

Figure S1. Validation of the screening results of CCL16 in HMLE-snail cells.

**A. Schematic representation and findings of the high-throughput siRNA screening platform. B. QPCR results.** The figure shows that CCL16 and OCT4 mRNA expression decreases in shCCL16 (CCL16 knockdown) versus sc (control) HMLE-snail cells. **C. Dual-luciferase assay.** This figure shows that the activity of the OCT4 promoter decreases in shCCL16 (CCL16 knockdown) versus sc (control) HMLE-snail cells. **D. Western blot results.** This figure shows that the expression of CCL16 and OCT4 decreases in shCCL16 (CCL16 knockdown) versus sc (control) HMLE-snail cells.



D CCL16 (moderate) CCR2

# Figure S2. Representative immunohistochemistry and correlation graphs of a human breast cancer tissue array.

A. This figure shows the immunostaining of low CCL16,  $\beta$ -catenin, and OCT4 in human breast cancer tissue. **B.** This figure shows the immunostaining of **moderate** CCL16,  $\beta$ -catenin, and OCT4 in human breast cancer tissue. **C.** This figure shows the immunostaining of low CCL16 and CCR2 in human breast cancer tissue. **D.** This figure shows the immunostaining of **moderate** CCL16 and CCR2 in human breast cancer tissue.

Α



В



С



OECtrl

OECCL16

OECCL16-shCtrl OECCL16-shCCR2





F



D







Figure S3. CCR2 was indispensable for CCL16 mediated CSC-like identity maintenance.

A & D. ALDH staining assay. This figure shows that the ALDH+ sub-population decreases in shCCR2 MDA-MB-231 cells versus shCtrl cells (controls). B & E. Side population assay. This figure shows that the side-population decreases in shCCR2 MDA-MB-231 cells versus shCtrl cells (controls). C & F. Sphere formation assay. This figure shows that sphere formation decreases in shCCR2 MDA-MB-231 cells versus shCtrl cells (controls).

Α



В

OECtrl

OECCL16

1 151

1.00



+XAV939 100 511 8.880% 4.740%

OECCL16

С

central Basa-A 150

100

-



3.730%

OECCL16+Ctrl

Bauch

8.610%

151 2400 IOP

#### OECCL16+XAV939



BLOCK

0.000%

OECtrl







Figure S4. β-catenin activation was indispensable for CCL16 mediated CSC-like identity maintenance.

A & D. ALDH staining assay. This figure shows that the ALDH+ sub-population decreases in XAV939 treated MDA-MB-231 cells versus Ctrl cells (controls). B & E. Side population assay. This figure shows that the side-population decreases in XAV939 treated MDA-MB-231 cells versus Ctrl cells (controls). C & F. Sphere formation assay. This figure shows that sphere formation decreases in XAV939 treated MDA-MB-231 cells versus Ctrl cells (controls).

#### Table S1.Primer sequences

| Name          | Sequence                                                              |  |  |  |
|---------------|-----------------------------------------------------------------------|--|--|--|
| CCL16-RT-F    | CTTATCATTACTTCGGCTTCTCGC                                              |  |  |  |
| CCL16-RT-R    | GGCCTTTCTGTATCCCACCACTA                                               |  |  |  |
| CCL16-shRNA-1 | AAAAGCCTGAAGTATTATGAGAAAGTTGGATCCAACTTTCTCATAATACTT<br>CAGGC          |  |  |  |
| CCL16-shRNA-2 | AAAAGGGTCCAAGAGTACATCAAGGTTGGATCCAACCTTGATGTACTCTT<br>GGACCC          |  |  |  |
| shCtrl        | AAAAGCTACACTATCGAGCAATTTTGGATCCAAAATTGCTCGATAGTGTA<br>GC              |  |  |  |
| FLAG-CCL16-F  | GCTCTAGAGCCACCATGGATTACAAGGATGACGACGATAAGAGCCCGATG<br>AAGGTCTCCGAGGCT |  |  |  |
| CCL16-R       | CGACGCGTTCACTGGGAGTTGAGGAGC                                           |  |  |  |
| NANOG-RT-F    | TCTGGACACTGGCTGAATCCT                                                 |  |  |  |
| NANOG-RT-R    | CGCTGATTAGGCTCCAACCAT                                                 |  |  |  |
| SOX2-RT-F     | GCCTGGGCGCCGAGTGGA                                                    |  |  |  |
| SOX2-RT-R     | GGGCGAGCCGTTCATGTAGGTCTG                                              |  |  |  |
| OCT4-RT-F     | GCTCGAGAAGGATGTGGTCC                                                  |  |  |  |
| OCT4-RT-R     | CGTTGTGCATAGTCGCTGCT                                                  |  |  |  |
| OCT4-CHIP-1-F | ACTGGTTCATGTGGGGAAGGT                                                 |  |  |  |
| OCT4-CHIP-1-R | GGCTGGGGCAGCCCAT                                                      |  |  |  |

| OCT4-CHIP-2-F  | AGGGATGGGCTGCCCCA         |  |  |
|----------------|---------------------------|--|--|
| OCT4-CHIP-2-R  | GGAGGAGGCCGGGAGCG         |  |  |
| OCT4-CHIP-3-F  | CACCGCTCCCGGCCT           |  |  |
| OCT4-CHIP-3-R  | TCCAGACACTCTTACCTCAAATAGA |  |  |
| OCT4-CHIP-4-F  | TTGAGGTAAGAGTGTCTGGAT     |  |  |
| OCT4-CHIP-4-R  | ACACACCTTTATTATTACAGTG    |  |  |
| OCT4-CHIP-5-F  | GTAATAATAAAGGTGTGTGTGAA   |  |  |
| OCT4-CHIP-5-R  | AGTCCCTGCTGCCCA           |  |  |
| OCT4-CHIP-6-F  | GAAAATGGGCAGCAGGGA        |  |  |
| OCT4-CHIP-6-R  | GTGGCCAGCTGTCTTCATCT      |  |  |
| OCT4-CHIP-7-F  | AGATGAAGACAGCTGGCCAC      |  |  |
| OCT4-CHIP-7-R  | CCCGAGCCTGGCAGAT          |  |  |
| OCT4-CHIP-8-F  | CTCAATCTGCCAGGCTCG        |  |  |
| OCT4-CHIP-8-R  | AACTCAGACATCTAATACCACGGTA |  |  |
| OCT4-CHIP-9-F  | TGGTATTAGATGTCTGAGTTTTGGT |  |  |
| OCT4-CHIP-9-R  | CTCTCAGCTCCTCAAATTTATTGA  |  |  |
| OCT4-CHIP-10-F | TAAATTTGAGGAGCTGAGAGGGT   |  |  |
| OCT4-CHIP-10-R | CCTCAGTGCAGGTCCCCC        |  |  |
| CCL16-CHIP-1-F | TTCTCCATCCCCAGCCTA        |  |  |
| CCL16-CHIP-1-R | AGATCACGAGGTCAGGAGTTTG    |  |  |

| CCL16-CHIP-2-F | GGAGCAGCTGGCAGGGA       |
|----------------|-------------------------|
| CCL16-CHIP-2-R | GGGGACCATAGATTCCCAAG    |
| CCL16-CHIP-3-F | CGCCTATCCACCCAGGTG      |
| CCL16-CHIP-3-R | ACCTCCCTGCCAGCTGCT      |
| CCL16-CHIP-4-F | GGAGCACAGACGCAGGTTGT    |
| CCL16-CHIP-4-R | GTCACCTGGGTGGATAGGCG    |
| CCL16-CHIP-5-F | AGGAAGGGCTTGTGGGC       |
| CCL16-CHIP-5-R | ACAACCTGCGTCTGTGCTC     |
| CCL16-CHIP-6-F | GCATGAAGACATTTTATCCAACC |
| CCL16-CHIP-6-R | GTGGCCCACAAGCCCTT       |

#### Table S2. Antibodies List

| Antibody  |                   | Clone, Cat # | Vendor        | City, State,    |
|-----------|-------------------|--------------|---------------|-----------------|
|           |                   |              |               | Country         |
| CCL16     | Rabbit monoclonal | EPR4452(2),  | Abcam         | Hong Kong,      |
|           |                   | ab134917     |               | China           |
| OCT4      | Rabbit polyclonal | ab19857      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| SOX2      | Rabbit monoclonal | EPR3131,     | Abcam         | Hong Kong,      |
|           |                   | ab92494      |               | China           |
| NANOG     | Rabbit polyclonal | Ab80892      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| β-catenin | Rabbit polyclonal | ab16051      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| ALDH1A1   | Rabbit monoclonal | EP1933Y,     | Abcam         | Hong Kong,      |
|           |                   | ab52492      |               | China           |
| CCR1      | Rabbit polyclonal | Ab19013      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| CCR5      | Rabbit polyclonal | Ab65850      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| CCR8      | Rabbit polyclonal | Ab63772      | Abcam         | Hong Kong,      |
|           |                   |              |               | China           |
| β-actin   | Mouse monoclonal  | sc-47778     | Santa Cruz    | Santa Cruz, CA, |
|           |                   |              | Biotechnology | USA             |
| p-GSK3β   | Rabbit monoclonal | 9323         | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| GSK3β     | Rabbit monoclonal | 12456        | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| LaminA    | Mouse monoclonal  | 133A2        | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| CCR2      | Rabbit monoclonal | D14H7        | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| p-AKT     | Rabbit monoclonal | 4060         | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| AKT       | Rabbit monoclonal | 4685         | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| FLAG      | Rabbit monoclonal | 14793        | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| p-STAT3   | Rabbit monoclonal | 9145         | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |
| STAT3     | Rabbit monoclonal | 12640        | Cell Signal   | Danvers, MA,    |
|           |                   |              | Technology    | USA             |