Supplementary Data

Abraxane-induced bone marrow CD11b⁺ myeloid cell depletion in tumor-bearing mice is visualized by μPET-CT with ⁶⁴Cu-labeled anti-CD11b and prevented by anti-CSF-1

Qizhen Cao¹, Qian Huang¹, Y. Alan Wang², and Chun Li¹

Departments of ¹Cancer Systems Imaging and ²Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054

Corresponding author: Chun Li, PhD, Department of Cancer Systems Imaging, 1881 East Road-Unit 1907, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA; Tel: 713-792-5182; Fax: 713-794-5456; E-mail: cli@mdanderson.org.

Table of Contents

Materials and Methods

Table S1. Number of DOTA per αCD11b antibody on DOTA-αCD11b conjugate.

Figure S1. Cell binding assay.

Figure S2. μPET of female nude mice with ⁶⁴Cu-αCD11b at different time points.

Figure S3. μPET and biodistribution of ⁶⁴Cu-αCD11b or ⁶⁴Cu-IgG in normal female 129×1/svJ mice.

Figure S4. ⁶⁴Cu-αCD11b μPET-CT of MDA-MB-435 tumor-bearing nude mice treated with a single dose of Abraxane in low scale bar.

Figure S5. ⁶⁴Cu-αCD11b μPET and biodistribution of female nude mice without or with αCSF-1 treatment.

Figure S6. Gating strategy for flow cytometry analysis of bone marrow cell populations.

Figure S7. Flow cytometry analysis of bone marrow cells treated with αCSF-1 and/or Abraxane *in vitro*.

MATERIALS AND METHODS

DOTA conjugation and radiolabeling of IgG

p-SCN-Bn-DOTA was added to rat IgG2b (BioXCell, West Lebanon, NH) at a molar ratio of 50 : 1 in 0.1 M sodium bicarbonate buffer (pH 8.5). The resulting conjugate, DOTA-IgG, was purified by PD-10 column and concentrated by Centricon filter (Millipore, Bedford, MA). For radiolabeling, 64 CuCl₂ was diluted with 0.2 mL of 0.1 M sodium acetate buffer, and the pH of the solution was adjusted to pH 6.0 with 1 N NaOH. DOTA-IgG (10 µg) was then added into sodium acetate-buffer solution containing 37 MBq of 64 CuCl₂ and incubated for 1 h at 38 °C with constant shaking. The resulting 64 Cu-DOTA-IgG (64 Cu-IgG) was purified by PD-10 column using phosphate-buffered saline (PBS) as the mobile phase.

Number of DOTA per aCD11b Antibody on DOTA-aCD11b conjugate

The average number of DOTA chelators per α CD11b antibody was measured following reported procedures [1, 2]. Briefly, nonradioactive CuCl₂ (80-fold excess of DOTA- α CD11b) in 20 µL 0.1N sodium acetate (NaOAc) buffer (pH 5.5) was added to approximately 1.0 mCi ⁶⁴CuCl₂ in 50 µL 0.1N NaOAc buffer, then, 20 µg of DOTA- α CD11b in 40 µL 0.1N NaOAc buffer were added to the above carrier-added ⁶⁴CuCl₂ solution. The reaction mixture was incubated with constant shaking at 40 °C for 1 h. The resulting ⁶⁴Cu-DOTA- α CD11b (⁶⁴Cu- α CD11b) was purified by PD-10 column with 1 × PBS, and eluent (3.0–4.5 mL) was collected and counted for radioactivity. The number of DOTA per α CD11b antibody = moles (Cu²⁺) × activity (3.0–4.5 mL) / moles (DOTA- α CD11b) / total activity (loaded for each labeling). The activities in the equation were all decay-corrected to the same time point. The results were expressed as mean ± SD (n = 3).

Competitive cell-binding assay

RAW264.7 cells (murine macrophage cell line) were suspended in PBS containing 1% bovine serum albumin (1×10⁵ cells per 50 µL). Cells were incubated with ⁶⁴Cu- α CD11b (0.1 µCi/well, ~4x10⁻¹⁰ M) (2.54 ± 0.28 ⁶⁴Cu-DOTA moieties per α CD11b or 5.77 ± 0.39 ⁶⁴Cu-DOTA moieties per α CD11b) in the absence and presence of increasing concentrations of nonradioactive α CD11b or DOTA- α CD11b (2.54 DOTA per α CD11b or 5.77 DOTA per α CD11b) at room temperature for 2 h with gentle shaking. After removal of culture medium under vacuum, cells were washed 3 times with PBS containing 0.1% bovine serum albumin. Radioactivity of the cells from each well was counted with a gamma counter. The 50% inhibitory concentration of nonradioactive α CD11b was calculated by fitting the data with nonlinear regression using GraphPad Prism (GraphPad Software, La Jolla, CA).

Supplemental Table 1. Number of DOTA per αCD11b antibody on DOTA-αCD11b conjugate

DOTA/ αCD11b ratio	20 : 1	50 : 1
Number of DOTA per αCD11b	2.54 ± 0.28	5.77 ± 0.39

nonradioactive αCD11b or DOTA-αCD11b (n = 3). (**A**) Displacement of the binding of ⁶⁴Cu-αCD11b (⁶⁴Cu labelled DOTA-αCD11b with 2.54 ± 0.28 number of DOTA per αCD11b) to RAW264.7 cells by nonradioactive αCD11b or DOTA- αCD11b (2.54 ± 0.28 number of DOTA per αCD11b). The 50% inhibitory concentration (IC50) between ⁶⁴Cu-αCD11b and nonradioactive αCD11b was 4.46×10^{-10} mol/L, the IC50 between ⁶⁴Cu-αCD11b and nonradioactive DOTA-αCD11b was 1.04×10^{-9} mol/L. (**B**) Displacement of the binding of ⁶⁴Cu-αCD11b (⁶⁴Cu labelled DOTA-αCD11b with 5.77 ± 0.39 number of DOTA per αCD11b) to RAW264.7 cells by nonradioactive αCD11b or DOTA- αCD11b (5.77 ± 0.39 number of DOTA per αCD11b). The 50% inhibitory concentration (IC50) between ⁶⁴Cu-αCD11b.

в

Figure S2. μ PET of female nude mice with ⁶⁴Cu- α CD11b. (A) Representative μ PET images acquired 1, 4, 24, 48, and 72 h after intravenous injection of ⁶⁴Cu- α CD11b (red arrow: bone marrow; yellow arrow: spleen). (B) Quantitative analysis of organ distribution of ⁶⁴Cu- α CD11b from images acquired at different time points after radiotracer injection. Data are expressed as mean \pm standard deviation (n = 3/group).

n = 4, mean ± SD

Figure S3. μ PET and biodistribution of ⁶⁴Cu- α CD11b or ⁶⁴Cu-IgG in normal female 129×1/svJ mice. (A) Representative μ PET/CT images were acquired 24 h after intravenous injection of ⁶⁴Cu- α CD11b or ⁶⁴Cu-IgG. MIP: maximum intensity projection. (B) Biodistribution data of ⁶⁴Cu-IgG control

antibody were compared to 64 Cu- α CD11b in mice 24 h after intravenous injection. Data are expressed as mean \pm SD (n = 3/group). **, p < 0.01; ***, p < 0.001.

Figure S4. ⁶⁴Cu- α CD11b μ PET-CT of MDA-MB-435 tumor-bearing nude mice treated after a single dose of Abraxane in low scale bar. Representative μ PET-CT images (scale bar 0 – 25 %ID/g) acquired 24 h after intravenous injection of ⁶⁴Cu- α CD11b. Red arrows: bone marrow; yellow arrows: spleen; gold circles: tumor.

Figure S5. ⁶⁴Cu-αCD11b μPET and biodistribution of female nude mice without or with αCSF-1

treatment. (A) Representative μ PET images acquired at 24 h after intravenous injection of ⁶⁴Cu- α CD11b. (B) Biodistribution of ⁶⁴Cu- α CD11b obtained at 48 h after radiotracer injection. Data are expressed as mean \pm standard deviation (n = 3/group).

Figure S6. Gating strategy for flow cytometry analysis of bone marrow cell populations. Bone marrow cells were subgated to the level of $CD11b^+$ myeloid cells, then $CD11b^+$ myeloid cells were subgated to Ly6G⁺ granulocytes or Ly6C⁺ monocytes.

Figure S7. Flow cytometry analysis of bone marrow cells treated with α CSF-1 and/or Abraxane *in vitro*. (A) Scheme of experimental design. Bone marrow cells (1 × 10⁶ cells/mL, 2 mL) were treated with α CSF-1 (5 µg/mL) on days 0 and 4 and/or Abraxane (10 nM) on day 2. Bone marrow cells were analysis with flow cytometry on day 5. (B) Quantification of Ly6G^{low}Ly6C⁺ monocytic myeloid cells as a percentage of all bone marrow cells. (C) Quantification of Ly6G⁺Ly6C^{low} granulocytic myeloid cells as a percentage of all bone marrow cells. Data in both panels are presented as mean ± SD (n = 3). *, p < 0.05; ***, p < 0.001.

Reference

 Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. *In vitro* and *in vivo* characterization of 64Culabeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. Cancer Res. 2006; 66: 9673-81.

2. Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M. Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal Biochem. 1984; 142: 68-78.