21 (51.2%) 23 (56.1%)  
Histology   0.213 
Adenocarcinoma 18 (43.9%) 18 (43.9%)  
SCC 16 (39.0%) 10 (24.4%)  
NSCLC-NOS 7 (17.1%) 13 (31.7%)  
KPS Score 80 (60-100) 80 (50-100) 0.237 
PFS   0.942 
 Event 20 (48.8%) 21 (51.2%)  
 No event 21 (51.2%) 20 (48.8%)  
Follow-up (year)   0.659 
 Median, std 2.0 (0.8) 1.9 (0.6)  

 

 

 
Figure 2. Protocol enrollment and analysis diagram for the study. CCRT=concurrent chemoradiotherapy. 
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Figure 3. The 45 quantitative imaging features selected for predicting PFS. The selection probability represents the importance of individual features. 

 

Details on the construction of imaging 
signature 

A pair-wise correlation heat map of the 
proposed 45 quantitative imaging features showed 
that these features were largely independent of each 
other (Figure S1). Also, a feature importance plot 
(Figure 3) showed that the most important features 
were the tumor volume measured at baseline 
(Pre.Tmorph.vol) and the change in maximum distance 
between the tumor and involved lymph nodes 

measured at two time points (Δ.Nmorph.spread2), 
followed by the nodal spread measured before RT 
(Pre. Nmorph.spread1). The features extracted from lymph 
nodes, including Pre.Nbound.std and nodal volume 
differences between the pre-RT and mid-RT 
(Δ.Nmorph.vol), had important prognostic value, ranking 
4th and 5th, respectively. Moreover, the mid-RT 
nodal-tumor spread (Mid. Nmorph.spread2), 
Mid.Nih.entropy, and delta radiomics features of node 
number (Δ.Nmorph.num) and nodal spread 
(Δ.Nmorph.spread1) were important radiomic features, 
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suggesting great value of mid-RT imaging features in 
predicting patient outcomes. The final imaging 
signature contained three features, including Pre. 
Tmorph.vol, Δ. Nmorph.spread2 and Pre. Nmorph.spread1 (see 
their detailed definition in Table 3), each of which 
were significantly associated with PFS (P < 0.05). 

 

Table 3. Details of the three imaging features in the final cox 
model for predicting PFS 

Selected PET features HR 95% CI P 
value 

Baseline tumor volume 
(Pre. Tmorph.vol) 

5.23 2.04 – 
13.41 

<0.001 

Change in maximum distance between the primary tumor 
and involved nodes measured at two time points 
(Δ. Nmorph.spread2) 

2.19 1.25 – 
3.86 

0.007 

Baseline maximum distance between involved nodes 
(Pre. Nmorph.spread1) 

1.99 1.15 – 
4.44 

0.014 

 

Performance of the imaging signature in 
predicting PFS 

With the median as the cut-off value (Figure 4A), 
the imaging signature stratified 41 patients in the 
training cohort into two groups at low and high risk 
for disease progression (P = 0.004 [log-rank test]; 
Figure 5A). The two patient groups had significantly 
different prognoses. Specifically, the 2-year PFS rates 
were 61.9% in the low-risk group and 33.2% in the 
high-risk group. Also, the median PFS duration was 
19.3 months in the low-risk group and 10.5 months in 
the high-risk group.  

 
 

 
Figure 4. Waterfall plot of predicted risk of PFS according to the proposed imaging signature for A) Training cohort and B) Testing cohort. 
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Figure 5. Kaplan-Meier curves of PFS in the study patients. At the cut-off value in the imaging model, patients were stratified into low-risk and high-risk groups regarding 
disease progression. A) Training cohort. B) Testing cohort. 

 
Using the same cut-off value, we independently 

validated the imaging model in the testing cohort 
stratified into low- and high-risk groups (Figure 4B). 
The results showed that the patients in the low and 
high-risk groups had significantly different PFS (P = 
0.006 [log-rank test]; HR, 3.45, [95% CI, 1.35-8.83]; 
Figure 5B). The 2-year PFS rate in the low-risk group 
was 43.8%, whereas that in the high-risk group was 
22.6%. Also, the median PFS duration was 16.4 
months in the low-risk group and 9.5 months in the 
high-risk group.  

The proposed imaging signature 
outperformed ablated models based on solely 
pre-RT or mid-RT PET/CT features 

Similarly, we built two ablated imaging 
signatures from features extracted from pre-RT or 
mid-RT images, where the feature importance was 
shown in Figure S2. For the ablated model based on 
pre-RT features, nodal spread, tumor volume, and 
node boundary sharpness were the three most 
important ones. In contrast, for the ablated model 
from mid-RT features, node-tumor spread, tumor 
volume, and nodal spread were the three most 
important ones. The proposed imaging signature 
achieved higher prediction accuracy than two ablated 
models for predicting PFS (Figure S3). Further, the 
performance of individual selected features in the 
proposed imaging signature for predicting PFS was 
shown in Figure S3. 

The proposed imaging signature 
outperformed conventional clinical and 
imaging markers in predicting PFS 

We compared the performance of the proposed 
imaging model and TNM stage (IIIA vs. IIIB) in 

classifying 2-year PFS, the resulting receiver operating 
characteristic curves for which are presented in Figure 
S4. In both the training and testing cohorts, the 
imaging model better predicted disease progression 
(AUC, 0.74 or 0.71) than did the TNM stage (AUC, 
0.66 or 0.60). Furthermore, in a univariate analysis, the 
proposed imaging signature outperformed available 
clinical factors, including age, sex, histological type, 
and KPS (Table 4). During validating in the testing 
cohort, the imaging signature-based risk score 
remained significantly associated with PFS (HR, 1.40 
[95% CI, 1.04-1.88]; P = 0.027). 

Moreover, in the multivariate Cox regression, 
the imaging model was an independent predictor of 
PFS in the training cohort (HR, 1.14 [95% CI, 
1.04-1.24]; P = 0.003) adjusting for available clinical 
factors (Table 4). In contrast, patient age, sex, TNM 
stage, and KPS were not significantly associated with 
PFS. We observed a similar trend in the testing cohort, 
as the imaging signature demonstrated a significant 
association of PFS (HR, 1.21 [95% CI, 1.10-1.33]; P = 
0.048). 

As shown in Figure 6, the proposed imaging 
signature outperformed conventional PET/CT 
metrics, including tumor volume and SUVmax, and the 
TNM stage in both the training and testing cohorts, 
with C-indices of 0.79 and 0.76, respectively. In 
particular, the proposed imaging signature achieved a 
markedly higher accuracy than did mid-RT tumor 
volume, which was the single best predictor of PFS 
among the selected conventional imaging features. 

Discussion 
In this study, we constructed a prognostic 

PET/CT imaging signature in stage III NSCLC 
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patients using a quantitative radiomics approach. In 
particular, we crafted new features to characterize 
tumor spread through analysis of the involved lymph 
nodes as well as to assess early treatment response by 
computing feature variations (i.e., delta radiomics) 
between baseline and mid-treatment scans. Based on 
these features, we developed a PET/CT radiomic 
signature that can stratify patients into distinct 
progression risk groups. We further demonstrated 
that the newly derived PET/CT model outperformed 
and complemented known clinical risk factors, 
including age, sex, TNM stage, and KPS. Another 
strength of our study is that we focused on stage III 
NSCLC patients who underwent similar RT 
treatments to mitigate potential confounding effects. 
With future validation, this imaging-based prognostic 
model may play a role in optimizing treatment 
intensity for locally advanced NSCLC patients with a 
high risk of disease progression. 

To the best of our knowledge, this is the first 
study investigating the use of quantitative PET/CT 
features of both tumors and lymph nodes at pre-RT 

and mid-RT time points to predict the risk of disease 
progression in patients with stage III NSCLC. 
Previous PET radiomic studies of a similar population 
[12, 25-27] focused only on primary tumors and 
quantified few standard features, such as SUVmax and 

MTV. Lymph nodes are frequent sites of regional 
metastasis and represent critical information for 
cancer staging. Indeed, pilot studies proved that 
radiomic features of lymph nodes demonstrated 
superior prognostic value over those of the primary 
tumors in lung or head and neck cancer patients [23, 
28]. In particular, the number and dispersed distance 
of involved lymph nodes were informative of NSCLC 
patients’ survival [29, 30]. Our study corroborated 
these reported clinical values associated with lymph 
nodes, as nodal features make up four out of five 
top-ranked important features (Figure 3). Moreover, 
our PET/CT model has two nodal spread features 
that complement primary tumor volume, and 
combining them in the final imaging signature 
augmented PFS-predictive accuracy.

 

Table 4. Results of univariate and multivariate analyses of the proposed imaging signature and clinical factors in predicting PFS 

Predictors Training cohort Testing cohort 
Univariate Multivariate Univariate Multivariate 
HR 95% CI P value HR 95% CI P-value HR 95% CI P-value HR 95% CI P value 

Imaging model 1.14 1.03 – 1.27 0.013 * 1.14 1.04 – 1.24 0.003 * 1.40 1.04 – 1.88 0.027 * 1.21 1.10 – 1.33 0.048 * 
Age 1.03 0.98 – 1.08 0.248 1.03 0.98 – 1.08 0.275 0.97 0.93 – 1.02 0.240 0.97 0.92 – 1.03 0.281 
Sex 0.96 0.40 – 2.31 0.921 1.75 0.58 – 5.26 0.323 0.83 0.35 – 1.98 0.674 0.78 0.27 – 2.24 0.643 
Stage 1.49 0.62 – 3.57 0.376 1.23 0.42 – 3.57 0.699 1.39 0.62 – 3.33 0.424 1.32 0.21 – 1.47 0.236 
Histology 1.37 0.54 – 3.47 0.511 2.06 0.70 – 6.03 0.187 1.17 0.48 – 2.84 0.725 1.85 0.68 – 5.04 0.230 
KPS 0.96 0.91 – 1.00 0.068 0.97 0.92 – 1.02 0.266 0.96 0.92 – 1.01 0.132 0.97 0.92 – 1.02 0.243 

Note: 1. male as 1, female as 0; 2. IIIA as 0, IIIB as 1; 3. KPS as continuous value; 4. Adenocarcinoma as 1, others as 0. 
 

 
Figure 6. Accuracy of predicting PFS as measured using the C-index for the imaging signature compared with six conventional imaging features and one 
clinical parameter. The conventional imaging features were pre-RT tumor volume, mid-RT tumor volume, change in tumor volume, pre-RT SUVmax, mid-RT SUVmax, and 
change in SUVmax. The clinical parameter was TNM stage. 
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Also, we did not observe an association between 
the nodal volumetric burden and tumor progression, 
which was consistent with previous findings [29, 31].  

The negative results of the RTOG 0617 
multicenter trial described above highlighted the 
unmet need for effective prognostic markers to 
stratify patients with inoperable stage III NSCLC for 
individualized management. To address this, we 
examined the uniform cohort of 82 stage III NSCLC 
patients described herein, who were similar to the 
patients enrolled in RTOG 0617. Moreover, our 
patients received definitive chemoradiation using 
consistent, highly conformal techniques. Our 
proposed imaging signature achieved good 
performance for predicting tumor progression, 
outperforming conventional PET features and the 
TNM stage. Potentially, this signature can stratify 
stage III NSCLC patients into high and low-risk 
groups requiring different treatment strategies. 

Our study contained the largest number of 
patients used to examine the clinical value of serial 
PET/CT scans at baseline and in the middle of RT of 
stage III NSCLC. Most previous radiomics studies 
focused on analyzing pre-treatment PET scans to 
characterize the metabolic heterogeneity of only 
primary tumors [22, 32-37]. Several pilot studies have 
investigated serial PET images acquired both at 
baseline and during treatment. Gensheimer et al. 
showed that pre-RT MTV and mid-RT MTV and total 
lesion glycolysis (TLG) were positively associated 
with local recurrence of stage III NSCLC [13]. Also, 
Yossi et al. showed that early assessment of TLG 
response via mid-RT PET was associated with 
survival [38]. Dong et al. reported that early changes 
in PET textural features might be valuable for 
predicting treatment response and survival of locally 
advanced NSCLC [39]. Building on but different from 
these studies, we proposed a set of forty-five 
quantitative imaging features that comprehensively 
describe both tumors and lymph nodes separately at 
pre-RT and mid-RT PET scans as well as the temporal 
changes between the two serial scans. Moreover, the 
extracted features are non-redundant, and all of them 
can be clearly interpreted. We found that mid-RT 
scans provided key information to complement 
features extracted from pre-RT images. In the 
proposed imaging signature, one out of three finally 
selected features was from mid-RT scans to describe 
the change in nodal spread as an early treatment 
response measure. One important advantage of our 
PET/CT model is that it relies on contour-based 
features and thus may be less dependent on the exact 
value of PET SUV intensity. In contrast, many features 
used in previous radiomic studies, such as histogram 
and texture, are sensitive to variations in PET SUV 

intensity, which can be caused by a variety of 
acquisition factors as well as reconstruction and value 
normalization algorithms. 

Our study had some limitations. First, we 
studied a relatively small number of patients, which 
may have reduced the statistical power. However, to 
the best of our knowledge, our study had the largest 
number of patients in an investigation of quantitative 
PET/CT features of both primary tumors and lymph 
nodes at pre-RT and mid-RT time points for 
predicting the risk of disease progression in patients 
with stage III NSCLC. Second, it was a retrospective 
study with potential confounding factors. We 
followed a strict training and independent testing 
scheme by evenly partitioning the overall cohort in 
training and testing cohorts, which further reduced 
the sample size in the training cohort. Also, all 
enrolled patients were treated at a single research 
institution. However, although the PET scans were 
acquired using two scanners, they followed similar 
imaging protocols. Third, we included patients with 
two major histological subtypes of NSCLC: 
adenocarcinoma and squamous cell carcinoma. Due 
to the small sample size, we did not carry subgroup 
analysis and separate patients according to their 
histologic subtypes. Fourth, Steinfort and colleagues 
found that systematic node staging by EBUS-TBNA 
can detect PET-occult LN metastases in 5-10% of 
NSCLC patients [40]. Therefore, accurate lymph node 
staging by EBUS can potentially improve the 
performance of the imaging signature. 

In the future, prospective multicenter validation 
of our proposed imaging signature will be needed to 
further confirm its prognostic value and potential role 
in guiding personalized RT for stage III NSCLC. In 
addition, the underlying biological mechanisms 
explaining the prognostic value of our imaging 
signature should be investigated. Integrating 
corresponding biological information on multiple 
spatial scales, such as molecular, cellular and tissue 
levels, we can explore the drivers behind high-risk 
patients as predicted by the PET imaging model using 
radiogenomic frameworks [41]. As more information 
on tumor is collected including molecular markers of 
NSCLC [42, 43], combining biospecimen-derived 
information with this imaging signature may achieve 
the highest level of accuracy in NSCLC patient risk 
stratification.  

In conclusion, we constructed a quantitative 
imaging signature combining primary tumor and 
nodal imaging features from baseline and mid-RT 
PET/CT scans to predict disease progression in 
patients with stage III NSCLC. This imaging signature 
is a method of non-invasive evaluation of the dynamic 
phenotypes of NSCLC that has great potential for 
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guiding individualized treatment of this disease.  
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