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Abstract 

New insights into tumor-associated metabolic reprogramming have provided novel vulnerabilities that 
can be targeted for cancer therapy. Here, we propose a mass spectrometry imaging (MSI)-based 
metabolomic strategy to visualize the spatially resolved reprogramming of carnitine metabolism in 
heterogeneous breast cancer. 
Methods: A wide carnitine coverage MSI method was developed to investigate the spatial alternations of 
carnitines in cancer tissues of xenograft mouse models and human samples. Spatial expression of key 
metabolic enzymes that are closely associated with the altered carnitines was examined in adjacent 
cancer tissue sections. 
Results: A total of 17 carnitines, including L-carnitine, 6 short-chain acylcarnitines, 3 middle-chain 
acylcarnitines, and 7 long-chain acylcarnitines were imaged. L-carnitine and short-chain acylcarnitines are 
significantly reprogrammed in breast cancer. A classification model based on the carnitine profiles of 170 
cancer samples and 128 normal samples enables an accurate identification of breast cancer. CPT 1A, CPT 
2, and CRAT, which are extensively involved in carnitine system-mediated fatty acid β-oxidation pathway 
were also found to be abnormally expressed in breast cancer. Remarkably, the expressions of CPT 2 and 
CRAT were found for the first time to be altered in breast cancer. 
Conclusion: These data not only expand our understanding of the complex tumor metabolic 
reprogramming, but also provide the first evidence that carnitine metabolism is reprogrammed at both 
the metabolite and enzyme levels in breast cancer. 
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Introduction 
Breast cancer is the most commonly diagnosed 

cancer and the leading cause of cancer incidence and 
mortality in women worldwide, with more than 2.0 
million new cases and 0.6 million deaths each year [1]. 
There is growing evidence that metabolic 
reprogramming is an essential hallmark for cancer 
cells to grow and proliferate under hostile conditions; 
this is likely to contribute to resistance against 

therapeutics [2,3]. A better understanding of the 
complex metabolic reprogramming in specific cancer 
tissue is key to defining pathways that are most 
limiting for cancer progression [4-7]. The carnitine 
system including L-carnitine, acylcarnitines, and 
related enzymes is an important mediator in cancer 
metabolic networks. It intertwines crucial metabolites, 
pathways, and factors that supply biosynthetic and 

 
Ivyspring  

International Publisher 



Theranostics 2020, Vol. 10, Issue 16 
 

 
http://www.thno.org 

7071 

energetic demands for cancer cells [8,9]. L-carnitine 
serves an indispensable role in fatty acid transport 
into the mitochondrial matrix for β-oxidation and 
maintains the homeostasis of coenzyme A (CoA) in 
mitochondrial pool [10,11]. CoA availability is crucial 
for the biofunctions of multiple metabolic pathways 
such as tricarboxylic acid cycle, amino acid 
metabolism, and pyruvate oxidation [12,13]. 
Acylcarnitines are closely related to the balance 
regulation of intracellular sugar and lipid metabolism 
[14-16]. 

Liquid chromatography-mass spectrometry 
(LC-MS) has made significant inroads into profiling 
the metabolic signatures of L-carnitine and 
acylcarnitines in cancer samples [17,18]. 
Unfortunately, the spatial distribution discrepancy of 
carnitines in heterogeneous cancer tissue is frequently 
lost in LC-MS-based studies in which the analysis is 
performed on a tissue homogenate. The metabolism 
and transport of endogenous metabolites in cancer 
tissues are all dynamic and spatially resolved; 
therefore, knowing the spatial distributions of 
carnitines at the complex tumor microenvironment is 
imperative. Matrix-assisted laser desorption/ 
ionization-mass spectrometry imaging (MALDI-MSI) 
is a label-free technique to characterize the spatial 
distributions of multiple endogenous species in 
tissues [19-26]. Since it was first introduced, MALDI- 
MSI has been increasingly adopted for profiling the 
spatiotemporal signatures of cancer-associated 
metabolic changes [27-33]. Previous studies have 
demonstrated that imaging the spatial distributions of 
carnitines in cancer tissues was feasible, but the 
number of carnitines imaged was limited to 
L-carnitine and a few high-abundance acylcarnitines 
[34,35]. Notably, carnitines represent a large class of 
metabolites interconnected in metabolic pathways, 
and the levels of different carnitines vary greatly. 
Thus, a comprehensive profiling of carnitines in 
heterogeneous cancer tissue is crucial for our 
understanding of cancer metabolism which may 
provide fundamental insights into deciphering the 
possible role of the carnitine system in cancer 
development and progression. 

Here, we propose a mass spectrometry 
imaging-based metabolomic strategy to visualize the 
spatially resolved reprogramming of carnitine 
metabolism in breast cancer. Metabolomic 
investigations performed at both human and 
xenograft mouse model levels all indicate that 
L-carnitine and short-chain acylcarnitines are 
significantly reprogrammed in breast cancer tissues. 
Moreover, carnitine system-mediated fatty acid 
β-oxidation pathway was also found to be altered in 
breast cancer tissues. Three abnormally expressed 

metabolic enzymes including carnitine 
palmitoyltransferase 1A (CPT 1A), carnitine 
palmitoyltransferase 2 (CPT 2), and carnitine 
acetyltransferase (CRAT), which are directly involved 
in fatty acid β-oxidation were further discovered. The 
spatially resolved profiling of the altered carnitine 
metabolism in breast cancer tissues, from metabolites 
to enzymes, expands our understanding of tumor 
metabolic reprogramming. The design of this study is 
shown in Scheme 1. 

Materials and Methods 
Reagents and antibodies 

Tween-20 and Triton X-100 were obtained from 
Beijing Solarbio Science & Technology Co., Ltd. 
(Beijing, China). Bovine Serum Albumin was 
purchased from Sigma (St. Louis, USA). PV-9000 
two-step immunohistochemical kit and DAB kit were 
provided by Beijing Zhongshan Goldenbridge 
Biotechnology Company (Beijing, China). Anti- 
CPT1A antibody (ab220789) and Anti-CPT2 antibody 
(ab181114) were obtained from abcam. Anti-CRAT 
(HPA019230) and anti-CROT (HPA019364) antibodies 
were purchased from Atlas Antibodies. Ultrapure 
water was obtained from a Milli-Q Water System 
(Millipore Corporation, Bedford, MA, USA). 

Animal studies 
The animal experiments were approved by the 

Ethics Committee of Shandong Analysis and Test 
Center (Jinan, China). For xenograft experiments, 
female Balb/c-nu/nu mice (18–20 g) were provided 
by Vital River Lab Animal Technology Co., Ltd. 
(Beijing, China). MDA-MB-231 cells were cultured in 
L-15 medium and supplemented with 10% fetal 
bovine serum. Tumor implantation was carried out by 
injecting 100 microliters of the final cell suspension 
(1×107 cells) into the right back of mice. The 
experiment was ended when the tumor volume 
reached approximately 300 mm3. Tumor and the 
surrounding normal tissues were acquired after 
sacrifice via anesthesia. Samples were then flash- 
frozen in liquid nitrogen for 20 s and stored at -80 °C. 

Human breast cancer tissue sample collection 
A total of 58 pairs of human breast cancer tissue 

samples including cancer tissue and adjacent normal 
tissue were collected by surgical resection, having 
been previously approved by the local Ethical Review 
Board of Shandong Cancer Hospital (Jinan, China); all 
cohort patients provided written informed consent. 
The detailed demographic and clinical characteristics 
are demonstrated in Table S1. All samples were 
collected from the middle of the tumor. The diameter 
of these samples is generally 1-2 cm. The collected 
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breast cancer tissues were first flash-frozen in liquid 
nitrogen for 20 s and then transferred to cryogenic 
vials and stored at -80 °C. 

Tissue sample processing 
All of the tissue samples were cut into 10 μm 

frozen sections at -25 °C on a cryostat microtome 
(Thermo CryoStar NX50 NOVPD, Bremen, Germany). 
To obtain more comprehensive tissue information, 
each human breast cancer tissue sample was 
sectioned from three different locations. Thus, 170 
cancer samples and 128 normal samples were 
obtained from 58 human breast cancer patients. Two 
sets of tissue sections were thaw-mounted onto 
indium tin oxide (ITO)-coated glass slides for 
MALDI-MSI analysis. One set of tissue section was 
fixed in 4% paraformaldehyde and stained by 
hematoxylin-eosin (H&E). Four sets of tissue sections 
were thaw-mounted onto normal microscope slide for 
immunohistochemical analysis. To image more 
carnitines with stronger ion intensities, ten adjacent 
tissue sections from one cancer tissue were prepared 
to optimize the washing solvents. One of the samples 
had no preprocessing, and the other four were 
immersed in 50% ethanol, 70% ethanol, 90% ethanol, 
and 100% ethanol. The results suggest that 100% 
ethanol washing greatly enhances the sensitivities of 

short-chain acylcarnitines. Five adjacent tissue 
sections were then used to optimize washing time. 

Matrix coating 
Matrix coating used an HTX TM-SprayerTM (HTX 

Technologies, Carrboro, NC). 
1,5-diaminonaphthalene, 2.5 mg/mL in acetonitrile- 
H2O (70:30, v/v), was optimized as MALDI matrix for 
carnitine imaging. A total of eight spray cycles were 
made over the tissue section with a flow rate of 0.075 
mL/min at 55 °C. The track speed and track spacing 
were set to 800 mm/min and 3 mm, respectively. 

MALDI-MSI analysis 
After drying in vacuum for 15 min, the 

cryosections were subjected to MALDI-MSI analysis 
by using a Rapiflex MALDI tissuetyperTM TOF/TOF 
MS (Bruker Daltonics, Billerica, MA) equipped with a 
smartbeamTM 3D laser. The laser was fired at a 
repetition rate of 5000 Hz. The mass spectral data 
were acquired in both positive and negative ion 
modes over the m/z range of 80-1000, and the spatial 
resolution was set to 100 μm. The MS images were 
viewed by using FlexImaging 5.0 software (Bruker 
Daltonics) and SCiLS Lab 2018b software (GmbH, 
Bremen, Germany). 

 

 
Scheme 1. Schematic illustrations showing the mass spectrometry imaging based metabolomic strategy to visualize the reprogramming of carnitine metabolism in breast cancer. 
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Data analysis 
Raw MALDI-MS spectra were imported into 

SCiLS Lab 2018b software to construct MS image and 
perform segmentation analysis. The region-specific 
MS profiles were precisely extracted by matching ion 
images with H&E stain images. Two-dimensional 
dataset matrixes were built by using MarkerviewTM 
software 1.2.1 (AB SCIEX, USA) with mass tolerance 
m/z 0.01. SIMCA-P 14.0 software package (Umetrics 
AB, Umeå, Sweden) was used for multivariate 
statistical data analysis, including partial least squares 
discrimination analysis (PLS-DA) and orthogonal 
PLS-DA (OPLS-DA). Receiver Operating 
Characteristic (ROC) curve, logistic regression, and 
the Student’s t-test analysis were performed on SPSS 
21.0 and GraphPad Prism 6.0. Data-driven 
segmentation analysis, pixel-to-pixel correlation 
analysis, and in situ principal component analysis 
(PCA) were performed via SCiLS Lab software. 

Immunohistochemistry 
Expression of CPT 1A, CPT 2, CRAT, and CROT 

in the human breast cancer tissue sections which 
adjacent to the ones analyzed by MALDI-MSI were 
assessed. The frozen tissue sections were first fixed in 
4% paraformaldehyde for 10 min. Then, the sections 
were immersed in 0.25% Triton X-100 for 15 min and 
blocked with 1% bovine serum albumin for 30 min. 
After incubated with targeted antibodies (1:200 for 
CPT 1A, 1:50 for CPT 2, 1:100 for CRAT, and 1:50 for 
CROT) at 4 °C overnight, the spatial expressions of 
these four metabolic enzymes in breast cancer tissue 
sections were characterized using a PV-9000 two-step 
IHC kit and DAB kit. Images were taken with a 
Pannoramic MIDI scanner (3DHISTECH, Budapest, 
Hungary) and analyzed by Image-Pro Plus software 
(IPP, version 6.0, Silver Spring, MD, USA). 

Analyte identification 
The adducted ions of carnitines and other 

metabolites were first compared with free databases 
Metlin (http://metlin.scripps.edu) and Human 
Metabolome Database (http://hmdb.ca/) using exact 
molecular weights with a mass error of less than 5 
ppm. High-resolution tandem MS experiments were 
then performed on an orbitrap mass spectrometer (Q 
Exactive, Thermo Scientific, Bremen, Germany). 
Analyte identification was further carried out based 
on isotope distributions and MS/MS spectra. The 
detailed operation process, MS/MS data and the 
structure-specific pattern ions of the target 
metabolites are listed in Supplementary Material 
(Figures S14-S23). 

Results and Discussion 
MALDI-MSI-driven breast cancer 
heterogeneous characterization 

Human breast cancer tissue section can be 
divided into cancer tissues (CT) and paracancerous 
normal tissues (NT). We first performed untargeted 
MALDI-MSI imaging in positive ion mode over the 
m/z range of 80-1000. CT- and NT-specific mass 
spectra were precisely extracted based on the overlay 
image of optical and MS images (Figure S1). These 
data suggest that the mass profiles of CT and NT are 
quite different, representing that the underlying 
metabolites of breast cancer cells have undergone 
tremendous changes compared to normal cells. 

MS imaging is an effective way to study cancer 
metabolic heterogeneity by directly mapping the 
spatial distributions of metabolites. In fact, each pixel 
in tissue MS images has its region-specific metabolic 
fingerprints, and these metabolic fingerprints can 
reflect the structural and functional characteristics of 
tissue [36]. Here, we determined the metabolic 
similarities of different pixels in breast cancer tissue 
MS images via the segmentation function in SCiLS 
Lab software. Image pixels with similar metabolic 
fingerprints were classified as one group via bisecting 
k-means clustering; each group was then assigned 
selected colors and displayed as label maps. Figure 1 
demonstrates the reconstructed label maps of three 
breast cancer tissue sections. The results suggest that 
the image pixels can be divided into two clusters 
based on their metabolic fingerprints. Significantly, 
the reconstructed label maps can clearly characterize 
the cancerous regions and normal regions of breast 
cancer tissue sections. The pixels colored in green 
have similar spatial features with cancerous regions, 
while the spatial distributions of blue pixels are 
consistent with normal regions. 

To further explore the metabolic difference 
between breast CT and NT, we performed 
unsupervised principal component analysis (PCA) 
based on the in situ MS spectra. As shown in Figure 
S2, the calculated score plots exhibited a clear 
separation between CT and NT. The levels of 
L-carnitine and a variety of short-chain acylcarnitines 
such as acetylcarnitine, acylcarnitine C3:0, and 
acylcarnitine C4:0 in CT were significantly higher 
than that in NT (Figure S3A). Moreover, correlation 
analysis suggests that L-carnitine, acetylcarnitine, 
acylcarnitine C3:0, and acylcarnitine C4:0 in breast 
cancer tissue showed very strong positive correlation, 
with correlation coefficients ranging from 0.803 to 
0.953 (Figure S3B). As an indispensable endogenous 
metabolite, carnitines not only enhance cell 
antioxidant activity, but also participate in cell energy 
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metabolism [37]. The elevated energy metabolism is 
an important hallmark of cancer [2]. Previous studies 
have also shown that carnitine can be used as a 
potential generic prognostic biomarker in some 
tumors such as sarcoma [38]. Therefore, we speculate 
that the metabolic reprogramming of carnitines may 
be related to the development of breast cancer. 
Although some carnitines can be detected, it is still 
difficult to effectively detect those low-abundance 
ones such as acylcarnitine C6:0 and acylcarnitine C7:0 
(Figure S4). Improving the sensitivity of MALDI-MSI 
to image more carnitines will provide significant clues 
for understanding the reprogramming of carnitines in 
breast cancer. 

100% ethanol washing enhances the 
MALDI-MS imaging of carnitines 

Finding the appropriate organic solvent to wash 
away unwanted components in tissue sections has 
proven to be an effective way to improve the MS 
imaging signals of targeted molecules [39-41]. 
Gradient ethanol (70% ethanol followed by 95% 
ethanol) is the most commonly used washing strategy 

and can remove as many phospholipids as possible 
from biological tissues. However, our data indicate 
that gradient ethanol washing also results in the loss 
of carnitines and other low-molecular-weight 
metabolites (m/z < 500, Figure S5). We compared the 
performance of 50% ethanol, 70% ethanol, 90% 
ethanol, and 100% ethanol washing on the MS 
imaging of carnitines in breast cancer tissues, and the 
results suggest that 50% ethanol, 70% ethanol, and 
90% ethanol washing significantly reduce the ion 
signals of carnitines, 100% ethanol washing greatly 
improves the signal intensities of carnitines (Figure 
S6). The impact of washing time on MS imaging of 
carnitines was also studied. Figure S7 shows that all 
carnitines demonstrated the strongest ion intensities 
when the tissue section was washed in 100% ethanol 
for 60 s or 90 s. Further increases in washing time not 
only reduce the carnitines’ ion signals but also lead to 
significant molecular delocalization. This may be 
attributed to the in situ dissolution of carnitines from 
tissue sections. 

 

 
Figure 1. Auto-segmentation of breast cancer tissue sections (These three tissue sections are from patient No. 535431, No. 535437, and No. 535905. The pixels colored in green 
have similar spatial features with cancerous regions). 
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Figure 2. MS images of L-carnitine (A) and five acylcarnitines (B-F) in untreated and 100% ethanol-washed breast cancer tissue section (These tissue sections are from patient 
No. 535431).  

 
Figure 2 illustrates the typical MS images of 

L-carnitine and five acylcarnitines in untreated breast 
cancer tissue section and tissue sections that have 
been washed in 100% ethanol for 90 s. The results 
suggest that the ion signals of L-carnitine and 
acetylcarnitine in 100% ethanol-washed section 
increased by 5.66 times and 5.46 times (Figure 2A and 
2B), respectively. The ion signals of acylcarnitine C3:0, 
acylcarnitine C4:0, acylcarnitine C5:0 and 
acylcarnitine C6:0 all increased by more than three- 
fold (Figure 2C-2F). Remarkable, 100% ethanol 
washing enables the MS imaging of some 
acylcarnitines such as acylcarnitine C7:0 and 
acylcarnitine C8:0 in breast cancer tissue. This cannot 
be achieved without washing (Figure S8). Using this 
organic washing protocol, a total of 17 carnitines, 
including L-carnitine, 6 short-chain acylcarnitines (Cn, 
2-5), 3 middle-chain acylcarnitines (Cn, 6-10), and 7 
long-chain acylcarnitines (Cn, 12-18) can be detected 
and imaged in an untargeted run (Figure S9). To the 
best of our knowledge, this is the largest number of 
carnitines yet detected by mass spectrometry imaging. 

MALDI-MS imaging highlights the abnormally 
expressed carnitines in the breast cancer 
xenograft mouse model 

Breast cancer tissues from xenograft tumor 
mouse models were analyzed using the optimized 
MALDI-MS imaging method. As shown in Figure 3A 
and 3C, heterogeneous cancer tissue can be further 
divided into the cancer region, stroma region, and 
adipose region according to cell components. 
Region-specific mass spectra were extracted based on 
the overlay of optical and MS images. A PCA score 
plot built from the region-specific mass spectra 
presents a clear separation between cancer and other 
regions (Figure S10). We extracted the MS images of 
L-carnitine and acetylcarnitine in mouse breast cancer 
tissues suggesting that the levels of L-carnitine, 
acetylcarnitine, acylcarnitine C3:0, acylcarnitine C4:0, 
acylcarnitine C5:0 and acylcarnitine C6:0 in the 
cancerous region were significantly higher than those 
in adjacent stroma and adipose regions (Figure 3B and 
3D). These data show that the alteration of carnitine is 
an important component of breast cancer metabolic 
reprogramming. 
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Figure 3. A) The H&E stain of mouse breast cancer tissues (No. R001); B) MS images of L-carnitine and five acylcarnitines in mouse breast cancer tissues (No. R001); C) H&E 
stain of mouse breast cancer tissues (No. R002); D) MS images of L-carnitine and five acylcarnitines in mouse breast cancer tissues (No. R002). 

 

MALDI-MS imaging of the altered carnitine 
metabolism in human breast cancer 

We further performed MALDI-MS imaging on 
postoperative human breast cancer specimens 
containing both cancer tissues and adjacent normal 
tissues. A total of 170 cancer samples and 128 normal 
samples were extracted from 58 breast cancer patients. 
The 128 normal samples can be further divided in 109 
normal stromal tissues and 19 normal adipose tissues. 
Figure 4 demonstrates the MS images of L-carnitine, 
acetylcarnitine, acylcarnitine C3:0, acylcarnitine C4:0, 
acylcarnitine C5:0, and acylcarnitine C6:0 in three 
human breast cancer tissue sections. The results 
suggest that the expressions of all these six carnitines 
in cancer regions were significantly higher than that 
in the paired normal regions. The statistical results of 
these six carnitines based on 170 cancer samples and 
128 normal samples are shown in Figure 4D. In 
comparison to normal tissues, the levels of L-carnitine 

and acetylcarnitine in cancer tissue increased by 4.46 
and 6.36 times, respectively. Acylcarnitine C3:0 and 
acylcarnitine C4:0 were both significantly upregulated 
by more than 10-fold in cancer tissues: acylcarnitine 
C3:0 by a factor of 10.01 and acylcarnitine C4:0 by 
14.26. Acylcarnitine C5:0 and acylcarnitine C6:0 
increased by 4.95 and 2.26 times in cancer tissues, 
respectively. The statistical results of other 
acylcarnitines were illustrated in Figure S11. 
Although the content of acylcarnitine C7:0 was found 
to be higher in cancer tissues, there was no significant 
difference in the contents of other acylcarnitines 
including acylcarnitine C8:0, acylcarnitine C16:0, 
acylcarnitine C16:1, acylcarnitine C16:2, acylcarnitine 
C18:0, acylcarnitine C18:1, and acylcarnitine C16:2 in 
cancer tissues and adjacent normal tissues. These data 
suggest that L-carnitine and short-chain acylcarnitines 
are the main types of altered carnitines in human 
breast cancer. 
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Figure 4. A-C) MS images of six carnitines in human breast cancer tissues (these three tissue sections are from patient No. 535437, No. 535905, and No. 535673); D) Statistical 
data of six carnitines in 170 human breast cancer tissues and 128 paired normal tissues (including 109 normal stromal tissues and 19 normal adipose tissues); the scale of the y-axis 
is log 2; ***, p < 0.001; **, p < 0.01; *, p < 0.05; NS, no significant differences. 

 
Interestingly, the spatial distributions and 

contents of carnitines are not completely consistent 
even within the same tissue region (Figure S12). To 
investigate this metabolic heterogeneity in breast 
cancer tissue, we performed data-driven 
segmentation analysis based on the underlying 
metabolic fingerprints of each image pixel. The 
segmentation results indicate that the breast cancer 
tissue sections can be divided into six different 
regions (Figure 5A). These six regions are colored 
according to their global metabolite profiles. As the 
global metabolite profiles become closer, their colors 
match on the pseudocolor bar and vice versa (see 
arrows in Figure 5A). Significantly, our data suggest 
that the assigned colors of different segmentation- 
derived regions are closely related to their distance to 
the cancer center (region 6). The color of the regions 
near the cancer center is similar to that of the cancer 
center. The color difference between them and cancer 
center becomes larger as the spatial distance increases. 
This means that the metabolite profile of breast cancer 
tissue was changed in a stepwise way from the cancer 
center (region 6) to distal normal (region 1). 

PCA analysis based on the metabolite profiles of 

these six segmentation-derived regions was also 
performed. Figure S13 shows that the score plots had 
a progressive trend from region 1 to region 6, 
indicating a stepwise metabolic change from cancer 
center to distal normal. The carnitine profiles of these 
six segmentation-derived regions were also extracted. 
Figure 5B shows the levels of L-carnitine, 
acylcarnitine C3:0, acylcarnitine C4:0, and 
acylcarnitine C5:0 in different regions. In general, the 
contents of these carnitines gradually change over 
segmentation-derived regions with the highest 
content in cancer center region (region 6) and the 
lowest in the distal normal region (region 1). These 
data suggest that the cancer center may be the region 
with the most severe metabolic reprogramming of 
carnitines in all of the breast cancer tissue. A Previous 
study indicated that the central region of the tumor 
always experiences increased hypoxic and oxidative 
stress [42]. The alterations of carnitines in cancer 
center regions probably occurred because of the 
inhibition of β-oxidation during hypoxia, leading to 
the accumulation of carnitines in the cytoplasm of 
hypoxic tumor cells. 
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Figure 5. A) Data-driven segmentation analysis of breast cancer tissues (These two tissue sections are from patient No. 535437 and No. 535905); B) Ion intensities of 
L-carnitine, acylcarnitine C3:0, acylcarnitine C4:0, and acylcarnitine C5:0 in different segmentation-derived regions (The statistical data comes from all pixels of sample No. 
535437).  

 

Distinguishing breast cancer tissue from 
adjacent normal tissue based on the carnitines 

To explore the discriminating ability of 
carnitines in distinguishing cancerous tissue from 
normal tissue, we built an OPLS-DA model based on 
the carnitine profiles of 170 cancer samples, 109 
normal stromal tissues, and 19 normal adipose 
tissues. Notably, the detected ion intensity of different 
carnitines in this study varies by more than 300 times. 
Previous studies showed that the ions with stronger 
intensities have a greater influence on multivariate 
statistical analysis, resulting in the neglect of 
low-content ones [43,44]. Therefore, we performed log 
transformation before OPLS-DA analysis to alleviate 
the dependence of heteroscedasticity on the ion signal 

intensity. 
As shown in Figure 6A, although there is no 

obvious clustering between normal stroma and 
normal adipose, a clear indication of separation was 
observable between cancer and normal tissues 
(including normal stroma and normal adipose). This 
result suggests that the reprogrammed carnitines can 
distinguish cancer tissues from normal tissue. To 
assess validity of the OPLS-DA model, we performed 
a random permutation test with PLS-DA model, 
corresponding to the OPLS-DA model across same 
components. The PLS-DA model was validated by an 
iterative seven-round cross-validation with 1/7th of 
the samples being excluded from the mode in each 
round. Validation with 100 random permutation tests 
generated intercepts of Q2 = -0.128 and R2 = -0.03 
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(Figure 6B). This data strongly support the validity of 
the OPLS-DA model, since the intercept for Q2 to the 
y-axis was less than 0 (blue box), and all permuted R2 
values (green circle in the left) are lower than the 
original point of the R2 value (green circle in the 
right). An S-plot showing the covariance and 
correlation between the carnitines and the modeled 
class designation was used to identify statistically 
significant variables. Selection of variables with a high 
covariance and high correlation values was preferred 
[45]. Here, acylcarnitine C4:0 (m/z 232.15) has the 
largest covariance and correlation values, so it was 
identified as the most significant variable to 
distinguish cancer tissues from normal tissues (Figure 
6C). Other carnitines such as acetylcarnitine (m/z 
204.12), acylcarnitine C3:0 (m/z 218.14), L-carnitine 
(m/z 162.12), and acylcarnitine C5:0 (m/z 246.17) also 
exhibited high covariance and correlation values. The 
variable importance in the projection (VIP) value, a 
parameter used to reflect the influence of variable on 
the classification, was shown in Figure 6C. Variables 
with a VIP > 1 had an above average influence on the 
explanation of the classification. This also indicates 
that acylcarnitine C4:0 is the most important carnitine 

to distinguish cancer and normal tissues. 
Receiver operating characteristic curve (ROC) 

was constructed to evaluate the discrimination 
performance of acylcarnitine C4:0. Figure 6D indicates 
that the ROC curve generated from acylcarnitine C4:0 
exhibited good discrimination ability with an area 
under curve (AUC) of 0.98, with sensitivity and 
specificity values of 0.95 and 0.98. On the basis of the 
highest prediction sensitivity and specificity of the 
ROC, the optimal cut-off values were 3.39 arbitrary 
units for cancer tissues versus normal tissues (n = 298) 
(Figure 6E). At this cut-off value, 123 of 128 normal 
breast tissue samples were correctly classified, and 
161 of 170 breast cancer tissue samples were correctly 
classified (Figure 6E). Furthermore, we combined the 
five carnitines with VIP > 1 into one carnitine panel by 
logistic regression, and then performed ROC analysis 
on this carnitine panel (the five carnitines are shown 
in the illustration in Figure 6C). The prediction 
probability value of carnitine panel is shown in Figure 
6F. The accuracy of the carnitine panel was the same 
as that of acylcarnitine C4:0 at the optimal cut-off 
value and both had an accuracy of 96.1% for normal 
breast tissues and 94.7% for breast cancer tissues.  

 

 
Figure 6. A) OPLS-DA score plots for 170 human breast cancer tissues and 128 paired normal tissues (including 109 normal stromal tissues and 19 normal adipose tissues); B) 
The validation plot obtained from 100 permutation tests; C) The S-plots of the OPLS-DA model; D) ROC curve for distinguishing cancer tissue from normal tissue based on the 
ion intensity of acylcarnitine C4:0; E) Discriminating efficiency of breast cancer based on the ion intensity of acylcarnitine C4:0; F) Discriminating efficiency of breast cancer based 
on the ion intensity of carnitine panel. 
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Figure 7. A) Metabolism of fatty acids in the mitochondrion and peroxisome; B) The H&E stain of breast cancer tissue section; C, D) MS images of representative fatty acids 
(C) and very long chain fatty acids (D) in breast cancer tissue section; E-H) The expressions of CPT 1A (E), CPT 2 (F), CRAT (G), and CROT (H) in breast cancer tissue section 
adjacent to MS imaging section. These tissue sections are from patient No. 535437. CACT, carnitine/acylcarnitine translocase; CPT 1A, carnitine palmitoyltransferase 1A; CPT 2, 
carnitine palmitoyltransferase 2; CRAT, carnitine acetyltransferase; CROT, carnitine octanoyltransferase; LCAS, long-chain acyl-CoA synthetase. 

 

In situ discovery and validation of altered 
metabolic enzymes in carnitine metabolic 
pathway 

Metabolic enzymes, as nodes of biological 
metabolic network, can regulate and control the flux 
of metabolites. There is growing evidence that 
targeting the tumor-associated metabolic enzymes 
could be an effective approach to inhibit the unlimited 
proliferation of tumor cells [4,6]. The analysis above 
shows that carnitine molecules are significantly 
altered in breast cancer. L-carnitine and acylcarnitines 
play obligatory roles in the β-oxidation of fatty acids, 
the altered carnitines may affect fatty acid metabolism 
[11,12]. As shown in Figure 7A, for fatty acids with 
2-20 carbon atoms, they are first activated by the 
long-chain acyl-CoA synthetase (LCAS) to form 
acyl-CoA, and then are translocated into the 
mitochondrial matrix precede their β-oxidation chain 
shortening with the help of carnitine dependent 
transport system. This transport system consists of 

L-carnitine and three key metabolic enzymes: 
carnitine palmitoyltransferase 1 (CPT 1), carnitine/ 
acylcarnitine translocase (CACT), and carnitine 
palmitoyltransferase 2 (CPT 2) [46,47]. However, 
because very long chain fatty acids (VLCFA, ≥ C22) 
cannot be transported by CPT1, they must be 
converted into shortened acyl-CoA in the peroxisome 
before they can be further transported into 
mitochondria (Figure 7A) [48]. In the peroxisome, 
shortened acyl-CoA is converted to shortened 
acylcarnitine via the catalytic action of carnitine 
octanoyltransferase (CROT); C2-, C3-CoA were 
converted to C2-, C3-carnitine by the catalytic action of 
carnitine acetyltransferase (CRAT). The acylcarnitines 
are then transferred to the mitochondrial matrix for 
the following β-oxidation. 

In order to investigate the expressions of fatty 
acids in breast cancer tissues, we carried out 
MALDI-MSI experiments on adjacent tissue sections 
in negative ion mode. Remarkable, all fatty acids, 
including C16-C20 fatty acids and C22 VLCFA, were 
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found to be significantly upregulated in cancer tissue 
than the paracancerous normal tissues (Figure 7C and 
Figure 7D). These data suggest that carnitines and 
their pathway-related fatty acid oxidation metabolism 
may be related to the development of breast cancer. In 
terms of metabolic pathways, metabolites are direct 
substrates or products of metabolic enzymes, and 
their expressions in tissue can reflect enzyme 
capacities [49]. Based on fatty acid β-oxidation 
pathway, CPT1, CPT 2, CRAT, and CROT are four 
essential enzymes for the oxidation of fatty acids [47]. 
We speculated that the alterations of carnitines and 
fatty acids in breast cancer may be attributed to the 
abnormal expressions of these four metabolic 
enzymes. Therefore, we further performed targeted 
IHC testing of the four suspected metabolic enzymes 
on successive breast cancer tissue sections (adjacent to 
the tissue section analyzed by MALDI-MSI) to 
validate our discovery. Figure 7E-7H present the IHC 
stain images of CPT 1A, CPT 2, CRAT, and CROT in 
breast cancer and normal tissues. The expressions of 
CPT 1A, CPT 2, and CRAT in cancer tissues were 
found to be much higher than those in paired normal 
tissues, in good agreement with the upregulated 
carnitines and fatty acids. In fact, as the first 
rate-limiting enzyme in the transport of fatty acid for 
oxidation, CPT 1 has been attracting the attention of 
oncologists [50]. A previous study demonstrated that 
CPT 1A is upregulated in human MCF-7 breast cancer 
cells, and targeting CPT 1A can induce apoptosis of 
cancer cells [51]. Remarkably, CPT 2 and CRAT were 
found for the first time to be altered in breast cancer, 
and this provides new potential metabolic 
vulnerabilities that might be targeted for cancer 
therapy. 

Conclusions 
In summary, we developed a sensitive and wide 

coverage MALDI-MSI method to visualize the 
spatially resolved reprogramming of carnitine 
metabolism in breast cancer. A total of 17 carnitines, 
including L-carnitine, 6 short-chain acylcarnitines, 3 
middle-chain acylcarnitines, and 7 long-chain 
acylcarnitines can be imaged in an untargeted 
analysis. Metabolomics study based on the newly 
developed MALDI-MSI method indicates that 
L-carnitine and short-chain acylcarnitines are 
significantly altered in both human breast cancer and 
xenograft mouse model. A classification model built 
from the carnitine profiles of 170 cancer samples and 
128 normal samples enabled an accurate identification 
of breast cancer, with overall agreement of 96.1% and 
94.7% for cancer and normal tissues, respectively. 
Moreover, the MALDI-MSI data suggest that the 
β-oxidation metabolic pathway that is mediated by 

the carnitine system was also reprogrammed in breast 
cancer. Three abnormally expressed metabolic 
enzymes (CPT 1A, CPT 2, and CRAT) were 
discovered. Remarkably, CPT 2 and CRAT were 
found for the first time to be differentially expressed 
in breast cancer tissue. Thus, the spatially resolved 
profiling of the altered carnitine metabolism in cancer 
tissues will greatly expand our understanding of 
tumor metabolic reprogramming and may provide 
new potential metabolic targets for cancer therapy. 
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