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Abstract 

Rationale: Some patients with coronavirus disease 2019 (COVID-19) rapidly develop respiratory failure 
or even die, underscoring the need for early identification of patients at elevated risk of severe illness. 
This study aims to quantify pneumonia lesions by computed tomography (CT) in the early days to predict 
progression to severe illness in a cohort of COVID-19 patients. 
Methods: This retrospective cohort study included confirmed COVID-19 patients. Three quantitative 
CT features of pneumonia lesions were automatically calculated using artificial intelligence algorithms, 
representing the percentages of ground-glass opacity volume (PGV), semi-consolidation volume (PSV), 
and consolidation volume (PCV) in both lungs. CT features, acute physiology and chronic health 
evaluation II (APACHE-II) score, neutrophil-to-lymphocyte ratio (NLR), and d-dimer, on day 0 (hospital 
admission) and day 4, were collected to predict the occurrence of severe illness within a 28-day follow-up 
using both logistic regression and Cox proportional hazard models.  
Results: We included 134 patients, of whom 19 (14.2%) developed any severe illness. CT features on day 
0 and day 4, as well as their changes from day 0 to day 4, showed predictive capability. Changes in CT 
features from day 0 to day 4 performed the best in the prediction (area under the receiver operating 
characteristic curve = 0.93, 95% confidence interval [CI] 0.87~0.99; C-index=0.88, 95% CI 0.81~0.95). 
The hazard ratios of PGV and PCV were 1.39 (95% CI 1.05~1.84, P=0.023) and 1.67 (95% CI 1.17~2.38, 
P=0.005), respectively. CT features, adjusted for age and gender, on day 4 and in terms of changes from 
day 0 to day 4 outperformed APACHE-II, NLR, and d-dimer. 
Conclusions: CT quantification of pneumonia lesions can early and non-invasively predict the 
progression to severe illness, providing a promising prognostic indicator for clinical management of 
COVID-19. 
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Introduction 
In December 2019, coronavirus disease 2019 

(COVID-19), caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), emerged in 
Wuhan, capital of Hubei province in China [1]. The 
virus quickly spread throughout China and to many 
other countries/regions, with globally 1,353,361 
confirmed cases and 79,235 deaths reported by WHO 
as of April 8, 2020 [2]. Most patients of COVID-19 
have mild symptoms, but a few could develop severe 
pneumonia, pulmonary edema, acute respiratory 
distress syndrome (ARDS), multiple organ 
dysfunction syndrome or even die. In one epidemical 
report of COVID-19 by China Center for Disease 
Control (CDC), among 44,672 confirmed cases, severe 
patients accounted for 13.8%, and critically ill patients 
accounted for 4.7% [1]. The crude case fatality ratio for 
critically ill patients was 49.0%, and the average risk 
of death within a 10-day follow-up was 0.325 for these 
patients [1]. Another recent study revealed that the 
28-day case fatality ratio among critically ill patients 
was as high as 61.5% [3]. It is important to unravel the 
risk factors associated with severe illness and identify 
patients at an early stage who are most likely to have 
poor outcomes to focus on prevention and treatment 
efforts [4]. 

Several biomarkers have been used to evaluate 
the severity of patients with infectious pneumonia 
and to guide clinical interventions, such as the acute 
physiology and chronic health evaluation II 
(APACHE-II) score [5], as well as laboratory 
indicators including neutrophil-to-lymphocyte ratio 
(NLR) and lactate level [6-8]. These clinical 
biomarkers have been employed to predict prognosis 
in patients with ARDS [7, 9, 10] or severe acute 
respiratory syndrome (SARS) [11]. However, they are 
not accurate enough to assess the infection and mostly 
involve invasive examinations, which may elevate the 
risk of virus exposure and healthcare-associated 
infection. Furthermore, the scoring systems like 
APACHE-II are subjective and time-consuming, 
which could delay the clinical management against 
the COVID-19 outbreak. A high level of d-dimer was 
recently reported as a risk factor for poor outcomes in 
COVID-19 patients [12, 13]. However, the predicting 
performance of d-dimer has not been studied.  

Chest computed tomography (CT) holds great 
value in screening, diagnosing, and following up 
COVID-19 patients [14-16]. CT assessment has been 
added as an important criterion for COVID-19 
diagnosis and subtyping to the 6th version of national 
diagnosis and treatment protocols of COVID-19 in 
China [17]. However, currently, CT of COVID-19 is 
often manually evaluated by radiologists, which is 
very subjective with large inter- and intra-observer 

variability thus unable to accurately and 
quantitatively evaluate the disease severity and is also 
time-consuming and inefficient. It is now recognized 
that artificial intelligence (AI) holds promise for 
deriving quantitative CT features and precisely 
predicting the risk of lung cancer and poor outcomes 
of ARDS [10, 18-20]. However, to the best of our 
knowledge, associations between AI-derived CT 
features quantifying pneumonia lesions and the risk 
of severe illness in patients with the emerging 
COVID-19 have not yet been reported. If AI-derived 
features from CT at an early stage of COVID-19 can be 
used to predict progression to severe illness, they can 
be particularly beneficial because CT is noninvasive 
and easily accessible and AI is time-efficient.  

Therefore, this work aimed to investigate the 
capability of quantitative CT imaging features 
compared with traditional clinical biomarkers in 
predicting progression to severe illness in the early 
stages of COVID-19.  

Materials and Methods 
Patients 

This retrospective cohort study was approved by 
the Ethics Committee of Shanghai Public Health 
Clinical Center (YJ-2020-S035-01). Informed consent 
was waived since the study is retrospective and is part 
of a public health outbreak investigation. As a tertiary 
hospital for diagnosis and management of infectious 
diseases and threats against public health for adults 
and youngsters (i.e., ages ≥14 years) and a WHO 
designated training organization for new emerging 
infectious diseases, the Shanghai Public Health 
Clinical Center is the only designated hospital for 
treating COVID-19 in Shanghai.  

In this study, 197 patients with 
laboratory-confirmed COVID-19 were admitted to 
Shanghai Public Health Clinical Center between 
January 20, 2020 and February 3, 2020. The inclusion 
criteria of our study were (a) confirmed positive 
SARS-CoV-2 nucleic acid test by the Shanghai CDC 
and (b) thin-section CT examinations and laboratory 
tests on day 0 (the day of admission) and day 4 (4±1 
days after admission). Exclusion criteria included (a) 
severe illness on day 0 or before (n=4), (b) no CT 
examinations on day 4 (n=52), and (c)incomplete 
physiologic tests to derive APACHE-II score on day 4 
(n=7). Finally, a total of 134 patients with COVID-19 
were included in this study. The procedure to enroll 
patients was conducted, as shown in Figure 1. 

Clinical data collection and CT examinations 
On day 0 and day 4, records of blood tests, 

including d-dimer level and NLR, were reviewed for 
enrolled patients. Also, the APACHE-II score was 
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calculated based on 12 physiologic criteria, age, and 
previous conditions for each patient. 

Chest CT examinations were performed using a 
64-slice CT scanner (Hitachi Medical, Japan) without 
contrast agents on day 0 and day 4. Standard lung 
algorithm settings were used as follows: 120 kV and 
automatic tube current (180 mA-400 mA); iterative 
reconstruction technique; detector, 64 mm; rotation 
time, 0.35 second; section thickness, 5 mm; 
collimation, 0.625 mm; pitch, 1.5; matrix, 512×512.  

AI-based quantization of CT images 
As shown in Figure 2, the Quantitative 

Evaluation System of CT for COVID-19 (YT-CT-Lung, 
YITU Healthcare Technology Co., Ltd., China) was 
employed as the CT image quantization and analysis 
tool under supervision of two board-certified 
radiologists with more than 10 years of experience. 
The system combined a fully convolutional network 
with adaptive thresholding and morphological 
operations for segmentation of lungs and pneumonia 
lesions [21, 22]. External validation with 383 axial CT 
images from 206 patients showed a Dice coefficient of 
82.08% for COVID-19 pneumonia lesion segmentation 
(unpublished data from our other study with a focus 
on the development and validation of the AI system). 
By thresholding on CT values in the pneumonia 
lesions, three quantitative features were computed, 
including the percentages of lesion volume with 
ranges of -700~-500 Hounsfield units (HU), -500~-200 

HU, and -200~60 HU. The three AI-derived CT 
features corresponded to percentages of ground glass 
opacity (GGO) volume (PGV), semi-consolidation 
volume (PSV), and consolidation volume (PCV), 
where semi-consolidation was defined as the area of 
intermediate homogeneous increase in density [23].  

Endpoint Definition 
The endpoint was the severe-event-free survival, 

which was defined as the time from the date of 
admission to that of severe illness occurrence (i.e. any 
severe events). All patients were followed up to the 
first onset of severe illness, or otherwise for 28 days. 
According to the guidelines of national diagnosis and 
treatment protocols for COVID-19 [17] and the 
guidelines of American Thoracic Society [24], severe 
illness was defined as a condition with any severe 
event based on one major criterion, two or more 
minor criteria, or two criteria of additional organ 
dysfunction, as follows:  

(a) Major criteria: respiratory failure requiring 
mechanical ventilation; shock with the need for 
vasopressors; extracorporeal membrane oxygenation 
(ECMO) treatment;  

(b) Minor criteria: multilobar infiltrates; 
respiratory rate ≥ 30 breaths/min; arterial oxygen 
pressure (PaO2) < 60 mmHg; PaO2/FiO2 ratio ≤ 300 
mmHg; oxygen saturation ≤ 93%; hemoptysis 24 h ≥ 
100 mL;  

 

 
Figure 1. Flow diagram of the study population. 
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Figure 2. CT image quantization and analysis with artificial intelligence (AI) system. CT images acquired on the day of admission (day 0, in the lower right panel of the figure 
denoted as “Previous”) and acquired four (±1) days after admission (day 4, upper right denoted as “Current”) can be compared using histograms (upper left) and AI-derived 
quantitative features. Here, on day 0, the percentage of ground-glass opacity (GGO) volume, percentage of semi-consolidation volume, and percentage of consolidation volume 
were 0.7, 0.6 and 0.1, while on day 4, they increased to 10.8, 26.1 and 11.5. 

 
(c) Criteria of additional organ dysfunction: 

multilobar infiltrates; other organ damage. Here, 
other organ damage covers any one of the following: 
(c.1) damage to the cardiovascular system: heart 
function graduation ≥ IV level by New York Heart 
Association heart function rating; pulmonary arterial 
hypertension; lower limb thrombosis; severe coma 
3~8 points (Glasgow Score); (c.2) acute liver function 
damage: alanine aminotransferase > 5 times upper 
limit of normal, according to the liver function test 
guidelines released by American College of 
Gastroenterology; (c.3) acute kidney injury: increase 
in serum creatinine (SCr) to ≥ 2 times baseline, 
according to Kidney Disease Improving Global 
Outcomes SCr criteria. 

None of the finally included patients had severe 
illness on day 0. The time when a patient later 
developed severe illness during the follow up (i.e., the 
severe-event-free survival) was recorded.  

Statistical Analysis 
Patients were divided into two groups according 

to the severity of illness (severe vs. non-severe). 
Continuous variables were expressed as the median 
and interquartile range (IQR) and were compared 
between groups using the Wilcoxon rank-sum test. 

Categorical variables were expressed as number and 
percentage, and Chi-square or Fisher’s exact tests 
were applied for appropriate comparisons between 
groups. We conducted both binary logistic regression 
and survival analysis to explore the association 
between the predictive features and the development 
of severe illness. 

Multivariate logistic regression models were 
constructed to make binary predictions for the 
adverse outcomes (i.e. severe or non-severe) using 
APACHE-II, NLR, d-dimer, CT features, and NLR 
combined with all CT features (denoted as NLR+CT 
features). The prediction performance was estimated 
and reported with the area under the receiver 
operating characteristic (ROC) curve (AUC). All 
logistic models were adjusted for traditional clinical 
variables including age and gender. ROC 
comparisons were performed using DeLong’s 
method. 

For survival analysis, Kaplan-Meier survival 
curves and log-rank analyses were first used to 
analyze the individual effects of CT features, 
APACHE-II, NLR, and d-dimer on the 
severe-event-free survival. In Kaplan-Meier survival 
analysis, each variable was binarized by the median. 
Subsequently, multivariate Cox proportional hazard 



Theranostics 2020, Vol. 10, Issue 12 
 

 
http://www.thno.org 

5617 

models were built for APACHE-II, NLR, d-dimer, CT 
features, and NLR+CT features, with age and gender 
considered as potential confounders. The 
performance of the Cox proportional hazard model 
was evaluated with the concordance index (C-index). 

All analyses were conducted with R software 
version 3.6.2 (R Foundation for Statistical Computing, 
Vienna, Austria). A two-tailed P-value less than 0.05 
was considered as statistically significant. 

Results 
Basic characteristics of patients 

Demographic and clinical characteristics of 134 
patients with COVID-19 are enumerated in Table 1. 
The median age was 51.5 years (IQR 37.0~65.0; range 
15.0~80.0), and 63 (47.0%) patients were male. For 
epidemic exposure history to the source of 
transmission, recent travel to Hubei, contact with 
people from Hubei, and close contact with confirmed 
patients were documented in 64.2%, 11.2%, and 12.7% 
of patients, respectively. Fever (81.3%) and cough 
(39.6%) were the most common symptoms, and there 
were 4 (3.0%) asymptomatic patients.  

No patients were lost to follow-up. A total of 19 
(14.2%) patients progressed to severe illness during 
the follow-up, among whom 6 (31.6%) met the major 
criteria of severe illness, 10 (52.6%) met the minor 
criteria, and 3 (15.8%) met the criteria of additional 
organ dysfunction. The median time from admission 
to the occurrence of severe illness was 9 days (IQR 

6.5~12.5; range 3.0~16.0). The median duration from 
admission to the occurrence of severe illness that met 
the major criteria, the minor criteria and the 
additional organ dysfunction were 9.5 days (range 
5.0~14.0), 7.0 days (range 3.0~16.0) and 10.0 days 
(range 4.0~11.0), respectively. 

Severe (63.0 years, IQR 40.0~65.5) patients were 
older than the non-severe (50.0 years, IQR 36.0~64.0), 
but the difference was not of statistical significance 
(P=0.086). There were significantly more males in the 
severe group than the non-severe group (78.9% vs 
41.7%, P=0.006). The highest temperature was 
significantly higher in the severe group (38.5 ℃, IQR 
38.0~38.8) than the non-severe group (38.0 ℃, IQR 
37.4~38.4, P=0.015). Other demographic and clinical 
variables listed in Table 1 showed no significant 
differences between the two groups (all P>0.05). The 
median time from symptom onset to admission was 
4.0 days (IQR: 2.0~7.0; range:0~20.0) in the severe 
group, while that was 6.0 days (IQR: 3.5~7.5; 
range:1.0~14.0) in the non-severe group. Days from 
symptom onset to admission were not significantly 
different between the two groups (P=0.176). 

CT features, APACHE-II, NLR, and d-dimer in 
the severe and non-severe groups 

Comparisons of CT features, APACHE-II, NLR 
and d-dimer between severe and non-severe patients 
on day 0, day 4 and their changes from day 0 to day 4 
are depicted in Supplemental Table S1. 

 

Table 1. Demographic and clinical characteristics of the patients 

 All patients (n=134) Severe (n=19) Non-severe (n=115) P 
Age, year (IQR) 51.5(37.0~65.0) 63.0(40.0~65.5) 50.0(36.0~64.0) 0.086 
Male, n (%) 63(47.0%) 15(78.9%) 48(41.7%) 0.006 
Exposure to the source of transmission, n (%)    0.297 
 Never been to Hubei 12(9.0%) 3(15.8%) 9(7.8%)  
 Recently been to Hubei 86(64.2%) 10(52.6%) 76(66.1%)  
 Contacted with people from Hubei 15(11.2%) 1(5.3%) 14(12.2%)  
 Contacted with patients 17(12.7%) 4(21.1%) 13(11.3%)  
Symptoms, n (%)     
 No symptoms 4(3.0%) 0(0.0%) 4(3.5%) 1.000 
 Fever 109(81.3%) 18(94.7%) 91(79.1%) 0.199 
 Highest temperature, ℃ (IQR) 38.0(37.5~38.5) 38.5(38.0~38.8) 38.0(37.4~38.4) 0.015 
 Cough 53(39.6%) 10(52.6%) 43(37.4%) 0.315 
 Sputum production 24(17.9%) 5(26.3%) 19(16.5%) 0.334 
 Shortness of breath 3(2.2%) 0(0.0%) 3(2.6%) 1.000 
 Headache and dizziness 8(6.0%) 1(5.3%) 7(6.1%) 1.000 
 Sore throat 7(5.2%) 0(0.0%) 7(6.1%) 0.593 
 Fatigue 26(19.4%) 3(15.8%) 23(20.0%) 1.000 
 Poor appetite 13(9.7%) 2(10.5%) 11(9.6%) 1.000 
 Sore muscle 13(9.7%) 0(0.0%) 13(11.3%) 0.213 
 Diarrhea 6(4.5%) 0(0.0%) 6(5.2%) 0.594 
 Chest distress 7(5.2%) 1(5.3%) 6(5.2%) 1.000 
 Chill 5(3.7%) 0(0.0%) 5(4.3%) 1.000 
Pre-existing conditions     
 Hypertension 27(20.1%) 6(31.6%) 21(18.3%) 0.217 
 Diabetes 10(7.5%) 3(15.8%) 7(6.1%) 0.152 
 Coronary heart disease 5(3.7%) 1(5.3%) 4(3.5%) 0.540 
Days from symptom onset to admission 4.0(2.0~7.0) 6.0(3.5~7.5) 4.0(2.0~7.0) 0.176 

Note: IQR: Interquartile Range. 
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On day 0, significant differences were observed 
for all three CT features between severe and 
non-severe patients (all P<0.01). NLR was 
significantly higher in the severe group than in the 
non-severe group (P=0.010). D-dimer levels were also 
higher in the sever group (P=0.011). However, 
APACHE-II exhibited no significant differences 
between the two groups (P=0.518).  

On day 4, all three CT features were significantly 
higher in severe patients than in non-severe patients 
(all P<0.001). APACHE-II (P=0.019), NLR (P<0.001) 
and d-dimer (P=0.003) were also significantly higher 
in the severe group than in the non-severe group.  

Regarding the changes from day 0 to day 4, all 
CT features showed a more distinct increase in the 
severe patients (all P<0.001), while the clinical 
biomarkers (e.g. APACHE-II, NLR, and d-dimer) 
showed no significant increase. 

An example of the differences in CT 
manifestations between the severe and non-severe 
groups is presented in Figure 3 displaying CT images 
of two male patients, who were under 40 years old. 
One patient developed severe illness, while the other 
did not, and got discharged meeting the following 
discharge criteria: two consecutive negative 
COVID-19 nucleic acid detections at least 24 h apart, 
afebrile for more than 3 days, and respiratory 
symptoms significantly relieved. The average PGV, 
PSV and PCV in the non-severe patients decreased 
from 1.4, 1.3 and 0.5 on day 0 to 1.0, 0.5 and 0.1 on day 
4. On the contrary, the average PGV, PSV, and PCV of 
the patients in the severe group increased from 3.0, 2.7 
and 1.1 on day 0 to 8.3, 11.8 and 5.4 on day 4. Detailed 
changes in the volumes and the percentages were 
captured by the AI-derived CT features. 

Relationships between CT features and severe 
illness  

The prediction performance of COVID-19 severe 
illness using CT features, APACHE II, NLR, d-dimer, 

and NLR+CT features were determined based on 
logistic regression and ROC analysis. AUCs are 
shown in Table 2, and ROC curves are also presented 
in Supplemental Figure S1.  

On day 0, all models (i.e. APACHE-II, NLR, 
d-dimer, and CT features) achieved AUCs slightly 
below 0.80, showing moderate ability in 
discriminating the severe from the non-severe group, 
and the performances were close to each other (all 
P>0.05 when compared to the model using CT 
features). By day 4, all models except for APACHE-II 
showed improved performance, with the AUCs of 
NLR, d-dimer, and CT features increasing to 0.84 
(95% CI 0.75~0.93), 0.78 (95% CI 0.67~0.88) and 0.89 
(95% CI 0.80~0.97), respectively. As for the changes 
from day 0 to day 4, CT features demonstrated 
elevated discriminative capability (AUC=0.93, 95% CI 
0.87~0.99), which was significantly better than that for 
APACHE-II (AUC=0.82, 95% CI 0.72~0.91, P=0.046), 
NLR (AUC=0.78, 95% CI 0.67~0.88, P=0.001), and 
d-dimer (AUC=0.78, 95% CI 0.67~0.88, P=0.001). As 
for day 4 and the changes from day 0 to day 4, the 
models with PSV or PCV were comparable to that of 
all three CT features (both P>0.05) while the model 
with PGV was inferior (both P<0.05). When NLR was 
added to CT features, there was no significant 
improvement for all three data points (all P>0.1). 

Relationship between CT features and 
severe-event-free survival  

As displayed in Supplemental Figure S2-4, the 
Kaplan-Meier analyses showed that for all CT features 
and APACHE-II, the values on day 4 and the changes 
from day 0 to day 4 were significantly and negatively 
associated with severe-event-free survival. In 
contrast, NLR and d-dimer on day 0 and day 4 
showed a significant and inverse association with 
severe-event-free survival. 

 
 

Table 2. Performance for predicting progression to severe illness with logistic regression analysis 

 Day 0 P Day 4 P Changes from Day 0 to Day 4 P 
APACHE-II 0.78(0.69~0.88) 0.554 0.77(0.66~0.89) 0.076 0.82(0.72~0.91) 0.046 
NLR 0.78(0.67~0.88) 0.636 0.84(0.75~0.93) 0.156 0.78(0.67~0.88) 0.001 
D-dimer 0.75(0.64~0.85) 0.410 0.78(0.67~0.88) 0.007 0.78(0.67~0.88) 0.001 
PGV 0.76(0.65~0.86) 0.753 0.83(0.73~0.93) 0.015 0.84(0.74~0.93) 0.015 
PSV 0.76(0.65~0.86) 0.644 0.87(0.77~0.97) 0.256 0.92(0.86~0.99) 0.464 
PCV 0.76(0.66~0.86) 0.738 0.88(0.79~0.97) 0.572 0.91(0.85~0.98) 0.190 
CT features 0.76(0.66~0.86) Reference 0.89(0.80~0.97) Reference 0.93(0.87~0.99) Reference 
NLR + CT features 0.78(0.67~0.88) 0.551 0.89(0.80~0.97) 0.432 0.93(0.87~0.99) 0.336 

Note: 
(a) Results are presented as the area under the receiver operating characteristic curve (AUC) along with 95% CI. 
(b) PGV=Percentage of GGO volume; PSV=Percentage of semi-consolidation volume; PCV=Percentage of consolidation volume. 
(c) All models were adjusted for traditional clinical variables including age and gender. 
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Figure 3. COVID-19 pneumonia lesions detected by the AI system and visualized as pseudo colors. First to third columns: initial CT images; displayed with red pseudo colors; 
displayed with blue, pink, and red pseudo colors representing ground-glass opacity (GGO), semi-consolidation and consolidation, respectively. Pictures of two patients are 
illustrated: one was a 38year-old male (A and B), who reached the endpoint of progression to severe illness after 7 days from admission, and the other was a 31-year-old male 
(C), who did not meet the endpoint during the follow-up and was discharged from the hospital after 13 days from admission. The upper halves of A, B, and C show images on day 
0, and the lower halves show images on day 4. 
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Table 3. Performance for predicting severe-event-free survival with Cox proportional hazard models 

 Day 0 P Day 4 P Changes from Day 0 to Day 4 P 
APACHE-II 0.77(0.68~0.85) 0.768 0.76(0.64~0.87) <0.001 0.80(0.70~0.90) <0.001 
NLR 0.75(0.66~0.84) 0.930 0.77(0.67~0.86) <0.001 0.76(0.66~0.85) <0.001 
D-dimer 0.73(0.64~0.83) 0.422 0.76(0.66~0.86) <0.001 0.76(0.66~0.86) <0.001 
PGV 0.74(0.64~0.83) 0.610 0.80(0.70~0.89) <0.001 0.81(0.72~0.90) <0.001 
PSV 0.74(0.64~0.83) 0.870 0.84(0.74~0.94) 0.216 0.88(0.81~0.95) 0.022 
PCV 0.75(0.66~0.84) 0.965 0.86(0.77~0.95) 0.477 0.88(0.80~0.95) 0.049 
CT features 0.75(0.66~0.84) Reference 0.85(0.76~0.95) Reference 0.88(0.81~0.95) Reference 
NLR + CT features 0.75(0.66~0.84) 0.312 0.86(0.77~0.95) 0.543 0.88(0.81~0.95) 0.717 

Note: 
(a) Results are presented as concordance indices (95% CI).  
(b) PGV=Percentage of GGO volume; PSV=Percentage of semi-consolidation volume; PCV=Percentage of consolidation volume. 
(c) All models were adjusted for traditional clinical variables including age and gender. 

 
The results of the multivariate Cox models are 

presented in Table 3. On day 0, all models showed a 
moderate performance to predict severe-event-free 
survival, with all C-indices slightly lower than 0.80. 
Compared to day 0, by day 4, the C-index of the CT 
features increased to 0.85 (95% CI 0.76~0.95), which 
was significantly (both P<0.001) better than those of 
APACHE-II (0.76, 95% CI 0.64~0.87), NLR (0.77, 95% 
CI 0.67~0.86) and d-dimer (0.76, 95% CI 0.66~0.86). 
The model of changes from day 0 to day 4 yielded 
C-index of 0.88 (95% CI 0.81~0.95) in CT features, and 
significantly outperformed those (all P<0.001) for 
APACHE-II (0.80, 95% CI 0.70~0.90), NLR (0.76, 95% 
CI 0.66~0.85) and d-dimer (0.76, 95% CI 0.66~0.86). On 
day 4, the models with PSV or PCV were comparable 
to that of all three CT features (both P>0.05), while the 
model with PGV was inferior (both P<0.05). As for the 
changes from day 0 to day 4, all models with only one 
of the three CT features performed worse than the 
model with all CT features (all P<0.05). Adding NLR 
to the CT features showed no improvement for all 
three data points (all P>0.1).  

Hazard ratio (HR) estimates for variables 
included in each multivariate Cox regression model 
are displayed in Supplemental Figure S5-7. 
Specifically, after considering the age and gender, 
significant inverse associations with severe-event-free 
survival remained for the changes in PGV (HR=1.39, 
95% CI 1.05~1.84, P=0.023) from day 0 to day 4 as well 
as those in PCV (HR=1.67, 95% CI 1.17~2.38, P=0.005). 

Discussion  
To our knowledge, this is the first cohort study 

to predict outcomes in patients with COVID-19 using 
noninvasive quantitative CT measurements. Three CT 
features representing the lesion volume ratios of 
GGO, semi-consolidation, and consolidation were 
automatically quantified with AI. Our results showed 
that CT features on day 0 and day 4, as well as their 
changes from day 0 to day 4, could predict risk of 
COVID-19 patients progressing to severe illness. In 
particular, the changes in CT features from day 0 to 
day 4 performed best in the prediction. Furthermore, 

CT features outperformed the traditional clinical 
biomarkers including APACHE-II, NLR, and d-dimer 
levels on day 4 and with the changes from day 0 to 
day 4 regardless of adjustment of age and gender. 

 We chose to investigate the potential features in 
predicting severe illness from three data points on day 
0 (the date of hospital admission), day 4 (4 days later 
after admission), and the changes from day 0 to day 4. 
Such research design was not applied previously 
where only static measures of one time point were 
explored [12]. In this study, we found that CT features 
on day 4 performed much better than that on day 0, 
which is consistent with our previous report that 
some COVID patients present dramatic changes on 
CT imaging on day 4 compared to day 0 [15]. 
Interestingly, the changes in CT features from day 0 to 
day 4 showed the best performance in predicting 
severe illness. This observation suggested that the 
dynamic trends in CT manifestation changes are 
extremely valuable in predicting poor outcomes of 
COVID-19, an implication that might also apply to 
other diseases. 

Given the previously reported prognostic 
potential of NLR and d-dimer [6, 25] and the 
feasibility for routine blood analysis, we adopted 
them as representative laboratory biomarkers for 
comparison in this study. Though the lactate level 
might also be a useful laboratory indicator, it was not 
widely available and thus was not investigated here. 
Our findings showed that the NLR and d-dimer were 
inferior to CT features in predicting the severity of 
COVID-19 and the combination of these markers with 
CT features did not significantly outperform the 
model with CT features alone. 

There are a few limitations of this study that 
identify areas for future work. First, the study did not 
consider the treatment as a factor for prognostic 
prediction. However, no specialized therapeutics 
have been identified for COVID-19 so far, and 
currently the mainstay for its treatments are limited to 
supportive care. For the patients at our Center, several 
treatments were adopted including oxygen therapy, 
mechanical ventilation, ECMO, antiviral treatment, 
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antibiotic treatment, glucocorticoids, and intravenous 
immunoglobulin therapy. Since all patients were 
treated in the same hospital, it is reasonable to assume 
that treatment variations might be negligible between 
the severe and non-severe groups. In the future, the 
comparison of outcomes of various treatments is 
needed for response prediction.  

Second, radiomics, an AI technique that 
automatically extracts a large number of quantitative 
features from medical images for diagnosis or 
prognosis, has emerged in cancer research [26, 27]. It 
may also be applicable to CT images of COVID-19 and 
holds future promise.  

Third, the endpoint in this study was 
progression to severe illness, and until the follow-up 
deadline, there were no deaths among the enrolled 
patients. In a recently published work by Zhou et al, 
older age, higher SOFA score, and d-dimer greater 
than 1μg/mL were found to be associated with an 
elevated risk of death [12]. However, this study did 
not explore the potential value of imaging in 
predicting the risk of poor outcomes in COVID-19. 
Therefore, future studies would further enhance risk 
stratification by incorporating dynamic monitoring of 
traditional clinical as well as radiological 
measurements and using an endpoint of death.  

Finally, all CT images studied in this work were 
acquired on the same CT scanner (Hitachi Medical, 
Japan) in one clinical center. Extensive research with 
data from multi-sites and various scanners is 
warranted to validate the findings of this study. 

Conclusions  
In this cohort study, by using AI algorithms, we 

have shown that three quantitative volume ratios of 
COVID-19 lung lesions on CT scans are superior to 
previous clinical biomarkers including APACHE-II, 
NLR, and d-dimer levels, and are a novel and 
promising predictor of COVID-19 progression to 
severe illness. These CT features may provide 
clinicians with useful early prognostic information to 
facilitate pretreatment risk stratification for 
COVID-19, and guide the medical staff to conduct 
more intensive surveillance and treatment to patients 
at high risk of severe illness to improve outcomes. 
Future large-scale prospective studies are warranted 
to validate these CT features in predicting severe 
illness development and other important outcomes in 
COVID-19.  
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