
Supplementary Materials 
Animal handling, number and data distribution 

A total of 34 male rats weighting between 322 and 376 g were used for the experiments. 
Day/light cycles were set to 12 h and food and water was provided ad libitum. Body weight 
measurements were followed daily following the surgical procedure. Animals were kept in 
groups of 4 animals in type IV Makrelen individually ventilated cages (IVC, Tecniplast, 
Hohenpeißenberg, Germany) with nesting material, wood chips and wooden enrichment 
according to German federal regulations. Animals had ad libitum access to standard pellet 
rodent food (Ssniff, Soest, Germany) and tap water. Cages were kept in a minimally disturbed 
room at 22 °C with 50% humidity following a light exposure of 12 h (day/night).  

From the planned animals only 32 were evaluated using the machine learning framework. Two 
animals from the Training group were excluded due image related artifacts rendering them 
unusable for analysis. Furthermore, animal mortality claimed three histological samples on the 
Training (n=2) and Test group (n=1). The original neuroprotective trial was focused on 
immunohistochemistry and histology rather than MRI for the 1-week timepoint evaluation, 
therefore only 9 animals were scanned at 1-week using MRI. The rest of the animals used in 
the experiment are tabulated on Supplementary table 1. 
Peri-Surgical Care 

For surgery, animals were placed on an automatic temperature-controlled surgical surface (TC-
1000 Temperature Controller, CWE Inc., USA) which maintained the animals at 37.0 ± 0.5 °C 
as monitored through a rectal probe. Isoflurane anesthesia at 5% induction and 1.5-2.5% 
maintenance was administered using a face-mask. Training and Test-group1 animals received 
isoflurane vaporized in a mixture of 30% oxygen and 70% room air at a flow rate of 1.5 L/min, 
whereas the Test-group2 animals received isoflurane using 100% O2. The flow rate was 
maintained throughout the surgeries. During the surgery, blood pressure was monitored using 
a PE50 catheter which was inserted into the femoral artery. Furthermore, a small incision and 
thinning of the right parietal bone was performed, 2 mm posterior and 6 mm lateral from the 
Bregma suture using a surgical drill. This served in order to place a small probe to monitor 
cerebral perfusion using Laser Doppler (PeriFlux System 5000, Perimed Instruments, Sweden) 
throughout the surgery. Acute pain management for the surgical interventions was performed 
using s.c. administration of Buprenorphin 0.2 mg/kg 5 minutes before waking and 12 h after 
surgery.  

Middle cerebral artery occlusion model – Stroke Induction 
A middle cerebral occlusion with reperfusion, similar to the description by Longa et al. was 
used to induce ischemic stroke on the rats [1]. Briefly, surgeries were performed under a 
surgical microscope. The surgical neck area was shaved and disinfected, prior to the surgical 
incision. Xylocaine (1%) was injected locally, followed by a mid-line incision on the neck. The 
external carotid artery was dissected and surgical clamps were used to occlude proximal to the 
common carotid artery bifurcation and on the external carotid artery, distal to the common 
carotid artery bifurcation. A temporary ligation of the external carotid artery near the base of 
the bifurcation was placed to avoid retrograde bleeding. An incision was then made on the 
external carotid artery for the insertion of a silicon-coated nylon filament 0.33 ± 0.02 mm thick 
(Doccol Corporation, USA), which was pushed into the common carotid artery bifurcation and 
then into the internal carotid artery. Simultaneously, the temporary ligation was loosened to 
allow the passing of the coated filament into the skull towards the middle cerebral artery 
bifurcation; effectively occluding blood flow distal to it for 100 minutes. Laser Doppler flow 
was used to monitor reductions in cerebral blood flow before, during insertion of the filament 



and during its removal. Following the occlusion period, the filament and clamps were removed 
allowing reperfusion and the surgical wound was closed.  

 
Hypothermia Administration 

The animals used in this manuscript originally were part of a neuroprotective trial consisting 
of whole-body hypothermia and oxygen administration. The trial yielded no significant 
differences between the groups. However, here we disclose the evaluations performed on them. 
The whole-body hypothermia treatment was administered directly after recanalization 
following MCAO surgery to the Testing-subgroup1, while the Testing-subgroup2 received 
whole body hypothermia treatment plus 100% oxygen administration.  

Following surgery, animals in Testing-subgroup1and Testing-subgroup2 received systemic 
hypothermia therapy. This treatment was performed immediately after recanalization and 
consisted on the whole-body cooling of the rats to a temperature of approximately 32.6 ± 0.4 
°C for 30 minutes. Using a Thermo/HAAKE C25P Refrigerated Bath system (Sigma-Aldrich, 
USA), cold water was pumped through a closed plastic-hose shaped as a cylindrical bore in 
which the rat was placed. The cooling system allowed the body temperature reductions which 
were closely monitored using a rectal probe (CWE Inc.). Training animals were maintained 
under the same conditions at 37.0 ± 0.5 °C. 

Imaging Acquisitions – Preclinical 
The animals were scanned 24 h after stroke induction using MRI. Anesthesia for the scans was 
performed using isoflurane (induction at 5% and maintenance at 1.5-2.5% vaporized in the 
room air at 1.5 L/min) and placed on an MRI-compatible bed with an integrated water heating 
system (Bruker Biospin, Ettlingen, Germany). Temperature was monitored using a rectal probe 
and maintained at 37.0 ± 0.5 °C. The heads were fixed on brain-dedicated MRI-beds using 
stereotactic pins. Respiratory rate was measured during the MRI acquisitions. 
T2W images were acquired using a 3D-spoiled turbo spin echo sequence (161 × 256 matrix, 
35 x 57 mm2 field of view (FOV), repetition time (TR) = 3000 ms, echo time (TE) = 205 ms, 
slice thickness = 0.21 mm). Diffusion weighted images (DWI) for apparent diffusion 
coefficient (ADC) image calculations were acquired using an echo planar imaging (EPI) 
sequence on the coronal plane covering most of the brain (52 x 128 matrix, 21 x 54 mm2 FOV, 
TR = 5500 ms, TE = 60 ms, Flip angle = 90°, Slice thickness = 1 mm, b-values = [0, 1000] 
s/mm2 and 30 diffusion directions. As part of another evaluation, Perfusion measurements were 
also measured as previously described [2–4]. For this, one slice of coronal plane Flow-sensitive 
Alternating Inversion Recovery and a True Fast Imaging with Steady Precession (FAIR True-
FISP) acquisition protocol (64 x 64 matrix, 25 x 25 mm2 FOV, TR = 4.1 ms, TE = 2.05 ms, 
inversion time (TI) = 1800 ms, interscan time = 7000 ms, flip angle = 70°, number of inversions 
= 30, ST = 1.2 mm).  
The rats also received an injection of 35 Mbq [18F]FDG at 24 h as part of an additional 
experiment, where glucose metabolism in the stroke brain was evaluated. For injection and 
during the PET-scan, the animals were kept under Isoflurane vaporized in room air at 1.5 L/min 
and at a temperature of 37.0 ± 0.5 °C as previously described. After 1 hour of [18F]FDG uptake 
under isoflurane anesthesia, the animals were scanned for 10 minutes on a dedicated small 
animal Inveon PET scanner (Siemens Healthineers, Knoxville TN, USA).  
Imaging Acquisitions – Clinical 

T2-weighted fluid attenuated inversion recovery (FLAIR) sequence was acquired using the 
following parameters: TR = 8800 ms, TE = 87 ms, TI = 2500 ms, ST = 4.5 mm. Diffusion 



weighted images were acquired with an echo planar imaging protocol (TR = 5900 ms, TE = 93 
ms, ST = 3 mm, 2 averages and 3 b-values= [0, 500, 1000] s/mm2).   

Preclinical imaging - Post-processing 
The acquired diffusion weighted images were used to calculate ADC images using Syngo 
software (Siemens Healthineers, Erlangen, Germany). Signal intensity in T2W images was 
individually corrected by linearly fitting the decaying average image intensity and using the 
fit-slope for the correction to minimize the effects of signal loss in deep tissues as measured by 
the dedicated surface brain coil. All the processed images were then co-registered to an 
anatomical atlas and transformed into a matrix with an isotropic voxel resolution of 200 µm. 
The intersection of all rat brains was used to produce a brain mask using PMOD Software 
(Bruker BioSpin) from where the ventricles were excluded before exporting the data into 
MATLAB for further analysis (R2017b, The MathWorks, Inc., Natick, USA). 

Clinical imaging - Post-processing 
ADC maps were calculated from the diffusion weighted images using the clinical software 
syngo.via frontier (Siemens Healthineers). Realignment, motion correction and co-registration 
to a common atlas space was performed using MATLAB and SPM12 software [5]. Afterwards, 
the brain tissue was masked excluding the ventricles, analogous to the preclinical image post-
processing.  

Machine learning – Random Forest Classifier 
Matlab’s TreeBagger Random Forest implementation does not directly allow to set max_depth 
and max_feature parameters, and therefore these parameters were not optimized. While it is 
possible to set the 'MaxDepth' parameter for the fitctree method, which TreeBagger uses for 
creating classification trees, it only applies to the special case when the Tall input arrays. This 
was not the case in this study. The fitctree method grows deep decision trees by default based 
on the MinLeafSize, or MinParentSize parameters. MinLeafSize was set to 1. The remaining 
parameters were kept to Matlab’s defaults.  

Noise filter 
A median filter was applied on the clinical data in order to optimally compare the shape 
similarity between the predicted stroke regions and the human delineations using the Dice 
Similarity Coefficient (DSC) [6]. The filter size was chosen by gradually increasing the kernel 
dimensions starting at 2×2×2 voxels while quantifying the similarity to GT. A kernel volume 
of 8×8×8 voxels optimally reduced surrounding noise in the ML-prediction. We also studied 
the effects of median filtering on the metrics of success. All results are shown in Supplementary 
Fig. S5. 

Visualization - Joint probability maps 
The intuition behind joint probability maps was to visualize the average stroke volume – 
determined by ML as well as T2W and ADC thresholding – over all the rats for each group. 
This allows an intuitive and objective visualization of the entire stroke region in a single slide. 
To this end, we first selected the slices of interest (axial slice with the largest stroke extension 
and its two adjacent slices) for each rat based on the acute stroke probability maps obtained 
either via the optimal GMM or the trained RFC. Afterwards, the ML joint probability map was 
calculated by taking an average of all the coronal selected slices across all the rats of the 
respective group. Strokes produced by the MCAO model are consistently anatomically 
confined to the middle cerebral artery territory of the brain and so the joint probability maps 
provide a good representation of the stroke region. The thresholding joint probability maps 
were calculated based on the lesion classification maps obtained either through T2W or ADC 



thresholding. However, for the sake of comparison, the slices of interest derived from ML were 
also used in calculating the thresholding joint probability maps. 

Histology and Immunohistochemistry 
All histological sections were stained with H&E and Luxol fast blue (LFB). 
Immunohistochemistry (IHC) was performed on an automated immunostainer (Ventana 
Medical Systems Inc, Roche Diagnostic, Mannheim, Germany) following the supplier’s 
protocols for open procedures with slight modifications. All slides were stained with the 
antibody GFAP (anti-Glial Fibrillary Acidic Protein, Dakocytommation, Glostrup, Denmark). 
Appropriate positive and negative controls were used to confirm the adequacy of the staining. 
Calculation of metrics 

The following conditions and equations were used for calculating classification metrics: 

P	=	Condition	positive:	number	of	real	positive	voxels	in	the	data	
N	=	Condition	negative:	number	of	real	negative	voxels	in	the	data	
TP	=	True	positive	
TN	=	True	negative	
FP	=	False	positive	
FN	=	False	negative	
Sensitivity	=	TP/P	
Specificity	=	TN/N	
Positive	predictive	value	(PPV)	=	TP/TP+FP	
Negative	predictive	value	(NPV)	=	TN/TN+FN	
Accuracy	=	TP+TN/TP+TN+FP+FN	
Mathew’s	Correlation	Coefficient	(MCC)	=		
(TPxTN–FPxFN)/	Ö((TP+FP)(TP+FN)(TN+FP)(TN+FN))		

𝐷𝑖𝑐𝑒	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	(𝐷𝑆𝐶) =
2|𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	𝑀𝑎𝑠𝑘	 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ|
|𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	𝑀𝑎𝑠𝑘| + |𝐺𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ| 

 

Supplementary Data 
Histological evaluations 

We ascertained tissue characteristics of the stroke regions at 24 h and 1 week after stroke 
induction in order to further understand the imaging characteristics from MRI at the 
corresponding time points (Fig. 2 in main manuscript). All rats showed lesions in the ipsilateral 
hemisphere in the cortex and in the caudate/putamen with different sizes. After 24 h of middle 
cerebral artery occlusion the lesions were clearly visible as fresh ischemic infarctions with 
large edematous areas. Additionally, enlarged blood vessels were observed. In all animals the 
special stain LFB showed lack of axons in the stroke areas predominantly in the 
caudate/putamen. In association with the astrocyte-specific filament, the GFAP stain was 
negative in the stroke area at 24 h. Taken together, the 24 h time point evaluation showed a 
clear fresh infarct area with increased edema, but no clear evidence of neuroinflammation. At 



the same time, Analysis of Variance (ANOVA) showed no significant difference between the 
stroke areas between the groups (neuroprotection), which was consistent with manually drawn 
ROIs.  
At 1 week after stroke, histology showed smaller focalized lesions than the 24 h evaluations 
(Fig. 2A-B in main manuscript). H&E histology at 1 week clearly showed macrophages and 
astrocytes around and within the lesions, as well as neovascularization and starting fibrosis. 
We quantified the difference in area from 24 h to 1 week. The measurement of the stroke areas 
showed a 50% reduction over time, but these findings were not significantly different (Fig. 
2B). Quantification using MRI however yielded a different result. We noticed during the 
analysis that the regions of interest produced by human experimenters at 24 h and the ground 
truth histology presented a volume mismatch (Fig. 3 and Fig. 4). We stipulated that this 
mismatch was produced by falsely classified stroke region, which presented edema and so we 
evaluated the T2-weighted signal intensity, a known imaging biomarker of vasogenic edema. 
There was significantly less edema at the 1-week time point in comparison to the findings in 
the 24 h histology (Fig. 2C). These data suggest edema may play a role in misclassification by 
humans, which the ML algorithm is able to discriminate using ADC. This was also evidenced 
using GFAP staining, which showed increased gliosis around the stroke area. This allowed a 
clearer visualization of the stroke core, clearly delimited in stark contrast to the diffuse and 
undistinguishable larger edematous areas of the 24 h timepoint. However, visually there was 
no clear difference in reactive gliosis between all groups at 1 week. Worth noting is that not all 
animals in the 1-week time point presented a strong reactive gliosis, which did not allow us to 
use it to quantify core regions to correlate with H&E measurements. At the same time, although 
LFB produces clear images of the white matter deterioration, it does not help identify the stroke 
core clearly. Taken together, histological analysis allowed us to confirm the evaluations we 
performed using MRI and allowed us to validate the stroke segmentation findings produced 
through our ML framework.  

Supplementary Discussion 
Probability maps 
 
It can be noticed that the exemplary probability maps of the rats shown in Supplementary figure 
S3 mainly classify the stroke regions with a high probability (~0.95-1.0). The trained RF 
classifier behaves in such a manner due to two main reasons. First, the RF classifier was trained 
using the voxel-wise cluster labels derived from the optimal GMM and not the posterior 
probabilities. Using a classifier that takes into account the uncertainty of training labels (in 
order words can be trained on probabilistic labels) might alleviate this issue. Second, the 
classifier’s task was simplified to a two-class classification problem (stroke/non-stroke), unlike 
the GMM clustering where the entire brain was divided into several clusters (5 in the case of 
optimal GMM). This resulted in a highly distinct signature of the stroke cluster, causing the 
trained model to classify test observations with high probability. 
Normalization of Clinical datasets 

Certain corrections play an important role in automated approaches, such as field strength 
differences between scanners, signal intensity corrections (resulting from different coils) and 
normalization of parameters. In this work, the normalization of the T2W parameter in the 
clinical subjects was vital for the successful model translation. However, this was not necessary 
for the animal data acquired in this study, mainly due to the standardized imaging protocols 
across the cohorts. Nonetheless, we suggest performing an instance-wise normalization in 
examinations where deviations in the T2W parameter across different animals are expected. 
 



Noise Reduction 
We were interested in the reduced DSC values of both 24 h and 1-week timepoints in humans, 
since visually there was seemingly good correspondence with the manually delineated stroke 
regions in the four patients. Scattered voxels not corresponding to the diagnosed focal stroke 
lesion played a role in the metric of similarity. In order to objectively explore the similitude of 
the predicted stroke area to estimated ground truth (EGT) without this noise, we systematically 
applied a median filter with increasing kernel volumes and calculated every corresponding 
metric (Supplementary figure S5). Median filtering with optimal kernel size (8×8×8 voxels) 
resulted in highest median similarity between the ML stroke region and the EGT. The removal 
of noise in the prediction maps also increased MCC and positive predictive value. The 
application of an 83 kernel led to a results similar as manual delineation, which was useful to 
recognize very small strokes (Supplementary figure S5). It must be pointed out that median-
filter is an important tool to enhance model prediction and is normally used before data training. 
We applied the noise filtering after GMM and before RFC training, however the metrics in 
humans did not present the same improvement as applying the filter as a post-processing step.  
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Supplementary Figure legends 
Fig. S1. Experimental workflow. The above chart depicts the different post-processing of 
preclinical (yellow) and clinical data (black). Rat MRI data and human MRI data were acquired 
24 h post-stroke onset with follow-up MRIs after 1-week (represented by the black boxes). The 
rat training dataset was used to identify a stroke cluster via Gaussian Mixture Modeling 
followed by training of a Random Forest Classifier (RFC). The trained RFC model was applied 
on the 24 h MRI dataset of Testing rats and on 24 h human MRIs. Regions of interest (ROI) 
were drawn on 24 h post-stroke MRI for humans and animals (blue). MRI ROIs of the 1-week 
follow-up were used as estimated ground truth (EGT) for rats and humans correspondingly. 
Histology was performed at 24 h on a subset of 9 animals while another larger group of 20 
animals was evaluated with histology after 1 week (brown). ROI analysis was also produced 
on the 24 and 1-week histology animal data. Metrics of prediction success and correlations to 
final stroke volume were calculated on all data by comparing against Manual ROIs at 24h or 
EGT. Finally, a modified variant of the rat-trained RFC was applied on the clinical data to 
assess the feasibility of feature translation and stroke identification in humans.  
Fig. S2. Percentage of predicted stroke voxels in non-stroke hemisphere. The plot depicts 
the fraction of voxels in the contralateral hemispheres of all the Training group rats that were 
labeled as stroke by Gaussian mixture model (GMM) with varying number of mixture 
components. Since the contralateral hemispeheres did not present stroke lesions, the optimal 
number of mixture components was detemined based on a GMM configuration that resulted in 
a reduced contralateral stroke fraction (less than 1%, highlighted in yellow). Any further 
increase in the number of mixture components subdivided the stroke cluster. 

Fig. S3. Examples of single animal comparisons per group. Training, Test-group1 and Test-
group2 examples depicting coronal rat brain apparent diffusion coefficient (ADC) and T2-
weighted (T2W) images along with the machine learning prediction as a probability map. The 
exemplary cases show the role that the interaction between both the parameters plays in 
predicting stroke regions in the probability maps. The Training group example in the first row 
shows a stroke delimited to the left hemisphere with reduced ADC and increased signal 
intensity in the T2W image. The right column shows the segmented ischemic stroke region. 
The second row shows a similar pattern in ADC and T2W imaging, however here, the ADC 
shows hyperintensities in the left stroke hemisphere and strong hypointensity artifacts (red 
arrow) on the contralateral hemisphere. This type of artifact is common in echo planar imaging 
acquisitions. The lack of T2W hyperintensity and the strong uncharacteristic ADC reduction 
in the artifact aids the correct classification in the probability map. The bottom row presents a 
rat example from the Test-group2, which shows a stroke region similar to the Training group 
rat, however ADC shows a folding artifact on the cortex produced by the echo planar image 
that leads to ADC values within the range of the stroke cluster. The algorithm misclassifies in 
this case these small amount of voxels and produces false positives, denoting how artifacts may 
impact the method. 
Fig. S4. Quantification of stroke volume using all animals at 24 h. The boxplots show the 
distribution of the stroke volume calculated by the apparent diffusion coefficient and T2-
weighted image thresholding (ADCth and T2Wth) methods, as well as the manual region of 
interest and the machine learning (ML) calculations. ANOVA showed a significant difference 
between the methods for the Training n=12, F(3,44)=14.8, P<0.001 and Testing group (n=20), 
F(3,76)=21.2, P<0.001, demonstrating significant overestimation by the thresholding 
approaches against ML (P<0.001). The human and the ML aproaches were not significantly 
different. The ML model allowed an objective and automatized evaluation of therapy induced 
changes in stroke volume. The boxplot presents several metrics in symbols: Mean (+), median 



(red line), 1st quartile of the data (box upper border), 3rd quartile of the data (box lower border) 
and 15% outmost border of the dataset (whisker). * = P<0.05, ** = P<0.01. 

 
Fig. S5. Effect of the median-filter’s kernel size on clinical metrics at 1-week.  

A. The boxplots show different metrics as a function of the median filter’s kernel size when 
comparing the machine learning algorithm’s (ML) predictions to the ground truth (EGT). On 
the horizontal axis, the raw ML prediction metric is plotted next to increasing median filter 
volumes (the kernel size is isotropic in all three directions to the labeled values). Median Dice 
Coefficient (DSC), Matthew’s correlation coefficient (MCC) and positive predictive value 
(PPV) present an improvement as the noise is removed by the filter compared to their raw 
scores. The boxplots present several measures in symbols: Mean (+), median (red line), 1st 
quartile of the data (box upper border), 3rd quartile of the data (box lower border) and 15% 
outmost border of the dataset (whisker). B. The image on top left shows the raw machine 
learning prediction (Raw ML) for patient 2 from the stroke patients group. To the right, the 
same prediction has been processed using a median filter with increasing kernel volumes shown 
from left to right. As can be seen in the image, a kernel of dimensions 16×16×16 reshaped and 
reduced similarity between the stroke volume predictions the manual 24 h and 1-week 
delineations. The graph on the bottom right shows the size of the kernel relative to the volume 
of the brain. The bar in yellow shows the percent of the brain represented by the delineated 
stroke volume at 24 h. The black bars depict the volumes of the different kernels illustrating 
the relationship of the median filter volume to that of the small stroke lesion (red arrow) in the 
bottom. The 8×8×8 kernel’s volume is slightly smaller than the small stroke lesion in Patient 2 
and therefore it may have small, but measurable effects in determining the shape of the stroke. 
 

Fig. S7. Metrics of stroke prediction on clinical data. The metrics calculated correspond to 
the four radiologically confirmed stroke cases. Here we compared the machine learning (ML) 
prediction to the manual 1-week timepoint delineation by the radiologist or ground truth (GT) 
and the manual delineation by the radiologist at 24 h (Man). Accuracy, Specificity and negative 
predictive value were remarkably high in all comparisons. Dice similarity coefficient (DSC) 
was highest between ML and Man at 24 h. Manual delineation presented a similar shape as 
ML, when compared to GT. Matthew’s Correlation Coefficient (MCC) results were similar to 
the DSC. The median sensitivity and positive predictive value was similar between all 
comparisons. The boxplots present several measures in symbols: Mean (+), median (red line), 
1st quartile of the data (box upper border), 3rd quartile of the data (box lower border) and 15% 
outmost border of the dataset (whisker). 
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 Training Testing Total 
Rat 24 h MRI n=12 n=20 n=32 
Rat 24 h Histology n=2 n=7 n=9 
Rat 1-week MRI n=3 n=6 n=9 

Rat 1-week Histology n=8 n=12 n=20 

Human 24 h MRI  - n=8 n=8 
Human 1-week MRI - n=4 n=4 

Table 1. Distribution and number of subjects per group. 
  



Parameter Groups compared 
Lower 

confidence 
interval 

Estimate 
Upper 

confidence 
interval 

P-value 

Dice 
coefficient 

ADCth T2wTh -0.428 -0.081 0.264 1 
ADCth Manual -0.480 -0.133 0.212 1 
ADCth ML -0.335 0.010 0.356 1 
T2wTh Manual -0.398 -0.051 0.294 1 
T2wTh ML -0.254 0.092 0.438 1 
Manual ML -0.202 0.144 0.490 1 

Accuracy 

ADCth T2wTh -0.096 -0.037 0.021 0.514796 
ADCth Manual -0.128 -0.069 -0.009 0.0149418 
ADCth ML -0.119 -0.059 -0.001 0.0463073 
T2wTh Manual -0.091 -0.031 0.027 0.8450172 
T2wTh ML -0.081 -0.022 0.036 1 
Manual ML -0.049 0.009 0.068 1 

Matthew’s 
correlation 
coefficient 

ADCth T2wTh -0.451 -0.119 0.211 1 
ADCth Manual -0.500 -0.168 0.162 0.9701596 
ADCth ML -0.353 -0.021 0.309 1 
T2wTh Manual -0.380 -0.049 0.282 1 
T2wTh ML -0.233 0.097 0.429 1 
Manual ML -0.184 0.147 0.478 1 

Sensitivity 

ADCth T2wTh -0.446 -0.103 0.239 1 
ADCth Manual -0.426 -0.083 0.259 1 
ADCth ML -0.140 0.202 0.545 0.3070577 
T2wTh Manual -0.323 0.019 0.362 1 
T2wTh ML -0.037 0.305 0.648 0.0266207 
Manual ML -0.056 0.285 0.628 0.0440178 

Positive 
predictive 

value 

ADCth T2wTh -0.454 -0.101 0.250 1 
ADCth Manual -0.520 -0.168 0.183 1 
ADCth ML -0.525 -0.173 0.179 1 
T2wTh Manual -0.418 -0.066 0.285 1 
T2wTh ML -0.423 -0.071 0.281 1 
Manual ML -0.357 -0.004 0.347 1 

False 
discovery 

rate 

ADCth T2wTh -0.250 0.101 0.454 1 
ADCth Manual -0.183 0.168 0.520 1 
ADCth ML -0.179 0.173 0.525 1 
T2wTh Manual -0.285 0.066 0.418 1 
T2wTh ML -0.281 0.071 0.423 1 
Manual ML -0.347 0.004 0.357 1 

Negative 
predictive 

value 

ADCth T2wTh -0.045 -0.015 0.014 0.9650712 
ADCth Manual -0.041 -0.011 0.018 1 
ADCth ML 0.004 0.034 0.064 0.0168658 
T2wTh Manual -0.025 0.004 0.034 1 
T2wTh ML 0.019 0.049 0.079 0.0003082 
Manual ML 0.015 0.045 0.075 0.0009567 

Specificity 

ADCth T2wTh -0.094 -0.037 0.019 0.4355951 
ADCth Manual -0.134 -0.077 -0.020 0.0036188 
ADCth ML -0.167 -0.110 -0.053 3.163E-05 
T2wTh Manual -0.096 -0.039 0.017 0.3608099 
T2wTh ML -0.129 -0.072 -0.015 0.0063794 
Manual ML -0.090 -0.033 0.023 0.651647 

False 
positive 

rate 

ADCth T2wTh -0.019 0.037 0.094 0.4355951 
ADCth Manual 0.020 0.077 0.134 0.0036188 
ADCth ML 0.053 0.110 0.167 3.163E-05 
T2wTh Manual -0.017 0.039 0.096 0.3608099 
T2wTh ML 0.015 0.072 0.129 0.0063794 
Manual ML -0.023 0.033 0.090 0.651647 

Table 2. Confidence intervals and P-values of multiple comparisons of preclinical metrics 
at 1-week (Corresponding to Figure 6 in main manuscript). 
  



Metric Df Df-error F-Value P-Value 
Dice Coefficient 2 21 5.64 0.01 
Accuracy 2 21 13.35 2.0e-04 
Mathew‘s Correlation coefficient 2 21 7.84 3.0e-04 
Sensitivity 2 21 11.7 4.00e-04 
Positive predictive value 2 21 11.0 5.00e-04 
False discovery rate 2 21 11.0 5.00e-04 
Negative predictive value 2 21 0.45 0.64 
Specificity 2 21 21.3 8.96e-04 
False positive rate 2 21 21.3 8.96e-04 

Table 3. Human metrics ANOVA statistics 24 h 

 
  



Parameter Groups compared 
Lower 

confidence 
interval 

Estimate 
Upper 

confidence 
interval 

P-value 

Dice 
coefficient 

ADCth T2Wth -0,136 0,068 0,272 1 
ADCth ML -0,390 -0,186 0,017 0,081075635 
T2Wth ML -0,458 -0,254 -0,050 0,011657912 

Accuracy 
ADCth T2Wth -0,050 -0,002 0,045 1 
ADCth ML -0,1320 -0,083 -0,035 0,000541599 
T2Wth ML -0,129 -0,081 -0,033 0,000729721 

Matthew’s 
correlation 
coefficient 

ADCth T2Wth -0,053 0,119 0,292 0,25827889 
ADCth ML -0,315 -0,143 0,029 0,128823339 
T2Wth ML -0,435 -0,262 -0,089 0,002166707 

Sensitivity 
ADCth T2Wth 0,114 0,339 0,564 0,002339902 
ADCth ML 0,156 0,381 0,606 0,000738323 
T2Wth ML -0,183 0,041 0,266 1 

Positive 
predictive 

value 

ADCth T2Wth -0,203 0,037 0,278 1 
ADCth ML -0,596 -0,355 -0,115 0,002819615 
T2Wth ML -0,634 -0,393 -0,152 0,001063348 

False 
discovery 

rate 

ADCth T2Wth -0,278 -0,037 0,203 1 
ADCth ML 0,115 0,355 0,596 0,002819615 
T2Wth ML 0,152 0,393 0,634 0,001063348 

Negative 
predititive 

value 

ADCth T2Wth -0,019 0,009 0,037 1 
ADCth ML -0,019 0,008 0,037 1 
T2Wth ML -0,029 -0,001 0,027 1 

Specificity 
ADCth T2Wth -0,052 -0,010 0,031 1 
ADCth ML -0,138 -0,096 -0,054 1,9543E-05 
T2Wth ML -0,1271 -0,085 -0,043 9,38755E-05 

False 
positive 

rate 

ADCth T2Wth -0,031 0,010 0,052 1 
ADCth ML 0,054 0,096 0,138 1,9543E-05 
T2Wth ML 0,043 0,085 0,127 9,38755E-05 

Table 4. Confidence intervals and P-values of multiple comparisons of clinical metrics at 
24 h (Corresponding to Figure 8 in main manuscript). 
  



Metric Df Df-error F-Value P-Value 
Dice Coefficient 3 12 2.41 0.117 
Accuracy 3 12 12.0 6.0e-03 
Mathew‘s Correlation coefficient 3 12 4.05 0.03 
Sensitivity 3 12 0.35 0.79 
Positive predictive value 3 12 4.97 0.018 
False discovery rate 3 12 4.97 0.018 
Negative predictive value 3 12 0.11 0.954 
Specificity 3 12 24.6 2.07e-05 
False positive rate 3 12 24.6 2.07e-05 

Table 5. Human metrics ANOVA statistics 1-week. 
  



Parameter Groups compared 
Lower 

confidence 
interval 

Estimate 
Upper 

confidence 
interval 

P-value 

Dice 
coefficient 

ADCth T2Wth -0,520 -0,031 0,457 1 
ADCth Manual -0,864 -0,375 0,113 0,193222177 
ADCth ML -0,630 -0,141 0,347 1 
T2Wth Manual -0,833 -0,344 0,144 0,278417382 
T2Wth ML -0,599 -0,110 0,378 1 
Manual ML -0,255 0,233 0,722 0,943781655 

Accuracy 

ADCth T2Wth -0,056 0,017 0,091 1 
ADCth Manual -0,170 -0,096 -0,022 0,008912929 
ADCth ML -0,157 -0,083 -0,009 0,02413076 
T2Wth Manual -0,187 -0,113 -0,039 0,002469558 
T2Wth ML -0,174 -0,100 -0,026 0,00639019 
Manual ML -0,061 0,012 0,086 1 

Matthew’s 
correlation 
coefficient 

ADCth T2Wth -0,468 -0,048 0,370 1 
ADCth Manual -0,840 -0,421 -0,002 0,048362632 
ADCth ML -0,612 -0,193 0,225 1 
T2Wth Manual -0,791 -0,372 0,0466 0,095881621 
T2Wth ML -0,563 -0,144 0,274 1 
Manual ML -0,191 0,228 0,647 0,671931392 

Sensitivity 

ADCth T2Wth -0,843 -0,139 0,564 1 
ADCth Manual -0,732 -0,028 0,675 1 
ADCth ML -0,618 0,0856 0,789 1 
T2Wth Manual -0,593 0,110 0,814 1 
T2Wth ML -0,478 0,225 0,928 1 
Manual ML -0,589 0,114 0,818 1 

Positive 
predictive 

value 

ADCth T2Wth -0,599 -0,022 0,554 1 
ADCth Manual -1,180 -0,603 -0,026 0,038181176 
ADCth ML -0,930 -0,3538 0,223 0,462754197 
T2Wth Manual -1,157 -0,580 -0,003 0,048025265 
T2Wth ML -0,908 -0,331 0,245 0,572639187 
Manual ML -0,327 0,249 0,826 1 

False 
discovery 

rate 

ADCth T2Wth -0,554 0,022 0,599 1 
ADCth Manual 0,026 0,603 1,180 0,038181176 
ADCth ML -0,223 0,353 0,930 0,462754197 
T2Wth Manual 0,003 0,580 1,157 0,048025265 
T2Wth ML -0,245 0,331 0,908 0,572639187 
Manual ML -0,826 -0,249 0,327 1 

Negative 
predititive 

value 

ADCth T2Wth -0,085 -0,011 0,062 1 
ADCth Manual -0,083 -0,008 0,065 1 
ADCth ML -0,076 -0,002 0,071 1 
T2Wth Manual -0,071 0,002 0,076 1 
T2Wth ML -0,064 0,009 0,083 1 
Manual ML -0,067 0,006 0,080 1 

Specificity 

ADCth T2Wth -0,028 0,027 0,083 0,886152301 
ADCth Manual -0,151 -0,095 -0,039 0,001013575 
ADCth ML -0,145 -0,089 -0,033 0,001807937 
T2Wth Manual -0,179 -0,123 -0,067 9,70747E-05 
T2Wth ML -0,173 -0,116 -0,060 0,00016065 
Manual ML -0,049 0,006 0,062 1 

False 
positive 

rate 

ADCth T2Wth -0,083 -0,027 0,028 0,886152301 
ADCth Manual 0,039 0,095 0,151 0,001013575 
ADCth ML 0,033 0,089 0,145 0,001807937 
T2Wth Manual 0,067 0,123 0,179 9,70747E-05 
T2Wth ML 0,060 0,116 0,173 0,00016065 
Manual ML -0,062 -0,006 0,049 1 

Table 6. Confidence intervals and P-values of multiple comparisons of preclinical metrics 
at 1-week (Corresponding to Figure 9 in main manuscript). 
 
 


