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Abstract 

Intraoperative image-guided surgery (IGS) has attracted extensive research interests in 
determination of tumor margins from surrounding normal tissues. Introduction of near infrared 
(NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. 
Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in 
disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high 
chemical/photochemical stability. The recent advances in elements doping and morphologies 
controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission 
span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth 
nanoparticles hold advantages in reduction of light scattering, photon absorption and 
autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical 
applications. In this review, we systematically compared the benefits of RE nanoparticles with other 
NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, 
photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises 
of NIR emissive RE nanoparticles for IGS were also discussed. 
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1. Introduction 
Surgical operation is one of the most frequently 

used therapy to cancer treatment for centuries [1,2]. In 
common cancer surgeries, intraoperative evaluation 
of margins of tumor is essential to determine the final 
curative result [3]. However, it is mainly dependent 
on the visual senses and subjective palpation to 
decide excision [4] during the surgical operation. 
Inevitably, it is very difficult for the surgeons to 
discriminate the tumor margins from surrounding 
normal tissues [5,6]. It has been reported that tumor 
recurrence happens as high as 20-30% after surgical 
therapy, and subsequent cancer metastasis largely 
increases the complexity [7,8]. It is highly demanded 
to maximize tumor removal, minimize damage to the 
normal tissues and shorten surgical time [9]. Thus, 

intraoperative image-guided surgery (IGS) [5,10,11] is 
introduced to provide real-time tumor visualization 
to oncological surgeons to do them a favor in cancer 
margin recognition[12].  

Among various optical imaging techniques [13], 
near-infrared (NIR) fluorescence imaging [14,15] is 
one of the latest trends in IGS applications[16], for use 
in both fundamental medical research and clinical 
practice[17,18]. Due to advantages in reduction of 
light scattering, photon absorption and 
autofluorescence via broadening to the 700–1,700 nm 
NIR window [19], NIR fluorescence-based imaging 
technique provides high spatial resolution along with 
increased tissue penetration depths. Very recently, 
NIR phosphors that extended to the entire NIR 
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window, including small molecules [20–22], inorganic 
nanoparticles [23,24], organic macromolecules [25,26] 
and quantum dots (QDs) [27,28] with tunable 
emission wavelength were developed [29]. Besides 
the benefits of efficient detection of NIR photons, 
recently developed NIR fluorophores have enabled 
biomedical imaging [30] of specific biomarkers [31] 
and anatomical structures with better signal-to-noise 
ratio, application for preclinical animal studies [32,33], 
clinical diagnostics [34] and translational medicine 
[35].  

Compared with the visible spectrum widely 
employed for fluorescence imaging, the studies over 
the broadly defined NIR window are still in their 
infancy [36]. In the past decade, researches in NIR 
fluorescence imaging have focused on the 
conventional NIR window (NIR-I, 700-900 nm)[37], 
and have recently extended their efforts to the second 
NIR window (NIR-II, 1,000-1,700 nm)[38,39]. The 
NIR-I window is typically named as the ‘biological 
transparent window’ because in this range there is 
low tissue absorption and fluorescence background in 
vivo (compared with the visible range)[40]. The 
studies of molecular imaging to the novel NIR-II 
window has been achieved by the development of 
biocompatible NIR fluorophores with increasingly 
longer wavelengths throughout the field of chemistry, 
materials science and nanotechnology [41]. Also, we 
shall thank to the development of more efficient 
photon detectors with high NIR-II sensitivity as well 
as the drop of the price. It is more and more widely 
accepted that in vivo NIR-II fluorescence technology is 
superior to traditional NIR-I one due to the further 
reduced scattering, absorption and tissue 
autofluorescence [42]. 

Among the existed NIR materials, Rare earth 
(RE) nanoparticles [43,44] can afford good stability, 
ease to fabricate [45,46], high emissive efficiency [47] 
and long luminescence lifetime to microseconds[48]. 
Compared with lanthanide chelates [49], QDs [50,51], 
polymers [52], and organic dyes [53,54], lanthanide- 
doped inorganic RE nanoparticles hold all the 
advantages, including tunable emission[55], large 
Stokes shift [56], sharp emission peaks [57], and high 
chemical/photochemical stability [58] (Figure 1). 
Moreover, facile to multiple choices of doping [59], 
RE-doped inorganic materials can provide efficient 
emission from the ultraviolet (UV), passing through 
the whole visible range, to the mid-infrared region 
upon excitation [55,60,61]. All the advantages 
mentioned above have enabled the promising 
potential of NIR emissive RE nanoparticles in 
bioimaging [62], theranostics [63,64], photothermal 
therapy [65,66], drug delivery [67], and also the 
clinical IGS [20,68]. 

In this review, we provided a comprehensive 
introduction to the RE based NIR emissive 
nanoparticles. We systematically compared the 
benefits and of RE nanoparticles with other NIR 
probes, and summarized the recent advances of NIR 
emissive RE nanoparticles in bioimaging, 
photodynamic therapy, drug delivery and NIR 
fluorescence enabled IGS. The future challenges and 
promises of RE nanoparticles with NIR emission were 
also discussed. 

2. NIR emissive rare earth nanoparticles 
2.1. Emission mechanism of RE nanoparticle 

RE nanoparticles are important fluorescent 
materials, due to their ability to enable intriguing 
emission properties, including tunable fluorescence 
color (Figure 1) [70,73], long life-time photolumi-
nescence [74], highly efficient upconversity [75], long 
persistent phenomenon [76,77]. Generally speaking, 
RE elements are composed of 15 lanthanides (from 
lanthanum to lutetium), and usually plus scandium 
and yttrium. With abundant f shell orbitals, trivalent 
lanthanide (Ln) ions can exhibit sharp fluorescent 
emissions through intra-4f or 4f-5d transitions and 
thus are widely used as emitting centers in many 
fluorophores [78]. There are multiple methods to 
endow RE nanoparticles with NIR emission, using 
either upconversion [79] or down-shifting 
mechanisms (Figure 1) [69], and even long lifetime 
fluorophore and “after-glow” persistent luminescence 
[80–82]. Various luminescence features have been 
achieved in a wide spectrum of matrix materials, such 
as RE oxides, fluorides, and other matrices. 

 

 
Figure 1. Characteristic properties of NIR emissive RE nanoparticles. Inset figures 
were adapted from Ref [63,69–72]. Copyright 2014, Royal Society of Chemistry; 
Copyright 2008, 2011, 2013, 2016, American Chemical Society. 
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Figure 2. Luminescence mechanism of RE nanoparticles. (A) Scheme of emission mechanism of Yb, Er doped RE nanoparticles exited by 980 nm NIR light. Adapted with 
permission from [83], Copyright 2018, Nature Springer. (B) NIR-spectra of 5% Er3+ doped glass ceramics upon 400 nm irradiation. Adapted with permission from [84], 
Copyright 2015, Royal Society of Chemistry. (C) Principal operation scheme for the NIR-to-NIR emission of RE doped nanoparticles. (D) NIR emission bands of Ho3+ (1.18 µm), 
Nd3+ (1.34 µm), and Er3+ (1.55 µm) ions excited with 806 nm irradiation. Adapted with permission from [85], Copyright 2017, Royal Society of Chemistry. 

 
Due to the involvement of multiple steps in one 

single luminescence process, including electron 
transition and the transition probability (Figure 2a), 
the excitation selection, multiphonon relaxation and 
energy transfer, Stokes shift and line broadening,[86] 
the study of RE nanoparticle emission is highly 
confusing where lots of details remains unclear. For 
example, at least 6 states were involved in an Yb, Er, 
Nd-co-doped triple-layered core-shell NIR 
fluorophore [84]. During the absorption process of 800 
nm light, the 4I9/2→4F5/2 transition of Nd3+ is firstly 
involved. After that, the energy is fast transferred to 
the inner layer by a 2F7/2→2F5/2 process between Nd3+ 
and Yb3+. Consequent energy transfer happens by the 
co‐doped Yb3+ and then sensitize Er3+ (Yb3+→Er3+, 
4I15/2→4I11/2). After all, the relaxation from the excited 
state of Er3+ finally releases a 1525 nm (4I13/2→4I15/2) 
photon via phonon vibration process (Figure 2b). 
Similarly, a complicated phonon-assisted Yb3+ (2F5/2) 
→ Ho3+ (5I6) and Nd3+ (4F3/2) → Yb3+ (2F5/2) energy 
transfer mechanism was proposed in Yb3+, Ho3+, Nd3+ 
doped core/shell NaGdF4 nanoparticles and it was 
designed as a nanothermometer due to a 
temperature-dependent promotion of the 
electronic-to-vibrational energy transfer (Figure 2c,d). 
Steady/transient state fluorescence spectroscopy, 
fluorescence polarization spectroscopy, and 
femto-second laser pulse luminescence etc. were 
widely used to study the emission mechanisms of RE 

fluorophores [87,88]. The better understanding of the 
luminescence mechanism will help to design better 
NIR probes as well as further broadened applications. 

2.2. Material Subclasses of NIR emissive RE 
nanoparticles 

RE oxides [89,90], in most cases, Y2O3, (Figure 3a) 
is the first generation NIR emissive lanthanide 
material [91,92]. In a typical synthesis of RE oxides, 
the nanoparticles were synthesized through 
homogeneous precipitation and then high 
temperature calcination is required to increase the 
emission efficiency if necessary. In 2003, Vetrone and 
his coworkers investigated the upconversion emission 
of nanocrystalline and bulk Y2O3:Er3+ and the 
influence of the erbium concentration to the 
luminescence [93]. They reported that by adjusting the 
doping concentration, a transition in emission from 
visible to NIR region was observed. Soga group 
further developed liposome encapsulated, Er-doped 
Y2O3 nanoparticles with various surface modifications 
as a fluorescent probe for NIR bioimaging [90]. The 
authors introduced PEG on the liposome surface to 
avoid nonspecific interaction with proteins. Both 
microscopic and macroscopic NIR imaging systems 
were applied to image the organs of a mouse injected 
with the NIR-encapsulated liposomes as a 
demonstration of successful NIR bioimaging. But 
limited by the relatively low NIR emission efficiency 
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of lanthanide oxides, their applications stop at organ 
bioimaging and no more clinical approaches were 
conducted.  

RE fluorides [94,95], referring to YF3 and LaF3, 
[96] and maybe more frequently, NaYF4 and NaGdF4  
[73,87], were the most widely used doping matrices 
(Figure 3c) for lanthanide phosphor [79]. This is 
largely because NaLnF4 exhibits the lowest 
non-radiative energy loss and endow the highest 
quantum yield for a major of lanthanides doping. The 
NaLnF4 is still the most widely used matrix [97] for 
NIR emission through either upconversion or 
downshifting luminescence by different rare earth 
doping, largely on account to the high emission 
efficiency and extraordinary chemical stability. In 
addition, NaGdF4 also has excellent magnetic 
properties and it was widely employed as contrast 
agents in MRI [98,99]. The classic synthesis of NaYF4 
or NaGdF4 nanoparticles was conducted in oleic acid 
and 1‐octadecene through a solvothermal method, 
using lanthanide nitric salts or lanthanides acetates, 
reacting with NaF or NH4F. The versatile luminescent 
properties as well their intriguing magnetic and 
electronic properties of RE fluorides open an avenue 
to multi-mode molecular imaging and dual signal 
guided surgery [100]. For example, Riman’s group 
prepared highly NIR emissive fluoride nanopowders 
(LaF3: Nd and CaF2: Er) with solvothermal methods 
(Figure 3b). The quantum efficiencies were as high as 
95% for LaF3: Nd and 51% for CaF2: Er, which are 
much higher than RE oxides [94]. In 2013, Zhou et al. 

employed Tm and Nd doped NaGdF4 nanoparticles 
to efficient NIR-to-NIR upconversion and 
down-shifting emission, providing a dual mode 
platform for NIR fluorescence bioimaging and 
promisingly even magnetic resonance imaging (MRI) 
probes [69]. 

Recently, a series of new matrices were reported 
for NIR emission of lanthanides [80,103,104], where 
solid state high-temperature synthesis were usually 
employed. The new matrices bring new properties to 
NIR based bioimaging, such as long persistence 
emissive phenomenon and degradability in 
physiological fluids. For example, Scherman et al. 
reported to successfully prepare lanthanide doped 
Ca0.2Zn0.9Mg0.9Si2O6 nanoparticles with NIR persistent 
luminescence [82]. The NIR persistent nanoparticles 
can be excited before injection to mouse, and the 
biodistribution of the nanoparticle can be monitored 
in real-time for more than 1 h without any external 
illumination source. The nanoparticles were modified 
with targeting ligands, would guide the nanoparticles 
specifically to lung, liver or to long-lasting blood 
circulation. This system can be employed to evaluate 
tumor mass and showed great clinical potential. 
Another similar work was reported by Yan’s lab that 
they synthesized NIR emitting Zn2.94Ga1.96Ge2O10 
nanoparticles co-doped with Cr3+, Pr3+ for long 
persistent luminescence (Figure 3d). The nanoprobe 
was further functionalized with gadolinium 
complexes and enabled a multimodal in vivo MRI and 
NIR luminescence imaging [102]. 

 

 
Figure 3. Subclasses of RE nanoparticles. TEM images (left) and NIR fluorescent spectra of (A) Yb2O3 nanoparticles, adapted with permission from [91], Copyright 2012, 
American Chemical Society. (B) YF3 nanoparticles, adapted with permission from [94], Copyright 2007, American Chemical Society. (C) NaYF4 nanoparticles, 
adapted with permission from [101], Copyright 2017, Nature Springer and (D) Zn2.94Ga1.96Ge2O10 nanoparticles, adapted with permission from [102], Copyright 2014, 
American Chemical Society. 
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Figure 4. RE nanoprobes for NIR bioimaging in vivo. (A). Principal scheme for in vivo experiments and NIR bioimaging. NIR images of mice at different localizations with different 
nanoparticle amounts. Adapted with permission from [82], Copyright 2007, National Academy of Sciences. (B). Schematic of the portable short-wave infrared (SWIR) imaging 
prototype using 980 nm NIR excitation and the bioimaging for injected tumor on nude mouse. Adapted with permission from [114], Copyright 2013, Nature Springer. (C) 
Scheme illustration of assembly and NIR laser‐regulated disassembly of nanoprobes for stable and accurate NIR‐II bioimaging. (D) Schematic depiction of experimental timeline 
for the in vivo assembly and 980 nm laser‐triggered in vivo disassembly and NIR‐II fluorescence bioimaging results for the abdomen (1000 nm long‐pass filter) of the nude mice with 
murine epidermal tumor by two‐staged in‐sequence injection of RE nanoparticles (interval between two injections is 10 h) under 808 nm excitation. 
Adapted with permission from [115], Copyright 2018, John Wiley & Sons, Inc.  

 

3. RE nanoparticles for NIR bioimaging 
Fluorescence based bioimaging in the NIR 

window features deep tissue penetration, reduced 
tissue scattering, and decreased tissue 
autofluorescence. These advantages would largely 
improve the performance of nanoparticles in 
biological and pre-clinical applications. Hence, NIR 
fluorescent probes, especially RE nanoparticles, are 
constructed into platforms for NIR bioimaging [105], 
biosensing [106], drug delivery [107], photodynamic 
therapy and NIR based IGS [108]. The application in 
bioimaging is the first step for successive preclinical 
studies and practices. The good performance in NIR 
bioimaging of RE nanoparticles plays as cornerstones 
for the follow-up photodynamic therapy, drug 
delivery and surgical navigation. 

Various groups have successfully reported NIR 
emissive RE nanoparticles for bioimaging [109] 
(Figure 4a). Hammond’s group constructed 

LbL-modified NIR-II nanoparticels from RE doped 
NaYF4 fluorescent materials to perform a side-by-side 
investigation and comparison for the biodistribution, 
pharmacokinetics, and toxicities of these probes [110]. 
Moghe et al. reported a multispectral, real-time 
short-wavelength infrared imaging offering 
anatomical resolution using brightly emitting RE 
nanomaterials and demonstrate their practicability as 
a disease-targeted imaging method (Figure 4b) [111]. 
RE nanomaterials modified with human serum 
albumin (HSA) endowed systemic study of 
biodistribution of the RE nanoparticles. It was 
reported by the authors that accumulation and 
retention in tumor tissue was improved after protein 
conjugation, which was visualized by the localized 
enhancement of NIR signal intensity (Figure 4b). The 
involvement of HSA was drawn as experiences by a 
lot of other studies and was verified to improve the 
biocapability and retention time in organs and tumors 
[112]. Liu’s group found another route of NIR 
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emitting nanomaterials for theranostic applications on 
how RE moieties were involved. They fabricated a 
nanocomplex where Gd3+ chelate were functionalized 
onto HSA, conjugated with a NIR dye IR825 [113]. The 
albumin-based probe was capable of multimodal 
imaging and photothermal therapy (PTT). The 
authors also validated the practicability of an NIR 
‘photothermal ablation assisted surgery’ strategy 
using the theranostic nanoassay, which is promising 
for future clinical cancer treatment. 

In 2019, a surge of RE nanoparticles for NIR 
bioimaging have been reported by different research 
groups. Zhang’s group reported that in vivo assembly 
and disassembly of supramolecularly engineered 
NIR‐II emissive RE nanoparticles (Figure 4 c,d) can 
greatly improve the quality of bioimaging [115]. In 
another work by the same team, they succeeded in 
precise in vivo inflammation imaging technique using 
in situ responsive cross‐linking of glutathione‐
modified NIR‐II lanthanide nanoparticles. NIR‐II 
signals in the inflamed area were observed within 10 
min and lasted as long as 8 h. The signal-noise ratio of 
inflammatory bioimaging was enhanced 2.9‐fold 
compared with reference groups at the same time. 
Their ROS‐responsive in vivo crosslinking strategy 
provides a safe and easy route for the fast location of 
and long‐term imaging of inflamed areas [116]. Li et 
al. proposed the poly(acrylic acid) (PAA)-modified 
NaLnF4:40Gd/20Yb/2Er nanorods (Ln = Y, Yb, Lu, 
PAA-Ln-NRs) with enhanced downshifting NIR-IIb 
emission for improved quality of bioimaging [117]. 
The downshifting emission beyond 1500 nm is 
doubled by suppressing the upconversion path 
through Ce3+ doping. The explored bright NIR-IIb 
emitted PAA-Lu-NRs were used for a series of 
applications, including high sensitivity small tumor 
(∼4 mm) imaging, metastatic tiny tumor detection (∼3 
mm), high spatial resolution (41 μm) tumor vessel 
visualization, and brain vessel imaging. Their 
findings opened the opportunity of utilizing the RE 
based NIR-IIb probe for in vivo tumor 
vessel/metastasis and noninvasive brain vascular 
imaging. It should be drawn more interests that Gu et 
al. reported an important progress of NIR bioimaging 
using RE nanoparticles [118]. In their work, a 
time-domain (τ) based light transducer was applied 
instead of conventional spectra-domain signaling, 
serving as a new weapon for in vivo NIR imaging. The 
ytterbium-based transducer can convert the pulsed 
NIR irradiation into long-decaying luminescence with 
an efficiency approaching 100%. This technique can 
largely improve the signal-to-noise ratio and 
bioimaging quality in mice models.  

DNA nanotechnology [119] also plays an 
important role in bioimaging using RE nanoparticles. 

DNA structures, including G‐quadruplexes [120], 
aptamers [121], molecular switches [122], framework 
nucleic acids [123] (FNAs, eg. DNA tetrahedrons 
[124,125]), and origamis [126], were widely involved 
in design of probes for RE nanoparticles based 
bioimaging systems [127] or theranostic devices 
[128,129]. In comparison of other materials such as 
inorganic gold nanoparticles [130,131], DNA 
nanostructures [132,133] showed extraordinary 
biocompatibility, degradability, low size dispersibility 
[134] and programmability [135]. The reversible 
Watson-Crick pairing of DNA also provide a versatile 
platform to construct dynamic, programmable, 
precisely controlled devices [136] for sensing [137] 
and imaging in combination of RE nanoparticles. For 
example, Lu and his group introduced DNA 
modifications to RE nanoparticles and successfully 
obtained controllable assemblies of gold nanoparticles 
onto RE upconversion nanoparticles for improved 
drug delivery and bioimaging [138]. Kuang et al. 
reported the self-assemblies of RE nanoparticles with 
DNA tetrahedrons and applied them as a chiral 
sensing platform for cell imaging and direct 
observation of autophagy [139]. 

4. RE nanoparticles for NIR 
photodynamic therapy (PDT) and 
drug delivery 
The NIR bioimaging systems were widely 

studied in various biological applications and clinical 
attempts, such as cell and tissue imaging, tumour 
diagnosis and therapy, and surgical navigation. 
However, limited by the difficulties of clinical 
practices, most of the researches of NIR bioimaging 
did not reach the surgical guidance level. Considering 
this, we also concluded the recent progresses in 
photodynamic therapy (PDT) and drug delivery using 
rare earth nanoparticles since the requirements of the 
probes and the NIR imaging equipment are similar 
with IGS but practically much easier to achieve to a lot 
of research groups in this field. The highly related 
fields will share a view in material design, safety 
estimation, animal models and so on [140]. For 
bioimaging and IGS applications, the performance is 
largely determined by the signal-to-background ratio 
and targeting affinity. It requires higher fluorescence 
efficiency, lower tissue photo-absorption and 
stabilized functionalization. Down-shifting RE 
nanoparticles with NIR-II emission excited by NIR-I 
laser is commonly used to achieve good in vivo 
bioimaging quality. For PDT and drug delivery 
design, higher photon energy is demanded to trigger 
the ROS generation or release of cargos. And 
upconversion nanoparticles that will give rise to the 
photon energies are preferred.  
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Photodynamic therapy (PDT) is a non-invasive 
treatment modality for a variety of diseases including 
cancer [141,142]. A recent popular strategy to conduct 
PDT is based on a subclass of RE nanoparticles, 
upconversion nanoparticles (UCNPs). Upon NIR 
excitation, UCNPs emit visible light with anti-Stokes 
shifts, which can be applied to activate modified 
photosensitizers to produce reactive oxygen species 
(such as 1O2) and damage cancer cells through 
oxidative stress and activated metabolic autophagy 
[143]. NIR-excited UCNPs can be utilized to activate 
photosensitizers in deep tissues and exhibit wider 
coverage of therapies and better efficiency than 
traditional PDT under visible or UV light 
illumination. Similarly, RE nanoparticles could also be 
used for NIR light-triggered drug release [144] 
through photothermal process or photochemical 
cascade reactions [145,146]. 

The first in vivo UCNP-based PDT study on 
animals was demonstrated by Liu’s team. [48] They 
applied non-covalently incorporated Ce6 onto 
PEGylated amphiphilic polymer-coated upconversion 
nanoparticles (UCNPs). The obtained UCNP-Ce6 
complex could enter cancer cells and induce 4T1 cell 

death after being exposed to the 980-nm NIR light. 
The survival of mice after UCNP-Ce6 injection and 
PDT treatment was dramatically pro-longed 
compared to the control group. They also found that 
the injected UCNPs could be gradually cleared out 
after 2 months, determined by ex vivo ICP-AES 
measurement, without noticeable toxicity to the 
treated mice. It is valuable that the authors also 
compared the tissue penetration abilities for the same 
NIR probes induced by 980-nm NIR light and 660 nm 
visible light. It is observed that more singlet oxygens 
were generated under 660-nm illumination, in 
comparison to UCNP-Ce6 sample under the 980 nm 
excitation. But under 8 mm tissue (pork) blocking, 660 
nm visible light will lose its power in singlet oxygen 
production but 980 nm NIR illumination remains high 
efficiency. Very recently, Yu et al. developed a 
pre-protective strategy using a switchable folic acid 
modified UCNPs conjugated with two types of DNA 
in different lengths. In normal tissues, folic acid is 
protected by longer DNA. The platform can be 
triggered in tumor site to exposed folic acids for 
tumor targeting and NIR PDT (Figure 5a) [147]. 

 

 
Figure 5. (A) Precise tumor targeting and specific PDT for cancer of UCNPs@PAA-DNA. In vivo imaging of five major organs harvested from a mouse at 8 h postinjection with 
UCNPs@PAA-DNA1(Ce6) (left) or UCNPs@PAA-DNA1/2 (right). Adapted with permission from [147], Copyright 2018, Royal Society of Chemistry. (B) Upper: NIR light‐
triggered Dox release by making use of the upconversion property of UCNPs and trans–cis photoisomerization of azo molecules grafted in the mesopore network of a 
mesoporous silica layer. Down: CLSM observations of the photocontrolled Dox release in HeLa cells. Adapted with permission from [145], Copyright 2013, John Wiley & Sons, 
Inc. 
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Figure 6. NaGdF4 based NIR-II nanoprobes in-vivo assembly to improve IGS for metastatic ovarian cancer. (A) Schematic illustration of NIR-II nanoprobes fabrication for ovarian 
metastasis surgery under NIR-II bioimaging guidance. (B) Hematoxylin and eosin (H&E) staining results of the tumors resected in 20–28 h PI under NIR-II fluorescence bioimaging 
guidance. (C) NIR-II fluorescence bioimaging (1000 nm long-pass filter) of the nude mice with murine epidermal tumor by single caudal vein first injection and two-staged in 
sequence injection (first + second) (interval between two injection is 8 h) under 808 nm excitation (fluence rate = 40 mW cm−2). The concentration of DCNPs in single injection 
is same to the sum of that for two-staged injection. All scale bars: 1 cm. Representative images are for n = 5 per group. Adapted with permission from [150], Copyright 2017, 
Nature Springer. 

 
Besides the application of UCNPs in PDT, 

photo-responsive drug release systems using NIR 
triggering, have received remarkable emphasis in 
recent years, due to their promising potential in 
noninvasive theranostics at the site of nidus (e.g. 
tumors) [148]. For example, Shi et al. fabricated 
mesoporous silica coated UCNPs modified by 
azobenzene molecules. [145] The anticancer drug 
doxorubicin (DOX) were controllably released from 
the outer layer of the mesoporous silica under NIR 
laser irradiation (Figure 5b). Qu et al. reported a NIR 
upconversion responsive system carrying two cargos 
(clioquinol and curcumin) to stepwise sequential 
release [149]. When the UCNP platform is irradiated 
at low intensity of the NIR laser, clioquinol is first 
released for chelating with free metal ions such as 
Cu2+, which hinders the efficacy of curcumin. 
Subsequently, under higher intensity of NIR 
illumination, curcumin is subsequently released. The 
stepwise-release strategy can greatly improve the 
activity of curcumin for the inhibition of amyloid 
aggregation. Excess Cu2+ ions and superfluous ROS 
can be cleaned up by the NIR-triggered drug delivery 
platform.  

5. Surgery guide using NIR emissive RE 
nanoparticles 
Inspired by the success of bioimaging and PDT 

therapies using NIR emissive nanoparticles, 
researchers urged to put forwards the employment of 
NIR probes into clinical practices. Tian et al. used 
ZnGa2O4Cr0.004 (ZGC) nanoparticles for guided 
surgery during operation to accurate delineation of 
hepatocellular carcinoma (HCC) [23]. ZGC showed 
excellent long-lasting NIR afterglow properties that 
lasted for hours, which can improve real-time guided 
surgical quality. Though the ZGC nanoparticles 
employed in this work were not consisting of any RE 
elements, the ZGC probes with NIR emission is surely 
a continuum of its prototype counterpart-- 
Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+ nanoparticles, where RE 
element Pr plays as emitters [80]. 

Very recently, Zhang’s lab at Fudan University 
also reported in vivo assembly of the lanthanides 
doped NaGdF4 based NIR-II emitting nanoparticles to 
improve the IGS for metastatic ovarian cancer (Figure 
6) [150]. The NIR-II probes were modified with DNA 
and targeting peptides while the imaging quality is 
largely improved with good photostability and deep 
tissue penetration over 8 mm, in comparison to that of 
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conventional organic dye, indocyanine green (ICG). 
The authors observed in vivo assembly of the 
nanoprobes, which increases the tumor retention 
period to 6 h, enabled precise tumor resection. Also, 
better tumor-to-normal tissue ratio is successfully 
achieved to facilitate the abdominal ovarian 
metastases surgical operation. The preclinical practice 
proved that metastases smaller than 1 mm can be 
completely excised under Zhang’s NIR-II bioimaging 
guidance. This work is a milestone of the applications 
of RE based NIR emissive nanoparticles and greatly 
encourages researchers to bring NIR fluorescence IGS 
to clinical surgery. 

There is an increase of reports of NIR-II based 
IGS using RE nanoparticles since last year. Liu and his 

collaborators fabricated functionalized red blood cells 
with RE UCNPs as a multimodal probe for NIR-II 
luminescence guiding precise tumor resection under 
an 808-nm laser irradiation and meanwhile laser 
activated O2 release to help PDT therapy for popliteal 
lymph node metastasis [152]. In their work, it is 
clearly shown that NIR-II fluorescence imaging 
largely improves the penetration of light and exhibits 
lower signal-noise ratio. The penetration depth of the 
NIR-II fluorescence of their probe doubled in 
comparison of that for NIR-I fluorescence. The red 
blood cell and RE nanoparticles based NIR-II probe 
enabled the successfully NIR-II guided surgical 
removal of small tumor with a size of 7 mm3 and 3 
mm3 (Figure 7 b,c).  

 

 
Figure 7. RE nanoparticles for surgical guidance with NIR imaging. (A) Schematic illustration of excretable RE nanoparticle for multifunctional biomedical imaging and ICG in the 
NIR-II window. (B) SEM images of multimodal probes enabled by red blood cell coated with NIR-II emissive lanthanide nanoparticles. Adapted with permission from [151], 
Copyright 2019, John Wiley & Sons, Inc. (C, D) NIR II fluorescence bioimaging results (12 h PI) of epidermal tumors with sizes of 7 mm3 (C) and 3 mm3 (D) and NIR II 
fluorescence bioimaging results after the surgical resection of tumors. Adapted with permission from [152], Copyright 2019, Ivyspring International Publisher. 
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All the above-mentioned reports of RE based 
NIR-bioimaging guided surgery concentrated on 
direct targeting to the tumor or immunological 
recognition of cancer tissues. However, Li et al. 
provided us another choice for NIR imaging based 
IGS with RE nanoparticles, without any targeting 
strategies to tumors [151]. The RE nanoparticles was 
used for NIR-II visualization of circulatory systems 
instead of the tumors. Due to the moderate half-time 
of blood circulation, their probes are capable of 
monitoring vascular disorders including artery 
thrombosis, ischemia, and tumor angiogenesis. The 
cancer therapy was constructed through a blood 
vessel embolization surgery conducted with NIR-II 
navigation of femur orthotopic osteosarcoma on nude 
mice. In addition, the NIR-II probe is also applicable 
for sentinel lymph nodes imaging and sequential 
biopsy by tail injection.  

6. Conclusion and Perspective 
Rare earth nanoparticles have many advantages, 

such as high NIR luminescence efficiency, low 
toxicity, and good biocompatibility. They hold great 
promise in a wide range of applications in cancer 
diagnosis and treatment, and surgical navigation. 
However, there are only limited reports on the 
application of RE nanoparticles in surgical navigation 
at clinical level. NIR small molecular dyes and 
quantum dots are still the mainstream of probes for 
NIR fluorescence ICG. This is mainly because of the 
following two reasons: 1) Concerns about the safety of 
RE nanoparticles, including their refractoriness and 
toxicity of possibly released rare earth ions; 2) In order 
to achieve higher sensitivity and spatiotemporal 
resolution in IGS, smaller RE nanoparticles are 
required, however, the luminescence efficiency of RE 
nanoparticles decreases rapidly within smaller size 
nanoparticles [153]. Whereas the nanoparticles 
smaller than 10 nm has no advantage against 
competing semiconductor quantum dots in terms of 
luminescence efficiency.  

On the other hand, the current reports of NIR 
surgical navigations using lanthanide nanoparticles 
are mostly focused on simple animal models such as 
ovarian tumor metastases and unilateral thrombus on 
nude mice. Larger animals such as rabbits [154] and 
dogs [155] have not yet been employed in NIR 
emissive RE nanoparticles based IGS. Considering 
that the major advantage of using NIR emissive RE 
nanoparticles is to boost the penetration depth of the 
excitation light, it is important to verify it in larger 
animals with thicker tissues. Thus, it is of great 
urgency to develop new disease models to larger 
mammals which can be better mimics for human 
body. However, the penetration depth of NIR 

fluorescence of current reports are mostly no larger 
than 10 mm, which is obviously impractical for 
clinical surgery of human body. From this aspect, we 
shall prospect that there is still great space for the 
improvement of the fluorescence intensity, quantum 
yield, noise-to-background ratio and eventually 
penetration depth for the RE nanoparticles of NIR 
emission.  

Therefore, the future development trends of RE 
nanoparticles in the field of NIR fluorescent IGS are 
proposed as follows: a) Develop degradable and 
metabolizable rare earth nanoparticles, where the 
metabolites of the nanoparticles are required to be 
non-toxic too; b) Further improve the luminescence 
efficiency of NIR, especially for small size 
nanoparticles, it is necessary to surpass inorganic 
semiconductor quantum dots (such as Ag2S) [156] and 
also improve the penetration depth of NIR 
fluorescence. c) Expand the unique luminescent 
properties such as long afterglow and time-resolved 
luminescence, and utilize the magnetism of rare earth 
elements such as gadolinium to develop multi-mode 
molecular imaging technology including MRI and 
multiple optical imaging techniques. 
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