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Abstract

Rationale: Busulfan is currently an indispensable anti-cancer drug, particularly for children, but the
side effects on male reproduction are so serious that critical drug management is needed to
minimize any negative impact. Meanwhile, alginate oligosaccharides (AOS) are natural products with
many consequent advantages, that have attracted a great deal of pharmaceutical attention. In the
current investigation, we performed single-cell RNA sequencing on murine testes treated with
busulfan and/or AOS to define the mitigating effects of AOS on spermatogenesis at the single cell
level.

Methods: Testicular cells (in vivo) were examined by single cell RNA sequencing analysis,
histopathological analysis, immunofluorescence staining, and Western blotting. Testes samples (ex
vivo) underwent RNA sequencing analysis. Blood and testicular metabolomes were determined by
liquid chromatography-mass spectrometry (LC/MS).

Results: We found that AOS increased murine sperm concentration and motility, and rescued
busulfan disrupted spermatogenesis through improving (i) the proportion of germ cells, (ii) gene
expression important for spermatogenesis, and (iii) transcriptional factors in vivo. Furthermore,
AOS promoted the ex vivo expression of genes important for spermatogenesis. Finally, our results
showed that AOS improved blood and testis metabolomes as well as the gut microbiota to support
the recovery of spermatogenesis.

Conclusions: AOS could be used to improve fertility in patients undergoing chemotherapy and to
combat other factors that induce infertility in humans.
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Introduction

into

Spermatozoa develops from spermatogonial
stem cells (SSC) in the testis during the complex and
orchestrated process of spermatogenesis. During
spermatogenesis, spermatogonia (SPGs) develop into
spermatocytes (SPCs); then, following meiosis,
haploid spermatids (STs) are formed which

subsequently develop spermatozoa [1,2].
Spermatogonial stem cells (SSCs) are a group of
undifferentiated SPGs that can be self-renewing and
are responsible for maintaining the pool of male germ
cells. Somatic cells, namely Sertoli cells (SCs) and
Leydig cells (LCs) play indispensable roles in
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spermatogenesis. SCs act as nurse cells to maintain
germ cell differentiation, whereas LCs produce
androgens and other factors to support
spermatogenesis. Another type of somatic cell,
peritubular myoid cells (PTMs) are muscle cells that
support the seminiferous tubules. All these cells
orchestrate together to produce functional sperm
[1-3]. This process, however, is vulnerable to
environmental contamination, anti-cancer drugs, and
other factors [3-7].

For many reasons, the incidence of malignancies
continues to rise worldwide and has resulted in the
increased use of anti-cancer drugs [8-10]. Busulfan is
an anti-cancer alkylating agent that has been widely
used to treat lymphoma, chronic leukemia, and is also

used to improve outcomes after allogeneic
haemopoietic cell transplantation or the conditioning
regimen  before  hematopoietic = stem  cell

transplantation [11-13]. Busulfan is one of the very
few anti-cancer drugs used in children under the age
of three [12-14]; it gives excellent results but it also
produces several side effects [11,13], one being its
toxicity on the reproductive system [15]. Busulfan can
destroy testicular germ cells, decrease testis weight
and sperm motility, increase sperm abnormalities and
oligo-azoospermia rate, and finally cause temporary
or permanent sterility [8,15,16]. Since busulfan is
such an important anti-cancer drug, especially for
children, and the side effects on male
reproduction are so serious, it is critical to employ
good drug management to minimize its negative
impact. Many studies report on various
management tools that have been used in an
attempt to reduce the side effects of busulfan on
male reproduction, particularly spermatogenesis
[5-7]. Molybdenum (Mo) can rescue germ cell
development, and maintain blood testosterone,
estradiol, and luteinizing hormone levels to improve
spermatogenesis in mice [6]. Olive leaf extract
ameliorates the negative effect of busulfan on
spermatogenesis [8]. Korean red ginseng has been
found to attenuate busulfan induced disruption of
spermatogenesis [5]. Furthermore, Chi et al. report
that genistein can decrease intra-testicular
testosterone (ITT) levels and improve
spermatogenesis in rats after busulfan treatment,
which indicates that it could potentially rescue male
fertility in busulfan treated cancer patients [7].
Alginate oligosaccharides (AOS) have attracted
considerable pharmaceutical attention due to their
natural properties, which include non-immuno-
genicity, = non-toxicity, @ and  biodegradability
(biodegradable polymers) [17-22]. AOS are the

degradation products of alginate (one type of marine
polysaccharide from brown seaweed) which are
composed of a-L-guluronate G) and
B-D-mannuronate (M) joined by 1, 4-glycoside bonds
[18]. AOS have many pharmacological benefits in the
fields of anti-inflammation [19], anti-apoptosis [23],
anti-proliferation [24], antioxidant activities [22,23,25],
and even anti-cancer properties [26]. AOS decrease
the formation of nitric oxide and prostaglandin E2,
reduce the secretion of proinflammatory cytokines,
and inhibit the expression of toll-like receptor 4,

nuclear factor (NF)-xB, inducible nitric oxide
synthase, and cyclooxygenase-2 to prevent
lipopolysaccharide / p-amyloid (AP)-induced

neuroinflammation [27]. It has been demonstrated
that AOS protects against acute cardiotoxicity
[myocardial ischemia/reperfusion (I/R) injury]
produced by the highly potent chemotherapeutic
agent doxorubicin through blocking oxidative stress
and endoplasmic reticulum stress-mediated apoptosis
[25,28]. Tusi et al., discovered that AOS can prevent
neurodegenerative diseases (Alzheimer’s disease)
similarly  through anti-oxidant and anti-ER
stress-induced apoptosis [23]. Because of these
qualities, AOS have been recognized as a safe
biopolymer by the US. Food and Drug
Administration (reference no. 21CFR184.1724) and
have been used in pharmaceutical, cosmeceutical, and
nutraceutical fields [18,29]. Although many efforts
have been made to improve spermatogenesis after
disruption by busulfan, there has been scant progress
and little understanding of the improvement of
spermatogenesis at the single cell level. Nowadays,
however, single cell RNA sequencing analysis
(scRNA-seq) can be used to understand human
spermatogenesis at the single cell level [1,2]. In this
investigation, we performed scRNA-seq on murine
testes treated with busulfan and/or AOS to define the
rescuing effect of AOS on spermatogenesis at the
single cell level. By comparing gene expression
profiles of single cells from busulfan treated or
busulfan plus AOS treated murine testes, we found

that AOS can rescue busulfan disrupted
spermatogenesis.
Results

AOS Increased the Motility and Concentration
of Mouse Spermatozoa

As shown in Figure 1A, three-week-old ICR male
mice were treated with busulfan once (40 mg/Kg
body weight, BW) [5]. The following day, the mice
were dosed with a vehicle control (ddH>O) or AOS in
ddH>O for five weeks. There were four treatment
groups: A0 (vehicle control, ddH>O alone), A10 (10

http://lwww.thno.org



Theranostics 2020, Vol. 10, Issue 7

3310

mg/kg BW of AOS), BO (busulfan alone)), and BA10
(busulfan plus AOS 10 mg/kg BW). Tissues were
prepared as follows: sperm motility and concentration
were determined by computer-assisted sperm assay
(CASA), testis tubular cells were collected for 10x
scRNA-seq, intestinal digesta was collected for 16s
analysis, plasma was used to determine changes in
blood metabolism, and testicular tissue was
homogenized, after which the supernatant was used
to determine alterations in testicular metabolism. We
found that busulfan diminished murine sperm
motility and concentration (Figure 1B-C). Compared
to A0, Al0 significantly increased sperm motility
(113.8%) and concentration (116.8%), although the
increase was relatively slight. However, compared to
BO, BA10 dramatically increased sperm motility
(4.2-fold) and concentration (3.1-fold; Figure 1B-C).
The data were consistent with the testicular
histopathology (Figure S1A).

Global Transcriptional Profiling by scRNA-seq
Analysis Revealed that AOS Rescued Busulfan
Disrupted Spermatogenesis in vivo

After five weeks of treatment, murine testes were
resected and digested, and single cells were collected
for the 10x scRNA-seq analysis. In total, 8941, 9682,
4659, and 3778 testicular cells were obtained for A0,
A10, BO, and BA10 treatment groups, respectively,
using scRNA-seq analysis (Figure S1B). The average
number of genes and unique molecular identifiers
(UMI) per cell are presented in Figure S1C.

After filtration, data from the four groups were
analyzed together using the Seurat package in R
studio. t-distributed stochastic neighbor embedding
(t-SNE) analysis was used to identify the cell types
(Figure 1D; Figure S1D; Table S1) [1,2,30]. In total,
27 060 cells from the four groups were organized into
16 clusters (Figure S1E). The marker genes for
testicular germ cells and somatic cells have been
reported previously [1-3]. Using these marker genes
in the current study, the 16 cell clusters were placed
into four major groups: SPGs, SPCs, STs, and
LCs/SCs (Figure 1E; Table S2). Other types of somatic
cells were not found in our data as only testis tubular
cells were collected for sequencing. The marker genes
for SPGs are STK31, DAZL, ID4, NOC4L, and
PTRHD1 which were present in clusters 8, 9, and 10;
these three clusters were placed into one big cluster,
namely SPGs (Figure 1E-F; Figure S1F). The marker
genes for SPCs are SYCP1, SYCP3, RECS8, and SPOL11,
which were found to be expressed mainly in clusters
0, 2, 3, 6, 13, 14, and 15; these seven clusters were
grouped into one big cluster, namely SPCs (Figure
1E-F; Figure S1F). The marker genes for STs are
PRM1, PRM23, TNP1, and TNP2, which were mainly

expressed in clusters 1, 4, and 7; these three clusters
were placed into one big cluster, namely STs (Figure
1E-F; Figure S1F). The marker genes for LCs are
HSD3B1, STAR, INSL3 and the marker gene for SCs is
SOX9, which were mainly expressed in clusters 5, 11,
and 12 with SC count being low throughout. These
three clusters (5, 11, and 12) were organized into one
big cluster: LCs/SCs (Figure 1E-F; Figure S1F).

In the four large clusters (SPGs, SPCs, STs, and
LCs/SCs) the percentage of each type of cell for each
treatment group (A0, A10, BO, and BA10) were
calculated (Figure 1G). Similar percentages of cells
were found in the SPGs cluster between AO and A10
(10.98% vs. 10.28%). The percentage of cells in the
SPGs cluster was lowest (8.50%) for BO, and highest
for BA10 (19.64%). The percentages of cells in the
SPCs cluster were 58.92%, 48.46%, 13.87%, and 67.87%
for A0, A10, BO, and BA10, respectively; while the
percentages of cells in the STs cluster were 29.48%,
40.67%, 0.36%, and 12.44%, respectively. However,
the percentages of cells in the LCs/SCs cluster were
0.62%, 0.59%, 77.27%, and 0.05%, respectively. This
data showed no notable difference for all four
treatment groups in the SPGs cluster; however, the
percentage of SPCs and STs were much lower in the
busulfan treatment group. Results indicated that AOS
rescued these levels by dramatically increasing the
number of SPCs and STs in B+A 10.

Furthermore, some of these proteins for the
marker genes (DDX4, DAZL, SYCP3, TNP1, and
SOX9) [1-3] were also determined in the testis samples
by immunofluorescence staining (IHF; Figure 1H;
Figure S2A-D). Busulfan (B0) decreased the number
of DDX4 positive cells, whereas BA10 significantly
increased them (Figure 1H, Figure S2A). DAZL is the
SPG marker gene [1-3] and DAZL protein is expressed
in SPGs (Figure 1H). The percentage of DAZL positive
cells was lowest in BO; however, it was increased in
BA10, to almost similar levels as in A0 or A10 (Figure
1H and Figure S2B). SYCP3 is the SPC marker gene, it
is a synaptonemal complex protein that plays a vital
role in meiosis [1-3] and is expressed in early SPCs
(Figure 1H). SYCP3 positive cells were scarce in the BO
group; however, they were present in similar
numbers in BA10, A0, and A10 (Figure 1H; Figure
S2C). TNP1 is the ST marker gene [1-3] and is
expressed in STs (Figure 1H). Similar to DAZL and
SYCP3, TNP1 positive cells were present at their
lowest numbers in the BO group; meanwhile, they
were increased in BA10 and to similar levels as in A0
and A10 (Figure 1H; Figure S2D). SOX9 is the SC
marker gene [1-3] and is expressed in SCs (Figure 1H).
Because there were so few germ cells in the sample of
the BO group, the protein levels of SOX9 seemed to be
brighter; however, the number of SCs were similar for
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all groups. The IHF data and scRNA-seq data spermatogenesis by promoting the development of
concurred for these four treatment groups. The data  spermatogonia to spermatocytes and on to
suggested that busulfan disrupted the process of  spermatids.
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Figure 1. Mouse sperm motility, concentration, and scRNA-seq analysis. (A) Study design. (B) Mouse sperm motility. The y-axis represents the percentage of cells.
The X-axis represents the treatment (n = 30/group). 2b< Means not sharing a common superscript are different (p < 0.05). (C) Mouse sperm concentration. The y-axis represents
the concentration. The x-axis represents the treatment (n = 30/group). 2b< Means not sharing a common superscript are different (p < 0.05). (D) scRNA-seq cell map based on
tSNE for the four treatment groups. (E) Cell clusters in scRNA-seq analysis. (F) Marker genes for each cluster. (G) The proportion of cells in each cluster in every sample. (H)
IHF for some of the marker genes.
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Deep Analysis of 10x scRNA-seq Data
Discovered that AOS Improved Germ Cell
Development Potential and Functions in vivo

In order to confirm the above data, we isolated
germ cells (SPGs, SPCs, and STs clusters) from the
total cell population. These germ cells were divided
into 13 clusters by using similar criteria as for whole
population cell analysis (Figure S2E-F). The marker
genes for these clusters were identified and showed
similar trends to the whole population analysis
(Figure S2G-]). Subsequently, we performed Monocle
analysis to determine the temporal order of these
germ cells (SPGs, SPCs, and STs clusters). The
unsupervised pseudotime, from SPGs to SPCs to STs,
showed the developmental trajectory of mouse
spermatogenesis (Figure 2A). We also checked the
state of cells using Monocle analysis, and found that
these cells were all at one developmental stage, which
indicated that the cells matured in a strict time order
(Figure 2B). We also checked the cells in each sample
(A0, A10, BO, BA10) in the pseudotime plots (Figure
2C-G); we found that the cells for the A0 and A10
groups were similar (Figure 2D-E). However, there
were only a few cells in the early stages of
development (SPGs), and almost no cells in the SPC
and ST stages in the BO group (Figure 2F). On the
other hand, there were many cells in the SPG and SPC
stages and also some at ST in the pseudotime plot of
the BA10 group (Figure 2G). Furthermore, we found
that these three clusters (SPGs, SPCs, and STs) could
be distinguished from each other by a few genes
(Figure 2H). Based on subsequent t-distributed
stochastic neighbor embedding (t-SNE) analysis, we
found that there were specific differentially expressed
marker genes for each cluster (SPGs, SPCs, STs, and
LCs/SCs). The expression levels of the first 50 marker
genes in each cluster are shown in Figure S3A-D. The
data further suggested that AOS can protect
spermatogenesis by regulating the expression of
important genes.

Furthermore, in order to deeply investigate the
mechanism by which AOS rescues spermatogenesis,
gene regulatory networks were constructed using the
single-cell regulatory network inference and
clustering (SCENIC) computational pipeline [31].
Germ cell identity and cell fate are governed by
transcription factors and associated cofactors and they
work in a coordinated manner to regulate the
expression of target genes. SCENIC is an excellent tool
for mapping the gene regulatory network (GRN) [31].
The SCENIC AUCell algorithm was used in this study
for cells in the SPG, SPC, and ST clusters [31]. In total,
185 regulons were identified, differentially expressed,
and were active in the three treatment groups of

testicular samples (Figure 2I; Table S3, Table S4). The
active regulons were sample specific in each group
(Figure 2I). Some of the important regulons were
specifically expressed in A0 and A10, such as KIfl,
Jund, and Sox6. Meanwhile some regulons were
specifically expressed in BA10, such as Lefl and Elf2,
and some regulons were specifically expressed in B0,
such as Wtl and Egr4. The protein levels of some
regulons were explored by western blotting (WB)
(Figure 2J). We found that Jund was more abundant in
the A10 group while Wtl was more abundant in BA10
(Figure 2J). This data indicated that AOS modified
transcription factors to regulate gene expression to, in
turn, rescue spermatogenesis.

To identify the functions of the marker genes in
each cluster of cells (SPGs, SPCs, STs, and LCs/SCs),
we performed multiple enrichment analysis (Figure
3A). The most widely expressed marker genes for the
SPG (574 genes), SPC (629 genes), ST (497 genes), and
LC/SC (446 genes) clusters were analyzed together
(Figure 3A). From the heatmap of enriched terms (top
20 terms) across these four clusters (colored according
to p-values), we found that 11 terms were enriched in
germ cells only, including: “meiotic cell cycle”,
“protein-DNA complex subunit organization”, “cell
cycle”, “APC/C-mediated degradation of cell cycle
proteins”,  “PIWl-interacting =~ RNA  (piRNA)
biogenesis”, and others. Meanwhile, seven terms:
“regulation of hormone levels”, “monocarboxylic acid
metabolic process”, “steroid metabolic process”,
“cofactor metabolic process” and others were
enriched in the LC/SC cluster. Furthermore, two
terms “cellular responses to stress” and “metabolism
of RNA” were enriched in both germ cell (SPG, SPC,
ST) and LC/SC clusters (Figure 3A). The data here
suggested that marker genes and functions were
specific for these clusters. The overlay genes and GO
terms are shown in Figure 3B. Most of the overlay
terms were in the three germ cell clusters. The first 20
enriched terms for each cluster are presented in
Figure S4A-D. The data show the specific functions
enriched in each cluster.

Next, we performed protein-protein interaction
enrichment analysis for each of the germ cell clusters
using marker genes (Figure 3C-E). The networks for
each cluster contained the subset of proteins which
formed physical interactions with at least one other
member in the marker gene set. If the network
included 3 to 500 proteins, the Molecular Complex
Detection (MCODE) algorithm was used to determine
the densely connected network components. For the
SPG cluster, there were 12 MCODE and many
proteins were connected together for MCODE 1,
MCODE 2, MCODE 3, MCODE 4, MCODE 5,
MCODE 6, and MCODE 7. Most of the functions in
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these MCODE were for RNA processes in preparation =~ were for cell cycle and protein DNA interactions
for meiosis (Figure 3C). There were 5 MCODE for the =~ which are important for spermatogenesis (Figure 3D).
SPC cluster and many proteins were in each MCODE  There were four MCODE for the ST cluster (Figure
(Figure 3D). Most of the functions in these MCODE  3E).
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Figure 3. Enrichment analysis and protein-protein interaction networks for scRNA-seq data. (A) Enrichment analysis for SPGs, SPCs, STs, and LCs/SCs using the
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There were many proteins in MCODE 1, and
only three or four proteins for other MCODE. Most of
the functions in MCODE 1 involved protein folding, a
process that is important in ST maturation (Figure 3E).
Moreover, some of the proteins important for
spermatogenesis such as piwill and ZFP37 were
determined by Western blotting. BO had a decreased
protein level of piwill compared to AOS 0, while it
was increased in the BA10 group (Fig. 3F).
Meanwhile, ZFP37 was increased in BA10 (Figure 3F).
ERK is important for cell growth and is also involved
in the activation of transcriptional factors, we found
p-ERK was decreased in B0, while it was increased in
BA10 (Figure 3F). Moreover, Gpx1 and caspase 8 were
elevated by busulfan alone (B+A 0), while they were
reduced in the BA10 group (Figure 3F). The data here
indicated that busulfan disrupted spermatogenesis,
and that this could be rescued by AOS which suggests
that AOS can protect germ cell development from
spermatogonia through to spermatocytes and on to
spermatids.

AOS Promoted the Expression of Important
Genes for Spermatogenesis ex vivo

In order to further confirm our in vivo data and
search for the mode of action of AOS in rescuing
spermatogenesis locally in the testis, we performed ex
vivo experiments. Similar to the in vivo experiments,
three-week-old male ICR mice were treated with
busulfan (40 pg/g body weight) once and
subsequently raised normally. Two weeks after
busulfan treatment, the testes were collected and
cultured with or without AOS (two concentrations 50
pg/mL and 10 pg/mL in culture medium). At the
same time, the testes from age-matched mice (no
busulfan treatment) were also collected and cultured
with or without AOS (two concentrations 50 pg/mL
and 10 pg/mL) for 48 h. In all, there were six
treatment groups: A0 (Ex), A10 (Ex), A50 (Ex), BO (Ex),
BA10 (Ex), and BA50 (Ex). Testicular tissues were
collected for RNA-seq analysis. A data summary is
presented in Figure 4A. Compared to A0 (Ex), there
were 431 genes upregulated and 428 genes
down-regulated in A10 (Ex). Compared to A0 (Ex),
314 genes were increased and 649 genes were
decreased in AS50 (Ex). There were 345 genes
up-regulated and 835 genes down-regulated in BA10
(Ex) compared to BO (Ex). Compared to BO (Ex), 681
genes were up-regulated and 808 genes were
down-regulated in BA50 (Ex). The expression levels of
the differentially expressed genes in these four
comparations [A0 vs. A10 (Ex), AO vs. A50 (Ex), BO vs.
BA10 (Ex), BO vs. BA50 (Ex)] were analyzed and are
presented in Figure 4B. A0 vs. A10 (Ex) and AO vs.
A50 (Ex) were clustered together, and BO vs. B10 (Ex)

and BO vs. BA50 (Ex) were clustered together which
suggested that both busulfan and AOS played a major
role in the expression of these genes. The up-regulated
genes in these four comparisons were analyzed using
GO analysis. The genes in each comparison were
enriched in reproduction and spermatogenesis related
functional pathways (Figure 4C). However, the
down-regulated genes in each comparison were
enriched in other functional pathways (Figure S5A-
D). Moreover, the up-regulated genes in each
comparison were analyzed together using multiple
enrichment analysis. Many genes and GO terms
overlapped in the four comparisons (Figure 4D),
which indicated that AOS may play an important role
in spermatogenesis. Furthermore, the enriched terms
interacted together to form networks (Figure 4E). In
these interacted networks, “spermatogenesis” was the
most significantly enriched of the four comparisons,
which indicated that AOS had a positive effect on
spermatogenesis in the ex vivo study. Expression of
the enriched genes related to spermatogenesis were
compared with 10x scRNA-seq data (Figure 4F). In
this figure, the green columns denote scRNA-seq data
(in vivo) and the red columns denote RN A-seq data (ex
vivo). These genes, including PRM1, PRM2, TNP1,
TNP2, and ODF1 are critical during spermatogenesis.
Moreover, the data for in vivo and ex vivo experiments
showed the same trends but with lower expression
levels in RNA-seq data (ex wvivo) compared to
scRNA-seq data (in vivo); this may be because the ex
vivo study lasted only 48 h while the in vivo study
lasted five weeks. The data in this section suggested
that AOS played an important local role in
spermatogenesis.

AOS Recovered Testicular Metabolites

After finding that AOS could rescue
spermatogenesis in the testis, next we set out to
explore the role of AOS in rescuing the testicular
microenvironment. Testicular metabolites (in vivo
study) were determined by UPLC-Q-TOF/MS. Data
were analyzed by PCoA analysis, and PCoA score
plots showed that the groups in the following pairings
could be clearly separated: A10 and AO (Figure 5A),
B0 and AO (Figure 5B), and BA10 and BO (Figure 5C).
The data suggested that both AOS and busulfan
influenced metabolic profiles in mouse testes. There
were 313, 428, and 330 significantly changed
metabolites (positive and negative modes together)
for the following three comparisons: A0 vs. A10, A0
vs. B0, and BO vs. BA10, respectively (Table S5). One
hundred and thirty-two compounds were common
between these three comparisons. The expression of
these 132 compounds was very interesting because 65
compounds were increased by busulfan (in AO vs. B0)
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rescued the compounds that were disturbed by
busulfan. It was even more interesting that
glutathione and 1its precursor gamma-gluta-
mylcysteine were increased by AOS.

while they were decreased by AOS (in BO vs. BA10),
and 67 compounds were decreased by busulfan (in A0
vs. B0), however, they were increased by AOS (in BO
vs. BA10; Figure 5D). The data indicated that AOS
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Figure 4. RNA-seq data for ex vivo experiments. (A) Volcano map summary of RNA-seq data in ex vivo experiments. The four comparisons: AOS 0 vs. AOS 10 (ex vivo);
AOS 0 vs. AOS 50 (ex vivo); B+A 0 vs. B+A 10 (ex vivo); and B+A 0 vs. B+A 50 (ex vivo). (B) Heatmap summary of the differentially expressed genes in the four comparisons in
the ex vivo experiment. (C) GO enrichment of up-regulated genes in the four comparisons in the ex vivo experiment. (D) Circos plots showing interactions between the four
comparisons in multiple enrichment analysis in the ex vivo experiment. (E) Enrichment network of shared marker genes in the comparisons in the ex vivo experiment. Each term
is indicated by a circular node that is colored according to comparison; nodes that share the same cluster ID are typically close to each other. (F) Gene expression comparison
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Glutathione is an excellent antioxidant which
plays a vital role in protecting biological systems [32].
Glutathione was increased 1.69- and 2.25-fold in A0
vs. A10 and BO vs. BA10, respectively, while it was
decreased by busulfan to 0.23-fold in A0 vs. BO (Table
S5). Gamma-glutamylcysteine was increased 1.82-

and 2.44-fold in A0 vs. A10 and BO vs. BA10,
respectively, while it was decreased by busulfan to
0.25-fold in A0 vs. BO (Table S5). Furthermore, many
lipids or phospholipids were altered by these
treatments.
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Figure 5. Plasma and testis metabolome changes. (A) PCA of mouse testis metabolites in the AOS 0 and AOS 10 groups. (B) PCA of mouse testis metabolites in the AOS
0 and B+A 0 groups. (C) PCA of mouse testis metabolites in the B+A 0 and B+A 10 groups. (D) Heatmap of changed testis metabolites. (E) Enriched pathways of changed testis
metabolites in AOS 0 vs. AOS 10. (F) Enriched pathways of changed testis metabolites in B+A 0 vs. B+A 10. (G) PCA of mouse plasma metabolites in the AOS 0 and AOS 10
groups. (H) PCA of mouse plasma metabolites in the AOS 0 and B+A 0 groups. (I) PCA of mouse plasma metabolites in the B+A 0 and B+A 10 groups. (J) Heatmap of changed
plasma metabolites. (K) Enriched pathways of changed plasma metabolites in AOS 0 vs. AOS 10. (L) Enriched pathways of changed plasma metabolites in B+A 0 vs. B+A 10.
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The function of these differentially expressed
compounds were analyzed using the KEGG database
and the most enriched pathways in A0 vs. A10 were:
pantothenate and CoA biosynthesis, hedgehog
signaling pathway, purine metabolism, glutathione
metabolism, steroid  biosynthesis, and the
biosynthesis of unsaturated fatty acids (Figure 5E).
The most enriched pathways in BO vs. BA10 were:
pantothenate and CoA biosynthesis, pyrimidine
metabolism, purine metabolism, biosynthesis of
unsaturated fatty acids, sphingolipid metabolism,
arachidonic acid metabolism, neuronactive
ligand-receptor interaction, propanoate metabolism,
and glutathione metabolism (Figure 5F). Metabolism
plays a critical role in spermatogenesis [33], and lipid
metabolism is also known to be important in
spermatogenesis and male fertility [34,35].

AOS Improved Blood Metabolites

Since AOS can improve the testicular
microenvironment, next we investigated whether
AOS could affect blood metabolism and the
correlation between blood metabolism and testis
metabolism. The PCoA score plots revealed that the
groups in the following pairings could be clearly
separated: A10 and AO (Figure 5G), BO and A0 (Figure
5H), and BA10 and B0 (Figure 5I). Data indicated that
both AOS and busulfan changed the metabolic
profiles in blood. There were 105, 137, and 76
significantly altered metabolites (positive and
negative modes together) for the following three
blood sample comparisons: A0 vs. A10, A0 vs. BO, and
BO vs. BAI10, respectively (Table S6). Thirty-eight
compounds were common to all three comparisons.
The expression of these 38 compounds was also very
interesting because 26 compounds were increased by
busulfan (in A0 vs. BO) while they were reduced by
AOS (in BO vs. BA10), and 12 compounds were
reduced by busulfan (in A0 vs. B0O), however they
were increased by AOS (in BO vs. BA10; Figure 5J).
The data indicated that AOS rescued the compounds
that were disturbed by busulfan in mouse blood.

The functions of these differentially expressed
compounds were analyzed using the KEGG database.
The most enriched pathways in A0 vs. A10 are
presented in Figure 5K, including glutathione
metabolism, biosynthesis of unsaturated fatty acids,
fatty acid elongation in mitochondria, fatty acid
biosynthesis, fatty acid metabolism, pyrimidine
metabolism, and others. The most enriched pathways
in BO vs. BA10 were alpha-linolenic acid metabolism,
pyrimidine metabolism, steroid hormone
biosynthesis, and others (Figure 5L). The data
indicated that the most changed metabolites were
related to lipid metabolism, a process that is very

important for spermatogenesis and male fertility
[34,35]. The correlation of blood metabolites and testis
metabolite was determined based in Spearman’s
correlation coefficient. Most of the metabolites were
positively correlated together (Table S7). Moreover,
the data suggested that AOS might improve small
intestine function and the microbiota in the small
intestine through assisting digestion and absorption.

AOS Improved Intestinal Microbiota

In order to examine whether the rescuing effect
of AOS on spermatogenesis was associated with gut
microbiota, the bacterial 16s TRNA V3-4 region of
intestinal digesta was sequenced. The rarefaction
curve revealed that the data were reliable for further
analysis (Figure 6A). There was almost no difference
between the four treatment groups in richness
(Chaol) and diversity (Shannon) based on the alpha
diversity index (Figure 6B-C). Moreover, the OUT
based PLS-DA analysis showed that these four
treatment groups could be easily separated, especially
the A0 and A10 groups (Figure 6D). AOS altered the
relative abundance of the predominant bacteria in
murine intestinal digesta (Figure 6E; Table S8). The
three predominant bacteria were Lactobacillaceae,
Porphyromonadaceae, and Desulfovibrionaceae,
while the three relatively less-predominant bacteria
were Lachnospiraceae, Erysipelotrichaceae, and
Clostridiaceae (Figure 6E). AOS increased the
percentage of Lactobacillaceae from 32.21% (in A0) to
38.12% (A10), and from 34.03% (in BO) to 43.60%
(BA10; Table S8). However, AOS decreased the
percentage of Desulfovibrionaceae from 19.57% (in
A0) to 9.41% (A10), and from 20.20% (in BO) to 10.17%
(BA10; Table S8). AOS had little effect on the other
predominant bacteria in intestinal digesta. Moreover,
linear discriminant effect size (LEfSe) analysis
revealed that Proteobacteria (a phylum of
Desulfovibrionaceae) were significantly enriched in
the BO group, but not in the BA10 group (Figure 6F-
G). However, Bacteroidales was enriched in BA10 but
not in BO (Figure 6F-G). The data suggested that AOS
can increase “beneficial” bacteria such as
Bacteroidales and Lactobacillaceae and it can also
decrease “harmful” bacteria, such as
Desulfovibrionaceae [36-38] to improve the intestinal
microenvironment.

Metabolomics is an excellent tool for
investigating crosstalk between the host and gut
microbiota [39]. Therefore, Spearman’s correlation
coefficient ~was calculated between plasma
metabolites and gut microbiota. As shown in Figure
6H, fifteen  microflora  families, including
Lactobacillaceae, Porphyromonadaceae, Desulfo-
vibrionaceae, Enterobacteriaceae, Lachnospiraceae,
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Sutterellaceae,
Streptococcaceae,
caceae,
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Rikenellaceae,
Coriobacteriaceae,
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Ruminococ-
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Sedis_XI, Mycoplasmataceae, and Clostridiaceae had

I LT

correlations with the 38 metabolites (common plasma
metabolites in the following three comparisons: A0 vs.
A10, A0 vs. BO, and BO vs. BA10; Figure 6H).
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Lactobacillaceae and Desulfovibrionaceae were
best correlated with these 38 metabolites. The 26
compounds that were increased by busulfan (in A0 vs.
B0O) and decreased by AOS (in BO vs. BA10) were
negatively  correlated  with  Lactobacillaceae.
Lactobacillaceae were more abundant in AOS
treatment groups (in A10, and BA10) and less so in A0
and B0. The 12 compounds that were decreased by
busulfan (in A0 vs. B0) and increased by AOS (in BO
vs. BA10) were positively correlated with
Lactobacillaceae. The correlation of
Desulfovibrionaceae and blood metabolites was
opposite to that between Lactobacillaceae and blood
metabolites. Desulfovibrionaceae was more abundant
in non-AOS treatment groups (A0, and B0) and it was
positively correlated with the 26 compounds that
were increased by busulfan (in A0 vs. B0) and
decreased by AOS (in BO vs. BA10). However,
Desulfovibrionaceae was less abundant in AOS
treatment groups (A10, and BA10), and it was
negatively correlated with the 12 compounds that
were decreased by busulfan (in A0 vs. B0) and
increased by AOS (in BO vs. BA10). The data further
indicated that these two dominant bacteria may be
involved in AOS modification of blood metabolites
which may assist in the rescue of spermatogenesis.

Discussion

Worldwide, the incidence of cancer is continuing
to increase [8-10] and one of the most prevalent
cancers during reproductive age is leukemia [40,41].
Chemotherapy with alkylating agents such as
busulfan is an effective management for leukemia
especially in children; however, busulfan adversely
affects the male reproductive system, resulting in
oligospermia or azoospermia, and finally permanent
male sterility [8,15,16,42]. Moreover, it has been
reported that busulfan-induced male sterility in mice
is very similar to that in humans [43,44]. In the current
investigation, we found that one dose of busulfan (40
mg/Kg BW at 3 weeks of age) produced borderline
azoospermia in mice during adulthood (8 weeks of
age) which is consistent with many previous studies
[5-7]. However, busulfan plus AOS treatment (BA10)
increased sperm concentration and motility more than
three-fold compared to busulfan alone, which
suggested that AOS can rescue spermatogenesis.
Therefore, we set out to explore the underlying
mechanisms by which AOS improves
spermatogenesis by using 10x single cell RNA
sequencing analysis (scRNA-seq). In corroboration
with recent studies using scRNA-seq on human testis
samples, we found similar cell types in mouse testis
samples [1,2]. Germ cells can be separated into three
major clusters: SPGs, SPCs, and STs; SCs and LCs can

also be clustered together. AOS alone (A10) had little
effect on the proportion of germ cells compared to the
control (A0). Busulfan (B0) drastically decreased the
proportion of SPCs and STs, with the most common
cellular type in these mice being SCs and LCs.
Busulfan plus AOS (BA10) significantly increased the
proportion of SPGs and SPCs compared to BO. The
percentage of STs was also higher in BA10 compared
to BO, however, it was lower than that in A0 and A10.
Based on our data, we proposed that AOS protected
germ cell development in testes that had undergone
busulfan treatment. Moreover, the beneficial effects of
AOS on male germ cell development were mainly due
to the recovery of gene expression because AOS was
able to increase the expression and protein levels of
the prominent genes affecting spermatogenesis. These
beneficial effects may be the direct consequence of
AOS on testicular germ cells as the ex vivo (testis
culture) and in vivo data were consistent. Under these
two models, AOS was able to increase the expression
of genes important to spermatogenesis. Deeper
mechanisms may involve AOS in the regulation of
transcriptional factors which are important in
controlling gene expression.

It is known that metabolic regulation is essential
for spermatogenesis [33,45,46], and cholesterol and
lipid homeostasis play a vital role in male fecundity
[47-51]. Acting as nurse cells, Sertoli cells provide the
nutrients and energy for germ cell development.
Many components such as hormones and other
endogenous or exogenous factors have a synergistic
contribution to the homeostasis of metabolism in the
testis and the progression of spermatogenesis [33]. It
is known that the abnormal metabolism of lipids in
the reproductive system or blood contributes to male
infertility in humans [49-51]. In this study, we found
that busulfan wupset the homeostasis of lipid
metabolism in murine blood and testis samples, while
AOS reversed this change. These findings suggested
that AOS can regulate metabolism, especially lipid
homeostasis, to improve sperm development; indeed,
this is the first recorded finding of AOS regulating
metabolomes in the blood and testes.

Recently, there has been a rising interest
regarding the effect of the gut microbiome on human
physiology. It not only plays roles in metabolic related
disorders such as obesity and diabetes [52,53], but it
also affects other systems such as the nervous system
and reproductive system [54-56]. It has been reported
that the gut microbiota can influence reproductive
performance in both males and females as well as
their offspring [56]. In this study, we found that AOS
increased the “beneficial” bacteria such as
Bacteroidales and Lactobacillaceae while it decreased
“harmful” bacteria in murine small intestines. Gut
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microbiota can metabolize nutrients in the intestine
and can also regulate intestinal metabolites to
influence the blood metabolome [52,53]. In turn, while
travelling through other organs, blood metabolites
can influence their development or cause disorders
[54-56]. Our current study suggested that the blood
and testis metabolome and gut microbiota interacted
together under AOS treatment to mitigate busulfan
disruption of spermatogenesis.

AOS rescued busulfan disrupted
spermatogenesis by  improving germ  cell
development, the testis and blood metabolome, and
gut microbiota. These beneficial advantages of AOS
can be used to improve male reproduction in patients
under busulfan or other cancer-drug treatments.
Worldwide, 20% - 35% of couples are infertile [1,3,57],
and many of them have idiopathic failed
gametogenesis (spermatogenesis); we propose that
AOS may have implications for these infertile couples
through the improvement of spermatogenesis.

Materials and Methods

Study design: In vivo and ex vivo

All animal procedures were approved and
conducted in accordance with the Qingdao
Agriculture University Animal Care and Use
Committee. Mice were maintained under a light:dark
cycle of 12:12h, at a temperature of 23 °C and
humidity of 50%-70%; they had free access to food
(chow diet) and water [58].

In vivo: Mouse exposure to busulfan and/or
AOS

Three-week-old ICR male mice were given a
single injection of busulfan (40 mg/kg BW) [5]. The
following day, the mice were dosed with ddH>O as
the control or AOS 10 mg/kg BW via oral gavage
(0.1 ml/mouse/d). Our preliminary experiments
found that 10 mg/kg was the optimum concentration
for rescuing murine spermatogenesis disrupted by
busulfan. AOS dosing solution was freshly prepared
on a daily basis and delivered every morning for two
weeks. There were four treatment groups (30
mice/treatment): (1) AO (vehicle control, ddH>O); (2)
A10 (AOS 10 mg/kg BW); (3) BO (busulfan alone); and
(4) BA10 (busulfan plus AOS 10 mg/kg BW). After
treatment, the mice were humanely euthanized to
collect samples for different analyses.

Ex vivo: Mouse testes exposure to busulfan
and/or AOS

Three-week-old ICR male mice were given a
single injection of 40 mg/kg BW of busulfan [5]; the
mice were then raised normally. After two weeks, the
testes were collected for culture. Meanwhile, similar

age matched non-busulfan treated mouse testes were
also collected for culture. There were six treatment
groups (six testes/treatment; repeated three times):
(1) AO (ex vivo) (DMEM/F12 medium with 10% FBS);
(2) A10 (ex vivo) (AOS 10 pg/mL in DMEM/F12
medium with 10% FBS); (3) A50 (ex vivo) (AOS 50
ng/mL in DMEM/F12 medium with 10% FBS); (4) BO
(busulfan alone; DMEM/F12 medium with 10% FBS);
(5) BA10 (ex vivo) (busulfan plus AOS 10 pg/mL
in DMEM/F12 medium with 10% FBS); (6) BA50 (ex
vivo) (busulfan plus AOS 50 pg/mL in DMEM/F12
medium with 10% FBS). Culture took place in an
incubator at 37 °C and 5% CO: for 48 h. Subsequently
the cultured testes were collected for isolation of total
RNA; these samples then underwent RNA-seq
analysis.

Evaluation of spermatozoa motility using a
computer-assisted sperm analysis system

Spermatozoa motility was assessed using a
computer-assisted sperm assay (CASA) method
according to World Health Organization guidelines
[57,58].

Morphological observations of spermatozoa

The resected murine caudal epididymides were
placed in RPMI medium, finely chopped, and then
Eosin Y (1%) was added for staining as described
previously [57,58].

Assessment of acrosome integrity

Acrosomal integrity was determined by an
intense staining on the anterior region of the sperm
head under bright-field microscopy (AH3-RFCA,
Olympus, Tokyo, Japan) and scored accordingly
[57,58].

Single cell library preparation, sequencing, and
data analysis [single cell RNA-sequencing
(scRNA-seq)]

Single cell library preparation and sequencing.
Single cell libraries were constructed with a 10x
Genomics Chromium Single Cell 3' Library & Gel
Bead Kit v2 (10% Genomics Inc., Pleasanton, CA, USA,
120237) following the manufacturer’s instructions.
Single cell sample collection followed the methods
reported by Wang et al. [1]. Briefly, mouse testes were
resected, seminiferous tubules were cut into small
pieces, and then washed with PBS three times to
remove the spermatozoa. Subsequently, the tissue
was digested using TrypLE express (Invitrogen) for 15
min at 37 °C (in culture, in an incubator). The single
cells were collected by filtration using a 40 pm filter.
Cells were then washed twice with PBS solution
supplemented with 0.04% bovine serum albumin
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(BSA, Sigma, St. Louis, MO, USA, A1933). Trypan
blue staining and a hemocytometer (Bio-Rad,
Hercules, CA, USA, TC20) were used to detect cell
viability. Six individual mouse testicular cells were
collected, combined together, then a concentration of
1000 cells/pl was used for loading onto the single cell
chip (one/group). A Chromium 10x Single Cell
System (10xGenomics) was used to form the Gel-Bead
in Emulsions (GEMs). Cells were then barcoded and a
cDNA library was constructed. The sequencing
protocol used an Illumina HiSeq X Ten sequencer
(Illumina, San Diego, CA, USA) with pair end 150 bp
(PE150) reads.

Single sample analysis and aggregation.
CellRanger  v2.2.0 software (https:/ /www
.10xgenomics.com/) was used to process the datasets
using the “--force-cells = 5000” argument. The 10x
Genomics pre-built mouse genome for mm10-3.0.0
(https:/ /support.10xgenomics.com/ single-cell-genee
xpression/software/downloads/ latest) was
referenced [59].

Subclustering and gene ontology enrichment
analysis. After characterization of all cell clusters in
murine small intestine samples, cells were further
clustered based on their cell identity. To obtain the
same type of cells for downstream analysis, the
“SubsetData” function was applied. After clustering,
cluster-specific marker genes were identified using
the “FindAllMarkers” function. The marker genes
were used for enrichment analysis in Metascape
(http:/ /metascape.org).

Single-cell pseudo-time trajectory analysis.
Monocle 2 (v2.8.0) was used to determine the
single-cell pseudo-time trajectory
(http:/ / cole-trapnell-lab.github.io/monocle-release/t
utorials/) [60,61]. The Monocle object was formed
using the Monocle implemented “newCellDataSet”
function from the Seurat object with a
lowerDetectionLimit = 0.5.

Single cell regulatory network analysis. To find
the gene regulatory networks during small intestine
cell development, we performed regulatory network
inference  and  clustering  using = SCENIC
(https:/ / github.com/aertslab/SCENIC), a modified
method for inferring with gene regulatory networks
from single-cell RNA-seq data [31].

RNA-seq analysis for ex vivo testes samples

Transcriptomics were analyzed as described in
our early articles [62].

Sequencing of microbiota from small intestine
digesta samples and data analysis [63]

DNA Extraction. Total genomic DNA of small
intestine digesta was isolated using an E.Z.N.AR

Stool DNA Kit (Omega Bio-tek Inc., Norcross, GA,
USA) following the manufacturer’s instructions. DNA
quantity and quality were analyzed using NanoDrop
2000 (Thermo Scientific, USA) and 1% agarose gel.
Ten samples/ groups were determined.

Library preparation and sequencing. The V3-V4
region of the 165 rRNA gene was amplified using the
primers MPRK341F (50-ACTCCTACGGGAGGCAGC
AG-30) and MPRKB806R: (50-GGACTACHVGGGT
WTCTAAT -30) with Barcode.

Analysis of sequencing data. Operational
taxonomic unit abundance information was
normalized using a standard of sequence number
corresponding to the sample with the least sequences.
The alpha diversity index was calculated with QIIME
(Version 1.7.0). The Unifrac distance was obtained
using QIME (v. 1.7.0), and PCoA (principal
coordinate analysis) was performed using R software
(Version 2.15.3). The linear discriminate analysis effect
size (LEfSe) was performed to determine differences
in abundance; the threshold LDA score was 4.0.
GraphPad Prism7 software was used to produce the

graphs.

Plasma and testis metabolite measurements
by LC-MS/MS

Plasma samples were collected and immediately
stored at -80 °C. Before LC-MS/MS analysis, the
samples were thawed on ice and processed to remove
proteins. Testis samples were collected and the same
amount of tissue from each mouse testis was used to
isolate the metabolites using CH30OH: H20 (V:V) =
4:1. Then samples were detected by ACQUITY UPLC
and AB Sciex Triple TOF 5600 (LC/MS) as reported
previously [39]. Fifteen samples/group were
analyzed for plasma or testis samples.

Histopathological analysis

Testicular tissues were fixed in 10% neutral
buffered formalin, paraffin embedded, cut into 5 pm
sections, and subsequently stained with hematoxylin
and eosin (H&E) for histopathological analysis.

Immunofluorescence staining (IHF)

The procedure for immunofluorescence staining
is reported in our recent publications [58,64]. Table S9
lists the primary antibodies.

Western blotting

Western  blotting analysis followed the
procedure reported in our previous publications
[58,64]. Briefly, testis tissue samples were lysed in
RIPA buffer containing a protease inhibitor cocktail
from Sangong Biotech, Ltd. (Shanghai, China). Protein
concentration was determined by BCA kit (Beyotime
Institute of Biotechnology, Shanghai, P.R. China).
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Information for primary antibodies is given in Table
S9.

Statistical analysis

Data were analyzed wusing SPSS statistical
software (IBM Co., NY, USA) with one-way analysis
of variance (ANOVA) followed by LSD multiple
comparison tests. All groups were compared with
each other for every parameter. Data is shown as the
mean + SEM. Statistical significance was based on
p <0.05.

Supplementary Material

Supplementary materials and methods, figures, and
tables. http:/ /www.thno.org/v10p3308s1.pdf
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