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Supplementary Notes 

Supplementary movie 1. The 3-D rendering of the vascular network to demonstrate the 

vertical sprouts embedded between the primary and secondary plexus. 

Supplementary movie 2. The filament tracing result of the intact retinal vascular network 

in normoxia conditions. 

Supplementary movie 3. 3-D rendering of the intact retinal vascular network in normoxia 

conditions. 

Supplementary movie 4. 3-D rendering of the abnormal retinal vascular network in OIR. 

Supplementary movie 5. The filament tracing of the intact retinal vascular network in OIR. 

 

Representative results for the integration of LSFM and tissue clearing  
 

Representative images of the maximum intensity projection from LSFM were compared 

between the passive CLARITY-treated retina and control retina, demonstrating the capacity of 

optical clearing to allow visualization of microvasculature that would otherwise be challenging 

with conventional imaging modalities (Figure S2A). Note the comparison of pre- and post-

CLARITY treatment to allow imaging of the deep vascular plexus (Figure S2B). 

Principal component analysis (PCA) of the vasculature 

By reducing the dimensions of the data, PCA unravels important characteristics of the data set. It 

is a linear transformation that generates a new coordinate system from the data such that the 

greatest variance was introduced to the projected data points to new axes, ordered as 

components with decreasing variance by the projection of the data [1]. The ri,j (i=1,2…N, j=1-3) 

represents the coordinate vectors from the vasculature (Equation 1). N represents the numbers 

of vessel elements inside the sliding window while j represents 3-D space dimensions (X, Y, and 

Z). The new coordinates are computed from the covariance matrix (Equations 1,2) of the data 

and applied to the eigenvector decomposition (Equations 3,4) process to derive the new axes 

known as principal components (PC). The PC1 is the eigenvector with the largest possible 
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variance and each succeeding component such as PC2 and PC3 has the highest variance 

possible under the constraint that it is orthogonal to the preceding components. Lastly, the angle 

between vectors was calculated through the relation of the inner product (Equation 5). 

                                               𝐶𝑜𝑣(𝑟𝑗, 𝑟𝑘) =
1

𝑁
∑ (𝑟𝑖,𝑗 − 𝑟�̅�)(𝑟𝑖,𝑘 − 𝑟�̅�) =  𝜎𝑗𝑘

𝑁
𝑖=1                       (Equation 1) 

 

                                                    𝐶𝑜𝑣 𝑀𝑎𝑡𝑟𝑖𝑥 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]                                 (Equation 2) 

Eigen Decomposition 

                                                    𝐶𝑜𝑣 𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑽 ∙ [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] ∙ 𝑽−1                         (Equation 3) 

λ1 , λ2 , λ3  are three eigen values 

Eigen Vector (𝑽) 

                                                                   𝑽 = [𝑉1
⃑⃑  ⃑  𝑉2

⃑⃑  ⃑  𝑉3
⃑⃑  ⃑]                                            (Equation 4) 

Angle (θ) 

                                                                   θ = cos−1 �⃑⃑� ∙�⃑� 

|�⃑⃑� |∙|�⃑� |
                                            (Equation 5) 
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Supplementary Figure 1 

 

Supplementary Figure 1. Schematic illustration and representative images of the 

automated segmentation for retinal vertical sprouts and plexuses in P12 mice in normoxia 

and OIR conditions. (A) The schematic plot indicates the distinct characteristics that distinguish 

the vertical sprouts and plexuses from each other which serve as the basis for the automated 

segmentation method. (B-C) The representative MIP images from the image stacks demonstrate 

the successful separation of the vertical sprouts and plexuses using automated segmentation for 

both normoxia and OIR P12 groups (sprout highlighted in a red box in OIR group). Scale bar: 500 

µm.  
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Supplementary Figure 2 

Supplementary Figure 2. Representative images comparing the P12 murine retinas with 

and without tissue clearing. (A) The detailed vasculature seen after tissue clearing using the 

CLARITY method is demonstrated using the maximum intensity projection (bottom) in 

comparison to the uncleared retina (top). (B) Gross images of P12 mouse retinas prior to (top) 

and after (bottom) modified CLARITY treatment. Scale bar: (A) 100 µm; (B) 1 mm. 
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Supplementary Figure 3 

 

Supplementary Figure 3. A schematic diagram of LSFM. (A) The diagram depicts the 

individual optical components that are featured in the LSFM system. M1-7: mirror; PH: pinhole; 

ND: neutral density filter; BE: beam expander; S: slit; BS: beam splitter, CL: cylindrical lens; RL: 

Relay lens; IL: illumination lens; DL: detection lens. (B) Representative images depicting the point 

spread function (PSF) of the 0.53 µm fluorescent bead in the lateral and axial directions, 

respectively. The XZ-view provides the characteristics of the confocal zone (bordered by orange 

dotted lines). Scale bars in panel B represent 100 µm (i-axis) and 50 µm (ii-axis). 
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Supplementary Figure 4 

 

Supplementary Figure 4. Schematic representation to quantify Euler characteristics and 

clustering coefficients. (A) Euler characteristic, χ, for the vascular network is determined by the 

numbers of loops and objects in a network rather than by the number of branching points. Both 

factors (loops and objects) generate new nodes and edges differently and contribute to the 

difference in the Euler characteristic value. The retinal vascular network is more reticular-like in 

structure (depicted by the middle row), resulting in a reduction in the χ value. V: Vertices, E: edges. 

(B) The definition of the clustering coefficient for a specific node (green) is calculated by dividing 

the existing links (red) over all possible links (blue) among neighboring nodes, such that the 

clustering coefficient of the representative schematic is 0.33. 
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Supplementary Table 1. Average dice coefficients of various combinations of sliding window 

size and cutoff angle in the normoxia group. 

 

Supplementary Table 2. Average dice coefficients of various combinations of sliding window 

size and cutoff angle in the OIR group.  

 

Supplementary Table 3. Average dice coefficients of various combinations of sliding window 

size and cutoff angle in both groups combined. 


