## **Supporting Information for**

Polysaccharide mycophenolate-based nanoparticles for enhanced immunosuppression and treatment of immune-mediated inflammatory diseases

Yuce Li<sup>#</sup>, Yuchen Lou<sup>#</sup>, Yu Chen, Jing Yang, Danqi Li, Biling Jiang, Jiajia Lan, Jingjing Wen, Yangxue Fu, Yamin Zhang, Juan Tao\*, Jintao Zhu\*

## Table of contents:

**Figure S1.** <sup>1</sup>H NMR of MPA and Dex-MPA.

Figure S2. UV-vis spectra of MPA and Dex-MPA.

Figure S3. Protein adsorption of MPA@Dex-MPA NPs.

Figure S4. HPLC-MS results for neat MPA and hydrolyzed Dex-MPA products.

Figure S5. Distribution of MPA@Dex-MPA NPs in different cell subsets in spleens of

healthy Balb/c mice.

Figure S6. Internalization of MPA@Dex-MPA NPs by T cells in vitro.

Figure S7. Population of Th17 cells in the draining lymph nodes after different treatments.

Figure S8. In vitro investigation of MPA@Dex-MPA NPs on the stimulatory capability of

BMDCs on CD4+ T cells differentiating to Th17.

## **Supporting Figures:**



Figure S1. <sup>1</sup>H NMR of MPA and Dex-MPA in CDCl<sub>3</sub>.



**Figure S2.** UV–vis spectra of MPA and Dex-MPA. (A) UV–vis spectra of MPA at different concentrations. (B) Standard curve obtained by Abs of MPA at 305 nm. (C) UV–vis spectra of Dex-MPA and MPA@Dex-MPA at 0.1 mg/mL.



Figure S3. Protein adsorption of MPA@Dex-MPA NPs incubated at different concentrations of NPs (A) for different periods (B). The retention of BSA in the supernatant and amounts of absorbed BSA per unit weight of NPs ( $q_e$ ) were calculated by the concentrations of supernatant BSA.



Figure S4. HPLC-MS results for (a) neat MPA and (b) hydrolyzed Dex-MPA products.



**Figure S5.** Distribution of MPA@Dex-MPA NPs in different cell subsets in spleens of healthy Balb/c mice. Results are expressed as mean ± SD. CD3+, T cells; CD19+, B cells; CD11c+, F4/80-, DCs; F4/80+, macrophages.



**Figure S6.** Internalization of MPA@Dex-MPA NPs by T cells *in vitro*. CD4+ T cells were isolated from spleens of Balb/c mice and cultured *in vitro*, and incubated with Nile-Red-labeled MPA@Dex-MPA NPs. Flow cytometry was performed to detect Nile-Red positive CD4+ cells. (A) Representative flow cytometry histogram and (B) quantification analysis for the indicated concentrations of MPA@Dex-MPA.



**Figure S7.** Populations of Th17 cells in the draining lymph nodes after different treatments. Percentage of CD3+CD4+IL-17a+ Th17 cells in inguinal lymph nodes determined by flow

cytometry. Data are presented as means  $\pm$  SEM (n = 5 mice/group; \*p < 0.05; one-way ANOVA with post-hoc Tukey test).



**Figure S8.** *In vitro* investigation of MPA@Dex-MPA NPs effect on the stimulatory capability of BMDCs on CD4+ T cells differentiating into Th17. BMDCs were incubated with MPA@Dex-MPA NPs or MPA (2, 10 or 50 µg/mL) for 48h, stimulated with LPS (100 ng/mL) for 18 h. Then, these BMDCs were co-cultured with CD4+ T cells isolated from Balb/c mice (at a ratio of  $2 \times 10^5$  BMDCs to  $1 \times 10^6$  CD4+ T cells) for 3 days, and treated with (+) or without (-) Th17 differentiation stimulators. (A, B) CD4+IL-17a+ T cells were detected by flow cytometry and (C) the supernatant was collected for ELISA. Data are representative of at least three independent experiments (\*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001).