

Fig. S1 METTL14 expressed lowly in TCGA-KIRC cohort and Ruijin-RCC samples compared with other known m⁶A enzymes. (A) The differential expression levels of 13 well-known m⁶A-related enzymes were calculated and compared between normal and tumor tissues, in which METTL14 was notably observed to down-regulate in RCC tumor samples in both TCGA- and ICGC-RCC cohorts. (B) Besides, we obtained 30 paired primary- and metastatic-RCC samples and detected that METTL14 was the only one to express lowly in mRCC tissues relative to other enzymes, like METTL3, WTAP, ALKBH5 and FTO. (C) The indicated METTL14-knockout cells were used for m⁶A detection.

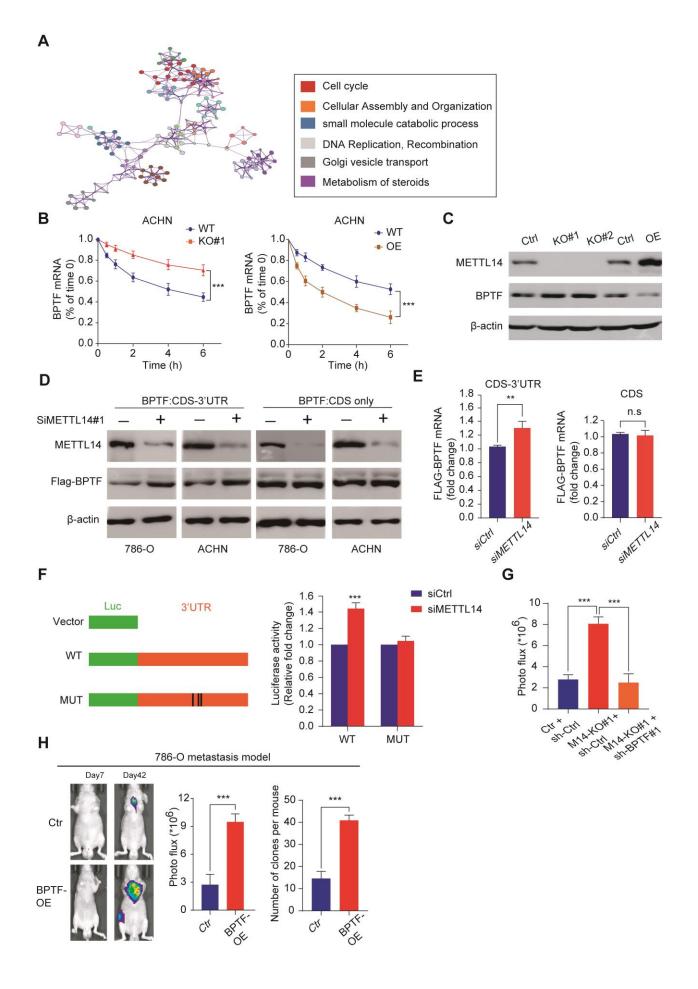
Fig. S2 METTL14 correlated with metastasis *in vitro* and *in vivo*. (A) METTL14 overexpression significantly impeded the invasive ability relative to ctrl cells via wound-healing assay in 786-O (left), whereas METTL14 deficiency promoted the invasive ability of ACHN, indicated by relative gap distance (right). (B) Meanwhile, METTL14 overexpression also suppressed the migration ability in 786-O compared with control cells. (C) Additionally, METTL14 deficiency enhanced the invasive ability of ACHN, indicated by transwell assay, indicated by cells/fields. (D) Detection of migratory and invasive abilities of RCC cells in over-expressed METTL14 in METTL14-knockout cells and control cells. (E) The tail vein metastasis model

786-0

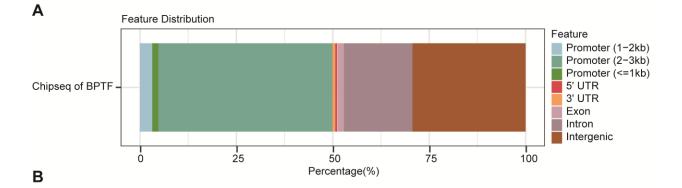
120-

90

60.


30-

0


CHI OF

Cells/field

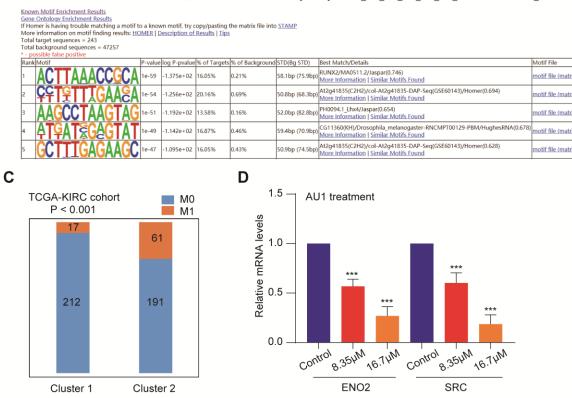

further showed that the numbers of lung metastases were notably fewer in METTL14-OE groups than those in control groups.

Fig. S3 METTL14 correlated with oncogenic pathways and BPTF was the bona fide downstream target. (A) The Gene Ontology (GO) analysis based on the differential genes (DEGs) indicated that METTL14 correlated with oncogenic crosstalk, including cell cycle, cellular assembly and organization, small molecule catabolic process and DNA replication, recombination. (B) Upon the treatment of actinomycin D, METTL14 deficiency enhanced the BPTF mRNA stability, whereas METTL14 overexpression exhibited the opposite results in ACHN. (C) Detection of BPTF protein levels in METTL14 intact, METTL14 deficiency and METTL14 over-expression cells via western-blotting, matched to Figure 3M. (D-E) Upon METTL14 knockdown, FLAG-BPTF expression was significantly increased in RCC cell lines transfected with BPTF CDS-3'UTR construct, but not the BPTF CDS-alone construct, which was validated by western-blot (c) and qPCR (d). (F) The BPTF 3'UTR-reporter luciferase assay showed that targeting METTL14 via specific siRNAs significantly enhanced the activity of the luciferase of the BPTF-WT-3'UTR construct, whereas had no effect on the Mut-3'UTR construct with mutations at the unique peak sites. (G) The *in vivo* metastatic model revealing that BPTF knockdown significantly suppressed the tumor metastatic ability of METTL14^{-/-} cells, as quantified by the luciferase signals. (H) The *in vivo* BPTF-OE effect on RCC metastasis was assessed compared with control group.

Homer de novo Motif Results (/home/novelbio/tmp/tmp2019 05 16 03 03 40 26266/.CK/CK MotifOutput//)

Figure S4. Chip-seq data analysis of BPTF in RCC. (A-B) Illustration of BPTF distributions across the genomic range and the binding motif analysis. (C) The Chi-squared test was conducted to reveal that cluster 2 contained significantly more metastatic KIRC-RCC cases than cluster 1. (D) The detection of mRNA levels of ENO2 and SRC after different doses of AU1 treatment via qPCR.

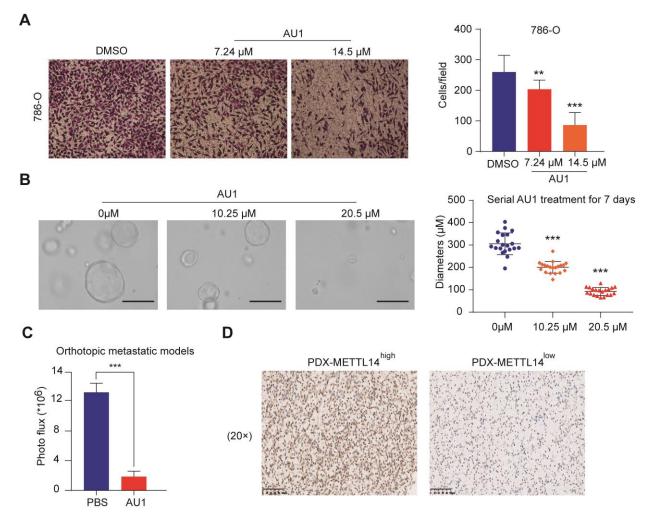


Figure S5. The BPTF inhibitor, AU1, could efficiently inhibit the metastatic abilities of METTL14-deficient RCC cells in vitro and in vivo. (A) AU1 could significantly inhibit the invasion of 786-O cells in a dose-dependent manner. (B) AU1 could significantly restrain the sizes of MDO compared with PBS treatment in a dose-dependent manner. Scale bar = 300μ M (C) In the orthotopic model, AU1 could significantly inhibit the distal lung metastasis relative to PBS treatment, indicated by signals of bioluminescence imaging (BLI). (D) The PDX cells was obtained from two eligible RCC-PDX samples with distinct METTL14 expression levels, validated by IHC staining.

Primers for RT-qPCR with cell lines samples				
Gene name	F: 5'-3'	R: 5'-3'		
METTL14	GGCATGGACTGTGGTCATGAG	CTCATGACCACAGTCCATGCC		
DDTE	TTACCAAGAGCAGCAAGAAGAGCATT	CATCACTTGGAGGTATAGACTTCAGA		
BPTF		CAG		
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG		
CDK1	GTCTTCAGGATGTGCTTATG	ATTCTATCCCTCCTGGTCA		
KLF4	GTCTTGAGGAAGTGCTGAG	CCATTACCAAGGTCAGTCC		
CHD1	CAATCATCGTCTCCTTATCAC	CTGTTACGCCGAGTTAAGA		
C3orf20	CTCCATCACAGTCACCTTC	AAGGTGTATAAGATGAGCCG		
MYLK3	CTGGATGTGGTCCTGTTC	TCAATCAGACAGGACATCAA		
NR1D1	CATCCTCCTCCTTCTAT	CAAGAGCACCAGCAACAT		
FOXE1	GCGGCATCTACAAGTTCA	CTCAACGACTGCTTCCTC		
CDC20	ATCCAGTTCCAAGGTTCAG	TTACCTGAACCTTGTGGATT		
PROX1	AGAGTTGACATTGGAGTGAA	AGGTTCTGAGCAGGATGT		
RUNX1	ATGGCTGGCAATGATGAA	TCCATTGCCTCTCCTTCT		
SOX4	AAGACAGCGACAAGATCC	GGAAGAAGGTGAAGTCCG		
PHGDH	CCTTACCAGTGCCTTCTC	GGATGTGAACTTGGTGAAC		
BMP2	GGTGGAATGACTGGATTGT	ACAGAACTCAGTGCTATCTC		
ALDH2	CGTGGTTGTGATGAAGGT	GATAGCAAGACCGAGCAG		
ALDOA	GCAGGAGGAGTATGTCAAG	CCTCTTCGTCTCTAACCAC		
ALDOB	CTGGCTGCTGTCTACAAG	TGAGTGAAGAGGATGCCA		
ALDOC	TTCAACCTCAATGCCATCA	TGAAGGCAGTGGAGAAGA		
ALG1	CAATGCTATGCGAGAAGAC	AGTATTATAGCCGCCTCATC		
ENO1	CGAGATGGATGGAACAGAA	TCTGAAGTCATCCTGCCA		
ENO2	TGTGGTGGAGCAAGAGAA	TTCTCTTGCTCCACCACA		

Table S1. Primers, sequences of shRNAs and siRNAs, antibody and chemicals.

ENO3	GAAGGATGCCACCAATGT	AGCATCTGAGTTCTATCGC	
ENO4	ACCATTAACTGTGACTCCAT	GACAGCATCTATCACGCA	
FBP2	GCTGCTGAACTCAATGCT	AAGAGAATAAGGACGCCATC	
FUT8	CTATGCTACTGGTGGATGG	AGAAGAAGCCACCAAGAAG	
GLUT1	GCAGGAGATGAAGGAAGAG	CTGTCTTCTATTACTCCACGA	
GLUT2	CTGCTGTCTCTGTATTCCTT	TTGGATGAGTTATGTGAGCA	
G6PC	TGGAGGAAGGAATGAATGTT	ACTACAGCAACACTTCCG	
GPD1	AGGTGGCTGATGAGAAGT	CTATACAGCATCCTCCAGC	
HIF1A	CTTCTGGATGCTGGTGATT	ACCAACAGTAACCAACCTC	
HK1	CAACAGCCACAGTCAAGA	ATGATGACCTGTGGCTATG	
НК2	TCTGCTTGCCTACTTCTTC	AGAAGGTGGAGATGGAGAA	
LDHA	GAGAGTGCTTATGAGGTGAT	AATGGAATCTCAGACCTTGT	
LDHB	AACTTGCTCTTGTGGATGT	GAGTCCGTCAGCAAGAAG	
PCK1	GGCTGAAGAAGTATGACAAC	TGGATGTCAGAGGAGGATT	
PDHA1	ATTGATGTGGAAGTGAGGAA	CACATCTACTCCAGCGAC	
PGK1	GATTATTGGTGGTGGAATGG	CAAGAAGTATGCTGAGGCT	
SRC	CAGGCTGAGGAGTGGTAT	ACTACAAGATCCGCAAGC	
Primers for R ⁷	Γ-qPCR with FFPE RCC patient tumor samples with Fl	FPE patient tumor samples	
METTL14	GGCATGGACTGTGGTCATGAG	CTCATGACCACAGTCCATGCC	
DDTE	TTACCAAGAGCAGCAAGAAGAGCATT	CATCACTTGGAGGTATAGACTTCAGA	
BPTF		CAG	
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG	
METTL3	GTTGCTACACCACCTCTC	CAAGAAGGTCAGTCAGGAG	
WTAP	GCAACACAACCGAAGATG	TTCAGAATGGCTTGGACTC	
ALKBH5	GTTCCAGTTCAAGCCTATTC	CTCTGAGAACTACTGGCG	
FTO	CTCGCATCCTCATTGGTAA	TACAACGGACAAGATGAAGT	
Sequences of s	gRNAs for METTL14/BPTF		

METTL14#1	GCTGAA	AGTGCCGACAGCAT			
METTL14#2	GAACAT	GAACATGGATAGCCGCTTGC			
BPTF#1	GTTCCG	GTTCCGCAGTACCTCGTAAA			
BPTF#1	ACCATTA	GCTGCCGCCAGAA			
Sequences of sh	RNAs				
Gene name	Sequence	Sequence			
BPTF#1	CCGGCCA	CCGGCCAGTAGAGAACAAGATCAAACTCGAGTTTGATCTTGTTCTCTACTGGTTTTTG			
BPTF#2	CCGGGCC	GGCAGCTAATGAAGA	AATTCTCGAGAATTTC	TTCATTAGCTGCCGCTTTTTG	
METTL14#1	CCGGGCT	CCGGGCTTACAAATAGCAACTACAACTCGAGTTGTAGTTGCTATTTGTAAGCTTTTT			
METTL14#2	CCGGCCA	CCGGCCATGTACTTACAAGCCGATACTCGAGTATCGGCTTGTAAGTACATGGTTTTT			
Sequences of sil	RNAs				
Gene name	Sequence	Sequence			
BPTF#1	GCAGTAT	GCAGTATACCATTTGGAAT			
BPTF#2	GCGTCTA	GCGTCTACCACAATCAATA			
METTL14#1	GCATTGG	GCATTGGTGCCGTGTTAAA			
METTL14#2	GGATGAA	GGATGAACTAGAAATGCAA			
Antibody & Ch	emicals				
Name		Species	Cat. No	Source	
METTL14		Mouse	ab220031	abcam	
BPTF		Rabbit	ab72036	abcam	
Anti-Actin		Rabbit	AC028	abclonal	
E-cadherin		Mouse	CST#14472	Cell Signaling Technology (CST)	
N-cadherin		Rabbit	CST#13116	Cell Signaling Technology (CST)	
Vimentin		Rabbit	CST#5741	Cell Signaling Technology (CST)	
SRC		Rabbit	CST#2109	Cell Signaling Technology (CST)	
ENO2		Rabbit	CST#9536	Cell Signaling Technology (CST)	
Anti-FLAG		Mouse	M185-7	MBL	
puromycin			S7417	Selleckchem	

Actinomycin D		S8964	Selleckchem
Organoids culture	· · ·		
Additive	Source	Cat. No.	Concentration
EGF	PeproTech	AF-100-15	50 ng/ml
Noggin	PeproTech	250-38	100 ng/ml
R-Spondin 1	PeproTech	120-38	500 ng/ml
Gastrin	Sigma-Aldrich	G9145	10 nM
FGF-10	PeproTech	100-26	10 ng/ml
FGF-basic	PeproTech	100-18B	10 ng/ml
Wnt-3A	R&D Systems	5036-WN	100 ng/ml
Prostaglandin E2	Tocris Bioscience	2296	1 µM
Y-27632	Sigma-Aldrich	Y0503	10 µM
Nicotinamide	Sigma-Aldrich	N0636	4 mM
A83-01	Tocris Bioscience	2939	0.5 μΜ
SB202190	Sigma-Aldrich	S7067	5 μΜ
HGF*	PeproTech	100-39	20 ng/ml

Variables	TCGA	ICGC
	(N = 537)	(N = 91)
Age (Mean ± SD)	60.59 ± 12.14	60.47 ± 9.97
Follow-up (y)	3.12 ± 2.23	4.14 ± 1.73
Status		
Alive	367 (68.34)	61 (67.03)
Dead	170 (31.66)	30 (32.97)
Gender		
Male	346 (64.43)	52 (57.14)
Female	191 (35.57)	39 (42.86)
AJCC-T		
T1	275 (51.21)	54 (59.34)
T2	69 (12.85)	13 (14.28)
Т3	182 (33.89)	22 (24.18)
T4	11 (2.05)	2 (2.20)
AJCC-N		
N0	240 (44.69)	79 (86.81)
N1	17 (3.17)	2 (2.20)
Unknow	280 (52.14)	10 (10.99)
AJCC-M		
M0	426 (79.33)	81 (89.01)
M1	79 (14.71)	9 (9.89)
Unknow	32 (5.96)	1 (1.10)
Pathological stage		
I	269 (50.09)	-
II	57 (10.61)	-
III	125 (23.28)	-

Table S2. Clinical baseline of patients included in this study from public TCGA-KIRC and ICGC-RCC cohorts.

IV	83 (15.46)	-
Unknow	3 (0.56)	-
Grade		
G1	14 (2.61)	-
G2	230 (42.83)	-
G3	207 (38.54)	-
G4	78(14.53)	-
Unknow	8(1.49)	-

Data are shown as n (%).

Abbreviations: TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; AJCC,

American Joint Committee on Cancer.