Supplemental Information for:

Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells

Xinxin Yuan^{1, 2 #}, Niansong Qian^{3, #}, Shukuan Ling², Yuheng Li², Weijia Sun², Jianwei Li², Ruikai Du², Guohui Zhong², Caizhi Liu², Guotao Yu¹, Dengchao Cao^{1, 2}, Zizhong Liu², Yinbo Wang², Zhihong Qi¹, Yingpeng Yao¹, Fang Wang¹, Jingjing Liu¹, Shanshan Hao¹, Xiaoyan Jin², Yinlong Zhao², Jianqi Xue², Dingsheng Zhao², Xingcheng Gao², Shuai Liang², Youyou Li², Jinping Song², Shuyang Yu^{1, *}, and Yingxian Li^{2, *}

1 State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China

2 State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China

3 Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China

- # Equal contributions to this work
- * Corresponding authors:
- Prof. Yingxian Li, Email: yingxianli@aliyun.com
- Prof. Shuyang Yu, Email: ysy@cau.edu.cn

Supplementary Figure 1. The influence of primary tumor on osteoblasts before the occurrence of bone metastasis

A. Quantitative micro-CT analysis of BMD of recipient mice at different checkpoint from the indicated groups (n = 6 mice per group).

B. The values of micro-CT parameters (Tb.N, Tb.Sp) at the distal femur metaphysis from tumor-free and tumor-bearing mice. (n = 8 mice per group). Tb. N, trabecular number, Tb.Sp, trabecular separation.

C. Osteoblast surface/bone surface (Ob.S/BS) and osteoblast number/bone perimeter (N.Ob/B.Pm) of the proximal tibia of recipient mice from the indicated groups (n = 3 in each group).

D. Representative images of the osteocalcin (OCN) staining in tibia sections from tumor-free and tumor-bearing mice. Scale bar, 25 μm.

E. ELISA analysis of the bone formation marker PINP levels in serum of tumor-free (n = 6) and tumor-bearing mice (n = 5).

F. Representative images of anti-GFP staining of tibia section from tumor-free, tumor-bearing mice and mice with bone metastasis of SCP28 cells as a positive control at checkpoint of 5 weeks post implantation. The brown areas represent tumor. Scale bar, 50 μm.

G. The changes of body weight in recipient mice at different checkpoint from tumor-free (n = 8) and tumor-bearing mice (n = 7).

Cumulative data are means \pm SEM. * P < 0.05; ** P < 0.01; *** P < 0.001 (unpaired Student's *t* test). All data are from at least three independent experiments.

Supplementary Figure 2. The effect of SCP28 cell-secreted exosomes on osteoclasts and osteoblasts *in vivo*

A. Body weight of recipient mice treated with SCP28 exosomes or PBS (n = 6 in each group).

B. Analysis of the expression of osteoclast marker genes including *Acp5*, *Ctsk*, *Mmp9*, and *Nfatc1* in tibias and femurs from mice treated with exosomes (n = 5) or PBS as controls (n = 6), respectively. The relative expression of each target transcript (after normalization to the housekeeping *Gapdh* gene) in control mice was set as 1, and that in exosome-treated mice was normalized, accordingly.

C. Ob.S/BS and N.Ob/B.Pm of the proximal tibia from the indicated groups (n = 3 in each group).

D. Representative images of the OCN staining in tibia sections from recipient mice treated with SCP28 exosomes or PBS. Scale bar, 25 μm.

E. ELISA analysis of the level of PINP in serum of recipient mice treated with SCP28 exosomes (n = 5) or PBS (n = 6).

Cumulative data are means \pm SEM. * P < 0.05 (unpaired Student's *t* test). All data are from at least three independent experiments.

Supplementary Figure 3. The effect of SCP28 cell-secreted exosomes on osteoclasts and osteoblasts *in vitro*

A. Western blot analysis of expression of NFATc1 in BMM cell induced osteoclasts treated with or without SCP28 cell-secreted exosomes.

B. *Rab27a* mRNA level was analyzed in SCP28 cells treated with Rab27a siRNA or NC. The relative expression of *Rab27a* (after normalization to the housekeeping *Gapdh* gene) in NC samples was set as 1, and that in *siRab27a* samples was normalized, accordingly. *** P < 0.001 by Student's *t* test.

C. Western blot analysis of expression of NFATc1 in SCP28 cells treated with Rab27a siRNA or NC.

D. The amounts of exosomes secreted by SCP28 cells treated with *Rab27a* siRNA or GW4869 was analyzed by NanoSight.

E. Western blot analysis of expression of RUNX2 in osteoblasts treated with or without SCP28 cell-secreted exosomes.

F. Representative images of ALP staining in osteoblasts treat with SCP28 exosomes or not. Scale bar, 3 mm.

G. qRT-PCR analysis of *Alp*, *Col1a1*, and *Ocn* mRNA in osteoblasts treated with or without SCP28 cell-secreted exosomes. The relative expression was normalized to *Gapdh* gene which is set as 1. Cumulative data are means \pm SEM. *** *P* < 0.001 (unpaired Student's *t* test). All data are from at least three independent experiments.

Supplementary Figure 4. SCP28 cells-secreted exosomes enhance bone metastasis of MDA-MB-231 tumor cells

A. Flowchart of the experimental processes and scheme of SCP28 cell-secreted exosome education and metastasis

B. BLI quantitation of dynamic bone metastasis of breast cancer MDA-MB-231 cells in recipient mice educated by SCP28 cell-secreted exosomes (n = 6) or controls (n = 7); ** P < 0.01 by two-way ANOVA.

C. Kaplan-Meier curve showing bone metastasis of MDA-MB-231 cells in recipient mice educated by SCP28 cell-secreted exosomes (n = 6) or controls (n = 7); * P < 0.05 (log-rank test).

D. Representative BLI imaging showing the MDA-MB-231 cells localization on day 42 in recipient mice educated by SCP28 cell-secreted exosomes or controls.

E. Representative images showing three-dimensional architecture after micro-CT reconstruction of the distal femurs from recipient mice. Scale bars, up 1 mm; bottom 300 μm.

F. Quantitative micro-CT analysis of distal femurs from recipient mice educated by SCP28 cell-secreted exosomes (n = 5) or controls (n = 7), including BMD, SMI, Tb.N, Tb.Th, Tb.Sp and C.Th. *P < 0.05; **P < 0.01 by Student's *t* test.

G. Representative X-ray images (up) and quantification of osteolytic lesions (bottom) in MDA-MB-231 cell-implanted mice educated by SCP28 cell-secreted exosomes or controls (n = 7 per group). Arrows indicate osteolytic bone areas. ** P < 0.01 by Student's *t* test.

H. Representative images of H&E, TRAP, and OCN staining from MDA-MB-231 cell-implanted mice educated by SCP28 cell-secreted exosomes or controls. T, tumor; M, bone marrow. Scale bar, 25 μ m. Cumulative data are means \pm SEM. The statistical method indicated relatively. All data are from at least three independent experiments.

Supplementary Figure 5. Bisphosphonate treatment attenuates pro-metastatic effect of breast cancer cell-derived exosomes in the bone

A. Representative images showing three-dimensional architecture after micro-CT reconstruction of the distal femurs from recipient mice. Scale bars, up 1 mm; bottom 300 μm.

B. Quantitative micro-CT analysis of distal femurs from control recipient mice with different treatment: Control, n = 5; BP, n = 4; exosomes, n = 5; exosomes + BP, n = 5, including BMD, SMI, Tb.N, Tb.Th, Tb.Sp and C.Th. * P < 0.05; ** P < 0.01; *** P < 0.001 by one-way ANOVA.

Cumulative data are means \pm SEM. All data are from at least three independent experiments.

Supplementary Figure 6. SCP28 cell-derived exosomal miR-21 promotes osteoclastogenesis

A. Heatmap globally showing enriched miRNAs in SCP28 cell-secreted exosomes. Normalized expression level of miRNAs which are higher in the top 200 miRNAs was labeled on the top and the scale bar on the right.

B. Normalized miRNA expression levels for the top 17 miRNAs except *miR-21-5p* in SCP28 cell-secreted exosomes. The relative expression was normalized to *U6* gene which is set as 1. * P < 0.05; ** P < 0.01; ***, P < 0.001 by Student's *t* test.

C. qRT-PCR analysis of *miR-21* level in exosomes secreted by MCF10A, MDA-MB-231, SCP28 and parental MDA-MB-231-LM2 cells. The relative expression was normalized to *miR-16* gene which are set as 1, respectively. * P < 0.05; ** P < 0.01 by one-way ANOVA.

D. The expression of *miR-21* in SCP28 cells and exosomes was measured by qRT-PCR. The relative expression of *miR-21* in cell or exosomes was normalized to *U6* or *miR-16* gene which are set as 1, respectively. * P < 0.05; ** P < 0.01 by one-way ANOVA

E. qRT-PCR analysis of *miR-21* level in SCP28 cells treated with miR-21 ShRNA or NC. The relative expression of *miR-21* was normalized to *U6* gene which is set as 1. ** P < 0.01 by Student's *t* test.

F. Representative images showing three-dimensional trabecular architecture after micro-CT reconstruction of the distal femoral metaphysis of mice. Scale bar, 300 μm.

G. Quantitative micro-CT analysis of distal femurs from mice in each experimental group, including BMD, SMI, Tb.Th, Tb.Sp and BV/TV. Control, n = 7; SCP28/NC, n = 6; SCP28/Sh-miR-21, n = 6. * P < 0.05; ** P < 0.01; *** P < 0.001 by one-way ANOVA.

H. ELISA analysis of serum CTX-1 (ng/mL) in control (n = 7), SCP28/NC (n = 6) and SCP28/Sh-miR-21 (n = 7) mice. ** P < 0.01 by one-way ANOVA.

I. qRT-PCR analysis of the expression of osteoclast marker genes including *Acp5*, *Ctsk*, *Mmp9*, and *Nfatc1* in tibias and femurs from control (n = 6), SCP28/NC (n = 5) and SCP28/Sh-miR-21 (n = 5) mice. The relative expression of each target transcript (after normalization to the housekeeping *Gapdh* gene) in tumor-free mice was set as 1, and that in tumor-bearing mice was normalized, accordingly. *

P < 0.05; ** P < 0.01; *** P < 0.001 by one-way ANOVA.

Cumulative data are means \pm SEM. All data are from at least three independent experiments.

1 2 3 4 5 6 Weeks after tumor inoculation

Аср5

*

Mmp9

O

00

0

0

□ Ctrl■ Exosomes

Ctsk

*

0

20

15

0.0

0.0

0.0

0.1

0.0

00

В

Table S1. The primer list for qRT-PCR

Name	sense primer (5'-3')	anti-sense primer (5'-3')
mmu-Gapdh	ATGGTGAAGGTCGGTGTGAA	GTCGTTGATGGCAACAATCTCC
mmu-Nfatc1	ACGCTACAGCTGTTCATTGG	CTTTGGTGTTGGACAGGATG
mmu-Acp5	GCGACCATTGTTAGCCACATACG	CGTTGATGTCGCACAGAGGGAT
mmu-Mmp9	GCGGCCCTCAAAGATGAACGG	GCTGACTACGATAAGGACGGCA
mmu-Ctsk	GCGTTGTTCTTATTCCGAGC	CAGCAGAGGTGTGTACTATG
mmu-Alp	ATCTTTGGTCTGGCTCCCATG	TTTCCCGTTCACCGTCCAC
mmu-Ocn	CCAAGCAGGAGGGCAATA	TCGTCACAAGCAGGGTCA
mmu-Collal	GGGACCAGGAGGACCAGGAAGT	GGAGGGCGAGTGCTGTGCTTT
mmu-Pdcd4	AGCGGTTAGAAGTGGAGTTGCTGT	ACAAGGTGATTGACAGGCTGTTGC
hsa-Gapdh	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
hsa-Rab27a	ACAACAGTGGGCATTGATTTCA	AAGCTACGAAACCTCTCCTGC
hsa-Pre-miR-21	CTTTAGGAGCATTATGAGC	ACTATCCCCATTTCTCCA
hsa- <i>miR-21-5p</i>	TAGCTTATCAGACTGATGTTGA	GAATCGAGCACCAGTTACGC
hsa- <i>miR-22-3p</i>	AAGCTGCCAGTTGAAGAACTGT	GAATCGAGCACCAGTTACGC
hsa- <i>miR-24-3p</i>	TGGCTCAGTTCAGCAGGAACAG	GAATCGAGCACCAGTTACGC
hsa-miR-27a-3p	TTCACAGTGGCTAAGTTCCGC	GAATCGAGCACCAGTTACGC
hsa-miR-27b-3p	TTCACAGTGGCTAAGTTCTGC	GAATCGAGCACCAGTTACGC
hsa-miR-100-5p	AACCCGTAGATCCGAACTTGTG	GAATCGAGCACCAGTTACGC
hsa-miR-148a-3p	TCAGTGCACTACAGAACTTTGT	GAATCGAGCACCAGTTACGC
hsa-miR-29a-3p	TAGCACCATCTGAAATCGGTTA	GAATCGAGCACCAGTTACGC
hsa-miR-320a	AAAAGCTGGGTTGAGAGGGCGA	GAATCGAGCACCAGTTACGC
hsa- <i>let-7i-5p</i>	TGAGGTAGTAGTTTGTGCTGTT	GAATCGAGCACCAGTTACGC
hsa-miR-3074-5p	GTTCCTGCTGAACTGAGCCAG	GAATCGAGCACCAGTTACGC
hsa- <i>miR-181a-5p</i>	AACATTCAACGCTGTCGGTGAGT	GAATCGAGCACCAGTTACGC
hsa-miR-26a-5p	TCAAGTAATCCAGGATAGGCT	GAATCGAGCACCAGTTACGC
hsa-miR-30d-5p	TGTAAACATCCCCGACTGGAAG	GAATCGAGCACCAGTTACGC
hsa- <i>miR-221-3p</i>	AGCTACATTGTCTGCTGGGTTTC	GAATCGAGCACCAGTTACGC
hsa- <i>miR-423-5p</i>	TGAGGGGCAGAGAGCGAGACTTT	GAATCGAGCACCAGTTACGC
hsa-miR-30a-5p	TGTAAACATCCTCGACTGGAAG	GAATCGAGCACCAGTTACGC
hsa- <i>miR-92a-3p</i>	TATTGCACTTGTCCCGGCCTGT	GAATCGAGCACCAGTTACGC
hsa- <i>miR-16</i>	TAGCAGCACGTAAATATTGGCG	GAATCGAGCACCAGTTACGC
cel-miR-39	GGCGCTACCTGTATCAATGG	GTGGTCAGCCAACTCGTCA
U6	CGCTTCGGCAGCACATATA	TTCACGAATTTGCGTGTCAT