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Abstract 

Rationale: High-intensity focused ultrasound (HIFU) therapy represents a noninvasive surgical approach 
to treat uterine fibroids. The operation of HIFU therapy relies on the information provided by medical 
images. In current HIFU therapy, all operations such as positioning of the lesion in magnetic resonance 
(MR) and ultrasound (US) images are manually performed by specifically trained doctors. Manual 
processing is an important limitation of the efficiency of HIFU therapy. In this paper, we aim to provide an 
automatic and accurate image guidance system, intelligent diagnosis, and treatment strategy for HIFU 
therapy by combining multimodality information. 
Methods: In intelligent HIFU therapy, medical information and treatment strategy are automatically 
processed and generated by a real-time image guidance system. The system comprises a novel multistage 
deep convolutional neural network for preoperative diagnosis and a nonrigid US lesion tracking 
procedure for HIFU intraoperative image-assisted treatment. In the process of intelligent therapy, the 
treatment area is determined from the autogenerated lesion area. Based on the autodetected treatment 
area, the HIFU foci are distributed automatically according to the treatment strategy. Moreover, an 
image-based unexpected movement warning and other physiological monitoring are used during the 
intelligent treatment procedure for safety assurance. 
Results: In the experiment, we integrated the intelligent treatment system on a commercial HIFU 
treatment device, and eight clinical experiments were performed. In the clinical validation, eight randomly 
selected clinical cases were used to verify the feasibility of the system. The results of the quantitative 
experiment indicated that our intelligent system met the HIFU clinical tracking accuracy and speed 
requirements. Moreover, the results of simulated repeated experiments confirmed that the 
autodistributed HIFU focus reached the level of intermediate clinical doctors. Operations performed by 
junior- or middle-level operators with the assistance of the proposed system can reach the level of 
operation performed by senior doctors. Various experiments prove that our proposed intelligent HIFU 
therapy process is feasible for treating common uterine fibroid cases. 
Conclusion: We propose an intelligent HIFU therapy for uterine fibroid which integrates multiple 
medical information processing procedures. The experiment results demonstrated that the proposed 
procedures and methods can achieve monitored and automatic HIFU diagnosis and treatment. This 
research provides a possibility for intelligent and automatic noninvasive therapy for uterine fibroid. 
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Introduction 
Uterine leiomyomas (fibroids or myomas), the 

most common tumor in the female reproductive 
system, have a high prevalence (77%) and can cause 
reproductive dysfunction [1-3]. Magnetic medical 

image-guided high-intensity focused ultrasound 
(HIFU) therapy has rapidly evolved in recent years as 
a noninvasive treatment for uterine fibroids that 
improves prognosis and avoids incisions. To achieve 
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precision theranostics, multisource images should be 
processed intelligently to identify the lesion. 
However, diagnosis and operation in HIFU therapy 
currently largely depend on manual operation by 
specifically trained doctors, which represents a 
significant limitation for improving efficiency and 
accuracy. Automatic, accurate and real-time 
processing of magnetic resonance (MR) and 
ultrasound (US) images faces many challenges, 
especially in the clinical environment. For uterine 
fibroid diagnosis based on multisource 1T and 2T MR 
images, many obstacles remain in the accurate 
segmentation of MR images for HIFU treatment. In 
contrast to other kinds of tumors, uterine fibroids may 
vary in size and location. Additionally, the low 
contrast boundaries and image grayscale differences 
caused by the low quality of US images make 
detection of the lesion area difficult. Therefore, 
high-precision, automatic detection of uterine fibroids 
and intelligent HIFU focus distributing strategies are 
urgently needed. 

Some studies of image-assisted surgery have 
focused on intraoperative image-guided therapy [4-5]. 
Liao et al. proposed an integrated diagnosis and 
therapeutic system using intraoperative 
5-aminolevulinic acid-induced fluorescence-guided 
robotic laser ablation for precision neurosurgery [6]. 
For image-assisted surgery, many studies have 
combined different preoperative and intraoperative 
medical images to assist treatment, such as MR, 
computed tomography (CT) and X-ray images [7-8]. 
These studies discuss some imaging methods and 
image utilization, but the processes of diagnosis and 
treatment have remained separate. 

Noninvasive HIFU therapy has been widely 
studied for different lesion treatments. Seo et al. 
presented a visual tracking method for coagulation 
lesions in a moving target. They applied coagulation 
lesion tracking to a special US-guided robotic HIFU 
system, and motion compensation was investigated 
using a moving kidney phantom based on respiratory 
motion data. Their study focused on the use of HIFU 
systems for lesion identification and included model 
experiments [9]. Although respiratory-induced organ 
motion compensation was added in follow-up work 
[10], and a kidney stone treatment experiment was 
carried out [11], the complications in the clinic were 
still not fully considered. Over the last few years, 
several studies and image processing methods for US 
video real-time processing have been reported [12-14]. 
Pernot et al. used a triangulation method and three 
echoing signals [15]. The results showed that a 
moving lesion can be located accurately by detecting 
the location of a single point. Oliveira et al. applied a 
US sensor to estimate the motion of a moving organ 

[16]. However, sensor-based methods depend on 
special hardware systems and lack tumor location 
abilities. MR image segmentation is the main 
component of preoperative image-assisted diagnosis. 
Existing HIFU MR image segmentation methods are 
broadly classified into level set-based approaches [17], 
morphological operations-based approaches [18], and 
semiautomated-based approaches [19]. For example, a 
semiautomatic-based approach based on a region- 
growing segmentation technique for uterine fibroid 
segmentation in MR-guided HIFU treatment was 
proposed [20] and tested in three cases. Rundo et al. 
used the above method for fibroid segmentation with 
a sensitivity of 84% [20]. However, the methods 
proposed in these papers were not fully automatic; 
seed points needed to be manually selected but could 
not be selected accurately in some intractable cases. 
Fallahi et al. used the fuzzy c-means algorithm and 
morphological analyses to segment MR images of 
uterine fibroids in two steps and obtained an average 
Dice similarity coefficient (DSC) of 79.9% [21] in 10 
cases. Although these methods achieved automatic 
uterine fibroid segmentation, the testing data reported 
in these papers were typical and limited.  

In this research, we propose a multi-information 
fused automatic real-time image-guided diagnosis 
and treatment system for HIFU therapy. The system 
framework includes automatic uterine fibroid 
diagnostics; intraoperative US lesion tracking and 
intelligent HIFU focus distribution strategies. All 
image information involved in HIFU treatment is 
automatically processed and fused. The strategy of 
operation is generated based on the fused image 
information. 

Methods 
Intelligent HIFU treatment strategy 

The proposed intelligent theranostics system is 
illustrated in Figure 1. As a kind of noninvasive 
therapy, medical images are the basic information for 
the operation. We aim to completely automate image 
processing and generate a reliable basis for diagnosis 
and treatment. Other factors, including physiological 
signals, reflect the current physical condition of the 
patient. The proposed image-guided HIFU therapy is 
implemented under the supervision and confirmation 
of a doctor. 

Our strategy for intelligent noninvasive HIFU 
therapy is shown in Figure. 2. Images information is 
extracted by the intelligent diagnostics and planning 
processing from the involved medical devices, 
including MR, US and HIFU devices. All this 
information is combined into a global information set 
and used to determine the treatment strategy. The 
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HIFU probe treats the lesion area based on this 
information. The treatment strategy is monitored by 
medical images and physiological indicators. 

Additionally, the doctor further confirms and 
monitors all information during treatment to ensure 
safety. 

 

 
Figure 1. The proposed intelligent HIFU therapeutical framework is applied in the image-based HIFU diagnostic and treatment processing. The framework includes diagnosis and 
treatment parts. In the diagnosis part, morphology and spatial information in preoperative and intraoperative medical images can be accurately obtained and provided to the 
treatment strategy. In the treatment part, the HIFU focuses are distributed automatically by the proposed treatment strategy. For safety, the entire process is monitored by 
image-based monitoring step and doctors. 

 
Figure 2. Intelligent HIFU treatment strategy for uterine fibroids. Diagnostic and planning information is generated from the automatic medical image processing system and 
provided to the HIFU treatment system. Automatic and manual monitoring is applied to ensure safety. 
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To initialize the contour of the intraoperative 
lesion, accurate preoperative image segmentation at 
both the structural and sequence scales is needed. 
Intraoperative initialization requires both the 
structural information from the image and accurate 
spatial position correspondence. Therefore, we fuse 
and transfer the structure and position information 
from the preoperative image to the intraoperative 
stage. In the intraoperative stage, lesion information 
obtained from image processing is used as the 
primary treatment basis. The automatically identified 
lesion area is treated with the confirmation of the 
doctor. Warning and handling of accidents are also 
necessary. However, movement of the patient when 
she feels uncomfortable can lead to unexpected focus 
shifts, and the treatment process needs to be stopped 
when such events occur. Warnings about large 
movements are also sent. Finally, our intelligent HIFU 
therapy mode combines automatic image information 
processing confirmed by the doctor. 

Joint preoperative and intraoperative 
information are combined with general lesion 
information for treatment. During the processing of 
medical images in HIFU therapy, the MR and US 
images are processed separately and combined with 
the results of the position information acquired from 
the HIFU device. The proposed procedure has four 
associated steps: 

Step I: Preoperative diagnosis and planning. A 
novel multistage convolutional neural network is 
proposed to segment the uterine fibroids in the MR 
image for preoperative diagnosis. Three different 
parts of the network are connected to extract image 
features from the sequence scale, structure scale and 
pixel scale. Different stages of the network reduce the 
possibility of fibroid misjudgment by extracting 
effective lesion information. 

Step II: Contour initialization of the 
intraoperative lesion region. The rigid registration is 
completed based on the spatial information of the 
HIFU device and the MR device. Then, the 
segmentation results obtained from preoperative MR 
images are used as the initial contour for subsequent 
tracking in the intraoperative US image. 

Step III: Intraoperative lesion tracking. An 
improved morphological active contour without 
edges (MACWE) [22] method is used to deform the 
contour of the lesion in the real-time ultrasound 
scanning. To address the problem of poor processing 
of ultrasound images by the discrete and small 
morphological operators in the conventional method, 
we propose a special single operator. 

Step IV: Based on the auto-outlined lesion area, 
the HIFU foci are automatically distributed in the 
autoidentified lesion area. An image-based auto 

unexpected movement warning and human 
monitoring are used to guarantee safety. 

Automatic preoperative image diagnosis and 
multimodal fusion 

To achieve automatic preoperative image 
diagnosis, we propose a multistage convolutional 
neural network for MR image segmentation and a 
rigid MR-US registration procedure. 

The proposed segmentation network consists of 
three components as illustrated in Figure 3. The main 
problem of MR image segmentation is the locational 
uncertainty of uterine fibroids. To solve this problem, 
we use a pyramidal network structure to reduce the 
irrelevant parts at three image scales: the MR 
sequence scale, physiological structure scale and pixel 
scale. To perform these tasks, the neural network has 
three associated stages. Stage I: A classification 
network is harnessed to judge the existence of fibroids 
in the MR image and determine the section of the 
fibroids in the MR sequence, reducing the possibility 
of fibroid misjudgment in an integrated MR sequence. 
Stage II: A physiological structure processing 
convolutional network with a special structure 
automatically decreases the influence of unrelated but 
remarkably similar areas. Stage III: The processed 
image is input into the segmentation network. To 
improve the effectiveness of the processing network, 
we test two different baseline segmentation networks. 

After the uterine fibroids are recognized and 
segmented from the MR image, the contour result is 
combined with the MR device’s spatial information 
and the HIFU device's position information. The 
fused information, which consists of preoperative 
lesion contour and position information, is used to 
initialize the US video. 

The initial contour of the intraoperative lesion 
tracking is obtained from preoperative MR 
segmentation results, spatial information of the HIFU 
device and intraoperative US video. The position of 
the patient during the operation is fixed. Thus, we can 
obtain the corresponding spatial information of the 
patient’s body in the US image, defined as P p 

U , from 
the positioning system. Similarly, the position 
information of the human body in the preoperative 
MR image, P p 

M, can be obtained. The MR segmentation 
results can be set as the initial contour for the US 
lesion tracking relay on P p 

U  and P p 
M. Thus, accurate MR 

segmentation is important. 

Uterine fibroid section judgment network on the 
sequence scale 

In the semantic segmentation task, the pixels are 
not equal in complexity, and the background or 
simple part accounts for most of the image [23]. 
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Because of the lower number of calculations, the 
accuracy and speed of target segmentation can be 
improved by distinguishing pixels in the image [24]. 
Similar to the natural image, most of the images in the 
MR sequence have no lesions but have other 
structures. Segmenting all the images in the sequence 
not only increases the number of computations but 
also causes false positives in blank images. Therefore, 
we regard the image without uterine fibroids as the 
background of the MR sequence. A shallower 
classification network is proposed to dispose of the 
easier classification task and transfer the harder 
positions to a deeper segmentation network. The 
effective image information of the sequence scale can 
be extracted. 

In classification tasks, an excessively deep 
classification network consumes more computer 
memory and results in degradation [25]. A suitable 
convolutional neural network (CNN) model can 
analyze a hierarchy of feature representations. 
Different from natural image classification, the tumor 
judgment is a binary classification task, and the 
difference between the categories is also obvious. 
Therefore, an excessively deep network is 
unnecessary. Considering the complexity of tumor 
judgment and the high spatial resolution of the 
low-level features from shallow layers of the CNN, 
we designed a mathematical model of the CNN 

structure with lower complexity that is more suitable 
for uterine fibroid classification.  

The model contains three convolution blocks and 
two fully connected blocks. Each convolution block 
consists of convolution, batch normalization (BN) and 
max-pooling layers. The sigmoid classifier, as the final 
output layer, produces the probability distribution of 
tumor judgment and maps the real number from 0 to 
1. To train the classification network, we use an 
objective function derived from binary cross-entropy, 
which is suitable for binary classification with the use 
of the sigmoid. Because the ratio of the positive class 
and the negative class is imbalanced by 1:2, we add a 
weight to each class on the loss function. The loss 
function L1 is from the weighted binary cross-entropy 
for the classification network [26]. 

In clinical applications, false-negative errors of 
tumor judgment are inevitable and more severe than 
false-positive errors for diagnosis. To avoid the 
occurrence of false-negative errors in actual fibroid 
sections, the simple fibroid judgment is replaced by 
fibroid section judgment. The image before the first 
image with fibroids is defined as the beginning of the 
section, and the image after the last image with 
fibroids is defined at the end of the section. This 
procedure ensures that the true region of the lesion is 
covered as much as possible. The procedure of fibroid 
section judgment is shown in Figure 4. 

 

 
Figure 3. Multistage segmentation network. Stage I: Uterine fibroid classification task to obtain the fibroid section at the MR sequence scale. Stage II: Image structure 
processing task to reduce the influence from unrelated but remarkably similar regions in the image. Stage III: Multiscale feature segmentation task for uterine fibroid objects that 
contain the encoder path and decoder path. 
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Figure 4. Schematic procedure of uterine fibroids section judgment. (A) Sample MR sequence with a true section (black). (B) Classification results in the MR sequence. (C) 
Adding supplements (blue) into the uterine fibroid section by a proposed procedure. (D) The final result of fibroid section judgment. 

 
Physiological structure and pixel scale uterine fibroid 
segmentation network 

The HIFU clinical dataset used in the paper was 
provided by the National Engineering Research 
Center of Ultrasound Medicine. The MR dataset was 
collected from six different hospitals and five different 
MR scanners (uMR 570 1.5T scanner, UMI, China; 
MAGNETOM Verio 3.0T scanner, Siemens, Germany; 
MAGNETOM Sonata 1.5T scanner, Siemens; GE Signa 
HDXT 1.5T scanner, GE, USA; Philips Achieva 3.0T 
scanner, Philips, the Netherlands). The multisource 
causes variation in the image morphology. 
Occasionally, some regions that are extremely similar 
to uterine fibroids in grayscale and shape appear in 
the MR image. Such interference regions lead to 
misjudgment in the segmentation result. 
Conventional mathematical methods have some 
limitations for processing images with large 
morphological differences, such as a lack of 
generality. To solve the problems of data difference 
and image internal interference, we draw on the idea 
of domain adaptation and instance normalization 
[27-28] and propose a structural-scale processing 
network before performing the segmentation task. 

The proposed physiological structure processing 
network aims to eliminate the disadvantages and 
reduce the adverse effects of image diversity, as 
illustrated in Figure 3. Building upon a hierarchical 
structure, the structure processing network contains 
two 7 × 7 convolution layers, which are not followed 
by the pooling layer as usual. Basic image features are 
extracted by a convolution kernel, and the level of the 
feature is positively related to the number of layers in 
the convolution. Different from the high-level 
extraction network, the role of the two convolution 
layers is similar to a low-pass Gaussian filter, and the 
convolution kernel is similar to a Gaussian kernel. The 
output feature map is the image with the details 
removed. The uterine fibroid MR image is shown in 
the sagittal direction, and the interference area more 
often appears in the longitudinal region. 

As shown in Figure 3, the third convolution layer 
we propose is a linear convolution layer with a special 

convolution kernel with a size of 1×256 and a better 
receptive field on the x scale. Different from the 
previous two convolution layers, the third 
convolution layer extracts the grayscale value by the 
dot product value of the convolution kernel and the 
image matrix. Each value expresses the image 
grayscale feature on the x scale and constitutes the 
initial image in the gray feature tensor. To prevent 
calculation errors caused by a zero denominator in the 
dividing operation, we add a unit vector to the feature 
tensor and produce the gray feature tensor. The last 
step of the preprocessing network is to divide the 
image by the gray feature tensor and obtain the 
preprocessed image. 

The architecture of the segmentation baseline 
consists of two parts, the encoder and decoder paths. 
Each path contains five blocks (two 3×3×3 
convolutional, BN and max-pooling layers). To train 
the fibroid segmentation CNN model, we use the 
sigmoid classifier to semantically segment the image 
and determine the probability of whether the pixel 
belongs to the uterine fibroids. 

The loss function we use is the DSC, which is 
optimized using the adaptive-moment-estimation 
(Adam) method [29]. The Dice coefficient attaches 
more importance to the shared presence of the target 
area. The loss function L2 for the segmentation 
network is defined as 

 (1) 

where the sums run over the N voxels of the 
predicted binary segmentation region yn∈Y and the 
ground truth binary region xn∈X. The DSC considers 
only the contribution of the shared target region of 
individual similarity and ignores the shared context. 
The DSC loss function has the advantage of minor 
calculations and is suitable for uterine fibroid 
segmentation [30]. 

The networks of stage II and stage III are trained 
together, and multiple stages are optimized together 
end-to-end. With forward propagation, the weight in 
both network parts can be adjusted simultaneously. 
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The MR images in the experiments were resized to 256 
× 256 in two dimensions. Each selected case included 
the following characteristics: 1) preoperative MR 
images of signal and multiple cases, 2) MR series 
collected by different MRI machines, 3) manual 
delineation of the fibroid contour by two experienced 
obstetricians on the source images. Finally, 320 cases 
were gathered with permission, and each case 
contained 25 images. To train the CNN model, 320 
cases were randomly divided into three sets 
comprising 250 cases as the training dataset, 30 cases 
as the validation dataset, and 40 cases as the testing 
dataset. The model parameters were saved 
automatically when the highest validation accuracy 
was obtained. All CNN models were trained and 
tested on a workstation outfitted with an NVIDIA 
GeForce 1080 Ti Graphics processing Unit (GPU). We 
used an adaptive-moment estimation with a batch 
size of 4 and epochs of 200. During training, the 
learning rate was set as damped with an initial value 
of 0.01 and an attenuation rate of 0.9 in 1,000 global 
steps. 

Real-time HIFU ultrasound processing and 
focus distribution for uterine fibroid treatment 

Nonrigid lesion tracking in intraoperative ultrasound 
video 

The demands of image-guided HIFU therapy are 
real-time processing and accurate lesion contour. The 
deformation of the contour is completed by MACWE. 
The entire framework of intraoperative US processing 
is illustrated in Figure 5. 

Before the lesion tracking task, the original US 
image needs to be preprocessed. The focused 
ultrasound probe of the HIFU device is mounted in a 
sink that causes an echo in the US image. Unlike 
conventional ultrasound examination with the 
ultrasonic couplant, the HIFU ultrasound probe 
cannot be close to the patient's skin. The gap between 
the probe and the skin introduces noise in the 
ultrasound image. Thus, denoising and contrast 
enhancement of the image are required. In contrast to 
normal image noise, the echo speckle in the US image 
generally has a shape and a larger structure. We use a 
morphologically similar operation instead of ordinary 
image filtering. 

An interfering structure that can easily be 
identified in HIFU ultrasound images is the bladder. 
The morphology of the bladder is similar to that of 
fibroids in US images due to the internal liquid. To 
improve image contrast and reduce disturbance, 
especially in the lesion, we use an efficient linear 
conversion to highlight the lesion and remove the 
bladder. The entire preprocessing function of an input 
US frame In 

u  is 

        
(2) 

where κ is the kernel of similar operation 
and 𝒞𝒞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the initial contour from MR segmentation 
results. 

 

 
Figure 5. Global image guidance procedures for HIFU treatment. Rigid MR-US registration is based on the position information obtained from the HIFU device and preoperative 
MR image. Nonrigid and real-time US lesion tracking is under the compound detection of the lesion’s contour and large movement. The entire framework is accelerated by GPU. 



Theranostics 2020, Vol. 10, Issue 10 
 

 
http://www.thno.org 

4683 

In many clinical cases, the lesion area in the 
intraoperative ultrasound is incomplete due to 
continuous tissue deformation, resulting in significant 
error that we call ‘overflow’ in the contours produced 
by the MACWE. To solve this problem, we added an 
incomplete area processing procedure in the level set 
generation step. The procedure detects the proportion 
of the level set. If most values are positive (inclined 
gradients) in the level set, the contours are essentially 
aligned with the real lesion area. The incomplete area 
processing is defined as 

(3) 

Based on the morphological active contours 
without edges (MACWE) model, we propose an 
improved method to specifically target the lesion area 
in HIFU ultrasound images. The basis points for the 
clinician to judge the lesion area in the ultrasound 
image are relative position, regional grayscale, and 
regional shape. Generally, the model-based image 
segmentation method requires accurate initialization 
of the contour, which is solved by the previous rigid 
MR-US registration. Thus, mainly the shape and 
grayscale characteristics of the lesion are considered. 

In [22], morphological operators such as partial 
differential equations were shown to exhibit 
infinitesimal behavior, and a complex morphological 
operator was proposed to smooth the implicit 
hypersurfaces of the region. The preprocessed HIFU 
ultrasound image has a more pronounced contrast 
than the original image, but the speckles present in 
the image still have a large impact on the edge 
judgment. Therefore, we mainly consider the 
difference in grayscale inside and outside the contour. 
For a given curve C and image I, the function [31] can 
be represented as 

 (4) 

where μ, v, λ1 and λ2 are the parameters of each 
term, and 𝑐𝑐1 and 𝑐𝑐2 are the mean values inside and 
outside the contour of I 

(5) 

For a given preprocessed US frame I  n(p) 
u , the 

current hypersurface in I n(p) 
u  is defined as the level set 

1/2 of a binary embedding function un: Ζ → {0, 1} 
based on the initialized contour Χ n 

init The traditional 

single iterative morphological ACWE algorithm can 
be represented as 

 
(6) 

where Dd and Ed are the erosion and dilation 
operations, respectively. SI◦IS is the compound 
morphological operation. 

To automate the process, we set image feature 
parameters μ, v, λ1 and λ2 as the unit values. Finally, 
the algorithm is represented as 

 
(7) 

In the previous algorithm, the morphological 
operations in SI◦IS consist of four discrete segments 
𝒦𝒦3= {k 1 

3 , k2 
3 , k3 

3 , k4 
3 }. The operators are the length of 

three pixels and involve all shapes of the edge. This 
form of the operator has a good effect on natural 
image segmentation. The targets in the natural image 
usually have a clear relationship between structure 
and semantics. However, the uterine fibroids in the 
HIFU US image generally have internal structures. 
This kind of character causes grayscale differences 
inside the lesion. During the operation, the clinician 
mainly focuses on the outer contour of the uterine 
fibroids rather than the internal structure. Although 
existing discrete operators have better sensitivity to 
subtle structures, the small discrete operators obtain 
undesirable contours and make some mistakes, 
especially in HIFU ultrasound images with low signal 
noise ratio (SNR). To obtain the external contour of 
the lesion, we replace the 𝒦𝒦3 morphological operator 
by a single large segment 𝒦𝒦15= {k15} with a length of 
fifteen pixels. For larger-sized operators, smaller 
interference structures in the image can be removed 
during morphological operations. Additionally, the 
computational time of a single operator is less than 
four operators. The operator 𝒦𝒦15 and the effect of 𝒦𝒦15 

on fine structure removal are shown in Figure 6. 
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Figure 6. Comparison of the effects of the 𝒦𝒦3 and the 𝒦𝒦15 on internal structure 
processing. Compared with the conventional morphological operator 𝒦𝒦3, the 
proposed morphological operator 𝒦𝒦15 has a better effect on removing the irrelevant 
subtle structure due to its continuity and larger kernel. 

 
The entire algorithm flow, including 

morphological operations, template matching, and 
mutual information, involves matrix operations that 
can be calculated by the GPU efficiently. We 
implement all matrix operations in the GPU by 
processing each pixel in the US image with one 
corresponding GPU thread. The parallel computing 
speed achieves triple or quadruple the improvement 
compared with central processing unit (CPU) 
processing and satisfies the real-time guidance 
requirement in the clinic. 

Image-based HIFU intraoperative unexpected 
movement monitoring 

In HIFU therapy, the patient is requested to lie 
prone on the HIFU device and avoid body movement. 
However, displacement during surgery is inevitable. 
Therefore, monitoring of large movement and timely 
interruption of treatment are necessary for intelligent 
HIFU treatment. To detect large movement in the 
current frame, mutual information (MI) detection is 
performed every 10 frames in the US video. For 
ultrasound video with 30 FPS, every-ten-frame 
detection implies a one-third second monitoring 
period to meet clinical monitoring requirements. The 
formula [32] for the current frame is 

 

(8) 

When a large movement is detected, the alarm 
message is sent and forces the treatment to stop until 
the image is stable. To maintain the tracking accuracy 
of lesions during large movement, we apply a 
template-matching method of normalized 
cross-correlation (NCC) [33] to find the best matching 
position with the initial contour in a limited range. 
Based on the empirical displacement of the lesion 
between frames, we can select the corresponding 

matching range [a, b]. The NCC results for image I 
and template u as random variables with samples ui, 
li, i = a…b are defined as follows: 

 (9) 

where var(x) and E(x) represent the empirical 
mean and variance for vectors x∈Ρb-a. After Π is 
confirmed, the vector from Π to the centroid of 
contour Cn is considered a moving force m with a 
parameter to α next frames. 

Finally, the last step of tracking is defined as 

 (10) 

Image-based HIFU focuses on distributing for uterine 
fibroid treatment 

In HIFU therapy, the focused ultrasound probe 
applies energy to the lesion area. To accurately 
automate the focus distribution based on the 
processed image, the ultrasound probe images the 
layered lesion area under the control of a controller. 
The ultrasound probes move at the same interval in 
the same direction, which spatially produces a layered 
ultrasound image and the entire abdomen. Finally, 
the 2D distribution in each layer is combined into a 3D 
focus distribution. Our method tracks the lesion area 
in the ultrasound image at the current location. 
Therefore, the proposed intelligent treatment plan is 
implemented separately in each layer of the 
ultrasound video. 

In the proposed intelligent HIFU treatment 
process, we deploy the focus distribution based on the 
real-time lesion contour. According to clinical 
experience, we choose one quarter of the center of the 
lesion contour as the intelligent treatment area. In this 
treatment area, the focus of the focused ultrasound is 
evenly distributed at 0.5 cm. The final focus is 
three-dimensionally distributed in the lesion based on 
the automatically identified lesion contour. All 
movements and focus distribution are intelligently 
completed based on fused information. The proposed 
image-based HIFU focus distributing strategy is 
shown in Figure 7. 

Experiments and Results 
The experiment includes three parts: 

preoperative MR segmentation accuracy evaluation, 
intraoperative US lesion area tracking accuracy 
evaluation, and systematic clinical experiments. For 
the evaluation of intraoperative ultrasound lesion 
tracking, we first evaluated the accuracy and 

𝒫𝒫(𝐈𝐈,𝐮𝐮) = 𝐸𝐸 �� 𝑢𝑢−𝐸𝐸[𝐮𝐮]
�𝑣𝑣𝑣𝑣𝑣𝑣 (𝐮𝐮)

� � 𝐈𝐈−𝐸𝐸[𝐈𝐈]
�𝑣𝑣𝑣𝑣𝑣𝑣 (𝐈𝐈)
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processing time of the lesion tracking method. 
Afterward, we evaluated the improvements in our 
proposed methods and procedures. Finally, we 
integrated our system with the clinical system to 
provide image-guided information to doctors in 8 
clinical HIFU surgeries. To verify the feasibility of the 
intelligent HIFU therapy, we additionally evaluated 
our image-guided system to help improve the HIFU 
surgical learning curve. 

Evaluation of preoperative diagnostic 
information 

The preoperative diagnostic information 
includes preoperative MR image segmentation and 
MR-US rigid registration. Because the accuracy of 
MR-US rigid registration is based on the accuracy of 
the HIFU and MR devices, we mainly evaluated the 
performance of the multistage MR segmentation 
network. 

We present a series of experiments to analyze the 
impact of each of the main contributions and to justify 
the choices made in designing the proposed 
end-to-end segmentation network of uterine fibroids 
and the US tracking procedures. To quantitatively 
evaluate the performance of the present method, the 
DCS and Jaccard index (JI) [34] were employed as 
evaluation metrics. 

We calculated the average values for DCS and JI 
in the testing dataset with the baseline (segNet) and 
the proposed structure processing network (Str- 
segNet) and entire network (Seq-Str-segNet) to 
validate the improvement of the structure scale 
processing stage and sequence scale processing. The 
quantitative comparison of the evaluation metric for 
each method is reported in Table 1. As shown in Table 
1, the segmentation network with the proposed 
structure processing network achieved a better DSC 

and JI of 81.17±15.75 and 73.17±16.44. The large 
variations in the data source are reflected in a 
standard deviation (SD) of 15%-17%, but our method 
achieved a better SD of 1-2% than the method of 
comparison. The results from Table 1 indicate that the 
classification stage improved the DCS accuracy in the 
segmentation task by 7.41%. 

 

Table 1. Results with different segmentation method for the 
uterine fibroids segmentation 

Segmentation model DSC JI 
Seq-Str-segNet 81.17±15.75 73.17±16.44 
Str-segNet 79.78±17.63 71.82±18.87 
segNet 73.76±19.82 64.22±20.09 

 
Figure 8 illustrates the segmentation results for 

four different types of uterine fibroids processed by 
our proposed multistage network and the 
segmentation baseline. Our method accurately 
delineated uterine fibroids in single, multiple and 
different types of cases with better results than the 
segmentation baseline. 

Performance of the real-time US lesion 
tracking 

In the real-time US lesion tracking experiment, 
the accuracy of real-time lesion tracking procedures 
and the calculating efficiency for clinical HIFU 
guidance were evaluated. The computing platform 
included a CPU (Intel (R) Core (TM) i7-4790K) and a 
GPU (NVIDIA GeForce 1080 Ti). The corresponding 
US videos with HIFU device information were 
provided by the National Engineering Research 
Center of Ultrasound Medicine (JC200/300 Haifu 
treatment system, Haifu, China). We randomly 
selected 10 typical and clinical cases as the 
experimental US image data. 

 

 
Figure 7. The proposed intelligent HIFU focuses on distributing the process. The spatially layered ultrasound images are obtained from a moving probe. We distribute the HIFU 
focus in the treatment area evenly and separately. The treatment area is defined as one-quarter of the center of the tracked lesion contour. 
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Figure 8. (A) Four sample MR images with different sources, including single and multiple. (b) The ground truth of the uterine fibroids. (C) The segmentation results of uterine 
fibroids obtained by the multistage segmentation network. (E) The segmentation results of uterine fibroids obtained by the baseline network. (F) Comparison of the ground truth 
(red) and segmentation results by the proposed method (yellow). 

 

Table 2. The evaluation results of the proposed 𝒦𝒦15 and 𝒦𝒦3 in DSC, HD (mm) and IoU  

 
Frame 

𝒦𝒦ernel 𝒦𝒦15|𝒦𝒦3 

DSC(case1) 
𝒦𝒦15|𝒦𝒦3 

HD(case1) 
𝒦𝒦15|𝒦𝒦3 

IoU(case1) 
𝒦𝒦15|𝒦𝒦3 

DSC(case2) 
𝒦𝒦15|𝒦𝒦3 

HD(case2) 
𝒦𝒦15|𝒦𝒦3 

IoU(case2) 
#0  0.95|0.95 1.40|1.40 0.93|0.93 0.95|0.95 1.40|1.40 0.93|0.93 
#100  0.93|0.92 1.75|3.50 0.89|0.91 0.93|0.92 1.75|3.50 0.89|0.91 
#200  0.92|0.87 2.45|3.15 0.88|0.83 0.92|0.87 2.45|3.15 0.88|0.83 
#300  0.92|0.78 1.50|3.15 0.92|0.80 0.92|0.78 1.50|3.15 0.92|0.80 
#400  0.90|0.76 1.75|3.85 0.89|0.80 0.90|0.76 1.75|3.85 0.89|0.80 
#500  0.92|0.71 1.75|5.25 0.92|0.81 0.92|0.71 1.75|5.25 0.92|0.81 
#600  0.93|0.79 1.75|4.2 0.88|0.83 0.93|0.79 1.75|4.2 0.88|0.83 

 
We used two 20-second US videos manually 

labeled by the doctor (as the gold standard) to 
quantitatively evaluate the improved MACWE. The 
content was used to assess the accuracy of lesion 
tracking and the calculation efficiency. In the previous 
description, we proposed a single morphological 
operator 𝒦𝒦15 for MACWE instead of the traditional 
discrete morphological operator 𝒦𝒦3. To verify the 
rationality of the change, we compare the accuracy 
and efficiency of 𝒦𝒦15 and 𝒦𝒦3. The tracking results for 
two examples of 𝒦𝒦15 and 𝒦𝒦3 are shown in Figure 9. 
The first line is the gold standard, the second line is 
the tracking result of 𝒦𝒦15, and the third line is the 
tracking result of 𝒦𝒦3. The results show that the 
contour of 𝒦𝒦15 is more accurate than that of 𝒦𝒦3 and 
has better robustness. To quantitatively evaluate the 
results of two kernels, we used DSC, the Hausdorff 
distance (HD in mm) [35] and intersection over union 
(IoU) as the evaluation indicators. As shown in Figure 
10 and Table 2, 𝒦𝒦15 provides better results 

comprehensively. In addition, we tested the 
computational efficiency of the two kernels on the 
same computing platform, as shown in Table 3. 𝒦𝒦15 is 
twice as fast as 𝒦𝒦3 on the GPU and more than three 
times faster on the CPU. 

 

Table 3. Comparison of the computation speed of the proposed 
𝒦𝒦15 and 𝒦𝒦3 in one iteration 

Computing platform 𝒦𝒦15 𝒦𝒦3 
CPU (ms) 20 68 
GPU (ms) 8 16 

 
We also evaluated the proposed large 

displacement detection and incomplete area 
processing method. First, we verified the performance 
of large displacement detection as shown in Figure 11. 
The lesion area was displaced up and down due to the 
movement of the probe. A total of 8 frames were 
detected by the MI method as a large movement, and 
template matching was performed with the initial 
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contour. The result, which was identified as valid, 
provided the moving force to the contour (blue 
contour) and had more accurate tracking results. By 
contrast, the contour without this procedure (red 

contour) completely missed the real lesion area. To 
visualize the results of lesion tracking, four different 
ultrasound lesion tracking videos are shown in Movie 
1 (Supplementary Movie 1). 

 

 
Figure 9. The gold standard of the two 20 s examples was qualitatively compared with the lesion tracking results of 𝒦𝒦3 and 𝒦𝒦15. The red contour is manually drawn, the yellow 
contour is generated by 𝒦𝒦3 and the blue contour is generated by 𝒦𝒦15. 

 
Figure 10. The gold standard of the two cases was quantitatively compared with the lesion tracking results of 𝒦𝒦3 and 𝒦𝒦15. The result of 𝒦𝒦15 is better than 𝒦𝒦3 on DSC and HD. 
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Figure 11. The process of large deformation detection to correct the contour of the lesion. The red contour was without large deformation detection, and the blue contour 
was with large deformation detection. 

 
Clinical experiments and evaluation of the 
feasibility of intelligent HIFU therapy 

To assess the feasibility of the proposed 
intelligent treatment strategy, we integrated the 
system with a commercial HIFU system (JC200/300 
Haifu treatment system, Haifu, China) and performed 
clinical surgical validation. In the clinical trial, the 
operations were performed under the joint guidance 
and assistance of preoperative MR segmentation and 
intraoperative real-time ultrasound lesion contours. 
In the experiment, the HIFU focus was distributed 
according to the proposed intelligent treatment 
procedure. One doctor monitored and confirmed the 
position of the focus through the real-time US image. 
Additionally, another doctor simulated a traditional 
HIFU treatment procedure on the same patient’s data, 
and the traditional HIFU focus distribution was used 
as the gold standard. The surgical side of the surgical 
scene is shown in Figure 12. 

A total of 8 clinical experiments were performed, 
and clinical information of the surgical procedure was 
recorded. Each case was randomly selected and 
included preoperative and intraoperative images, 
spatial coordinates and metrology of the 
intraoperative focused ultrasound focus, 
postoperative contrast-enhanced ultrasound, and MR 
images. An image-guided treatment process is shown 
in Movie 2 (Supplementary Movie 2). During the 
surgery, when the image guidance system showed 
that the focus (green point) was in the lesion area, the 
focused ultrasound probe applied energy (red point) 
at the focus. A medical image of one of the cases is 
shown in Figure 13. The red box is the preoperative 
MR segmentation result and 3D model, the yellow 
box is the intraoperative ultrasound video and image 

guidance system, and the green box is the 
postoperative contrast-enhanced ultrasound image 
and postoperative MR image. 

Furthermore, we compared the focus 
distributions simulated generated by different 
operators. We used the focus performed by the senior 
doctor (Senior, with rich clinical experience) as the 
gold standard, including the distribution and number 
of foci. Foci automatically distributed by the proposed 
intelligent strategy were recorded (Auto). The 
procedure was then simulated by both an 
intermediate operator (Intermediate, with basic HIFU 
surgery training) and by a junior operator (Junior, 
without HIFU surgery training) with image guidance 
and without image guidance. Two examples of the 
experimental results are shown in Figure 14. The 
focus in the green box is the gold standard, and the 
focus in the white box is the intelligent distribution. 
The foci in the red and yellow boxes are the foci 
operated by the junior operator, and the purple and 
pink boxes are the foci of the intermediate operator. 

As shown in Figure 14, the focus produced from 
the intelligent treatment strategy is even and closer to 
the intermediate-with-guidance’s distribution. The 
intermediate-with-guidance distribution is closer to 
the gold standard in terms of quantity and spatial 
distribution. By contrast, the focus without image 
guidance is more dispersed, including beyond the 
region of treatment. To quantify the spatial similarity 
of the focus, the average value of the IoU in the focus 
of each layer of the US image was calculated. As 
shown in Table 4, there were fewer focal points under 
image guidance than without image-guided ultra-
sound. Additionally, the spatial position of the image- 
guided focus was more similar to the gold standard. 
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Figure 12. (A) is the system involved in the experiment, our image guidance system is integrated on the operating platform (D), and the patient is located on the device. (B) and 
(C) show the operation side of the surgical scene in the experiment. The patient is behind the isolation cloth. 

 
Figure 13. Medical image information contained in each clinical experiment case. Each case included (A) preoperative MR segmentation results and (B) 3D models, (C) 
intraoperative ultrasound images and (D) fused images, (E) postoperative ultrasound contrast, and (F) postoperative MR images. 

 
Figure 14. Comparisons of the spatial distribution of the HIFU focus that generated by different operators. Within the green box is the focus of the gold standard obtained by 
the senior doctor (A)(D). The white box is the focus of the intelligent treatment strategy. The blue box and the purple box are the simulated repeated focus of the junior 
operator. The red box and the yellow box are the simulated repeated focus of the intermediate operator. The upper results (B1)(C1)(E1)(F1) are generated without image 
guidance. The lower results (B2)(C2)(E2)(F2) are generated under image guidance. 
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Table 4. Comparison of the quantity and similarity of the HIFU focus distribution performed by the senior doctor, intermediate 
operation and junior operator 

 
No. 

Number of focuses  IoU (%) 
Senior Intermediate 

(w/ |w/o) 
Junior 
(w/ |w/o) 

Auto  Senior Intermediate 
(w/ |w/o) 

Junior 
(w/ |w/o) 

Auto 

1 25 50|63 33|44 48  / 61|57 59|36 63 
2 96 106|125 98|113 103  / 65|55 53|37 67 
3 53 76|89 63|77 71  / 71|59 55|42 73 
4 32 41|54 41|49 39  / 73|62 47|33 75 

 

 
Figure 15. Two learning curves produced by two people with the same HIFU 
experience with or without image guidance. 

 
We also evaluated the learning curves of two 

trainees with similar levels of understanding of HIFU 
and repeated eight cases in the same order with or 
without image guidance. Figure 15 shows the trend of 
focus accuracy for the two operators in the eight 
replicate experiments. The learning curve with image 
guidance has a slow upward trend and a high average 
similarity. By contrast, the learning curve without 
image guidance increases faster, but the similarity is 
generally lower. The trend of the learning curve 
indicates the rate at which the trainee obtains 
information from the learning process. The trainees 
obtained more accurate objective information and 
reduced their judgment when guided by images. 
Clinical experiments and repeated experiments 
showed that the proposed HIFU image guidance 
system can meet clinical needs and enable guidance 
and assistance of the surgical operation in real HIFU 
surgery. Additional experiments showed that the 
image guidance system can compensate for the 
inexperience of the operator to a certain extent and 
improve the accuracy and efficiency of the operation. 
Accurate image information can also help reduce 
learning costs. 

Discussion  
In HIFU therapy, automatic, efficient, and 

precise processing of different medical information is 
vital. In this paper, we propose an intelligent and 
real-time HIFU theranostics strategy for uterine 
fibroids and applied this strategy in clinical treatment. 

Different medical images were processed and 
integrated by several novel methods and procedures. 
The treatment strategy generated valid HIFU focus 
distributions based on auto-obtained joint medical 
information. For preoperative diagnosis, we propose 
a novel multistage neural network for MR image 
segmentation. Different scale information of the MR 
image is screened by the network. The segmentation 
results of the MR images are transmitted to the treat-
ment processes as the diagnostic information. In the 
intraoperative part, we integrate the spatial position-
ing information of the HIFU device with real-time 
processing of intraoperative ultrasound to provide 
image guidance for the doctor. In addition, we 
propose an improved MACWE method and multiple 
procedures to address clinical image problems. An 
image-based unexpected movement warning and 
other physiological monitoring options are used 
during the intelligent treatment procedure for safety 
assurance. Finally, the treatment strategy is generated 
from image-based intraoperative information. 

To evaluate the efficiency of our image guidance 
system, we evaluated preoperative MR image 
segmentation accuracy and intraoperative ultrasound 
lesion tracking accuracy and performed clinical trials. 
The experiments confirmed that the entire pipeline 
could address complex data from clinical HIFU 
environments. In the evaluation of US lesion tracking 
methods, we compared the automatically obtained 
lesion contour with the manually labeled contour and 
showed that the proposed method obtained an 
accuracy of 90.67%. The evaluation experiments 
showed that the proposed framework not only had 
better robustness for HIFU ultrasound images but 
also had a faster calculation speed than the 
conventional method. The entire image calculating 
speed could reach 30 FPS. In clinical experiments, we 
integrated the image guidance system with the 
commercial HIFU system and performed 8 
procedures. Clinical experiments on volunteers 
verified that the intelligent treatment strategy could 
achieve the basic distribution of HIFU foci. Moreover, 
the image guidance system effectively reduced the 
difficulty of HIFU operation based on evaluations of 
the learning curve. 

The proposed intelligent HIFU theranostics 
strategy proved feasible in quantitative and clinical 
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trials. However, at the current stage, the doctor still 
needs to confirm and monitor the operation and 
communicate with patients to ensure efficacy and 
safety during intelligent HIFU operation. In future 
work, more physiological signals will be integrated 
into the system for more comprehensive information 
acquisition. Moreover, the dosage of high-intensity 
ultrasound will be considered in the intelligent 
treatment strategy. To develop future intelligent 
HIFU theranostics, we will further focus on automatic 
surgical planning and the combination of decision- 
making and information. More intraoperative 
information will be included in subsequent studies, 
especially intraoperative feedback. 

Conclusion 
In this work, we introduced an intelligent HIFU 

theranostics system. The system includes auto lesion 
detection in preoperative MRI and intraoperative 
real-time US images, an intelligent HIFU focus 
distribution strategy image-based unexpected 
movement monitoring. Several new proposed 
methods are used to ensure the accuracy and 
efficiency of the automatic theranostics procedure. 
Quantitative and qualitative experiments show that 
our system can accurately obtain lesion information 
and provide intelligent therapy in clinical cases. 

Supplementary Material  
Supplementary movie 1. 
http://www.thno.org/v10p4676s1.mp4  
Supplementary movie 2. 
http://www.thno.org/v10p4676s2.mp4  
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