1 Supplementary Figures

Figure S2. EE exposure induces chromatin modifications in the peri-infarct area. (A) Experimental design for (C). (B) Representative immunoblots and bar graph showing the time course of acetyl-H4 levels in the peri-infarct cortex. Mice were exposed to SH or EE 5 days after stroke. One-way ANOVA followed by post hoc Scheffe test, $F_{(4,25)} = 7.81$, *p = 0.048, #p = 0.025. (C) Representative immunofluorescence images showing acetyl-H4 in the peri-infarct cortex. Scale bar, 20 µm. EE, environmental enrichment; SH, standard housing.

Figure S3. EE exposure primes a transcriptional program for the expression of 33 BDNF, which regulates trafficking of GAT-1. 34

(A) Bar graph showing changes in histone acetylation in the promoter regions of 35 BDNF genes in peri-infarct tissue. Fragmented chromatin was immunoprecipitated 36 with antibody recognizing acetyl-H4 and quantified with real-time polymerase chain 37 reaction. One-way ANOVA followed by post hoc Scheffe test. For Bdnf-p1, $F_{(2,9)} =$ 38 9.44, *p = 0.047, #p = 0.007; for *Bdnf-p4*, $F_{(2,9)} = 7.01$, #p = 0.015. (B) Confirmation 39 of the membrane protein fractions extraction method. Representative immunoblots 40 showing that β-actin was exclusively detected in cytosol fractions, while E-cadherin 41 was exclusively detected in membrane fractions. (C) Representative immunoblots and 42

43	bar graph showing GAT-1 content in peri-infarct cortex. Two-tailed <i>t</i> -test, $F_{(1,10)} =$
44	2.82. (D) Representative immunoblots and bar graph showing GAT-1 content in
45	membrane fraction. Two-tailed <i>t</i> -test, $F_{(1,10)} = 25.96$, *** $p < 0.001$. (E) Representative
46	immunoblots and bar graph showing GAT-1 content in cytosol fractions. Two-tailed
47	<i>t</i> -test, $F_{(1,10)} = 20.58$, ^{**} $p = 0.001$. BDNF, brain-derived neurotrophic factor.
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	

- 64
- 65

66 Figure S4. TSA reverses OGD-induced internalization of GAT-1 in
 67 hESCs-derived neurons.

(A) Representative fluorescence image and bar graph showing the percentage of
neurons and astrocytes in hESCs-derived cells. Scale bar, 40 μm. (B) Representative
whole-cell patch clamp trace illustrating the number of APs in hESCs-derived neurons
evoked by current injection. (C) Representative voltage clamp (-70 mV) traces
showing hESCs-derived neurons displaying spontaneous postsynaptic currents. (D)
hESCs-derived neurons were exposed to 3 h of OGD. TSA (0.5 μM) was applied for
24 h, starting 24 h after OGD. Representative fluorescence images showing Tuj-1 and

75	GAT-1 in hESCs-derived neurons at 48 h after OGD. Scale bar, 20 µm. AP, action
76	potential; hESC, human embryonic stem cell; OGD, oxygen glucose deprivation; TSA,
77	trichostatin A.
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	

99 Figure S5. OGD and TSA treatment have no effect on the expression of GAT-1 in 100 astrocytes.

(A) Representative fluorescence image showing GFAP (an astrocyte marker) and GAT-1 in the peri-infarct area. Arrows indicate GAT-1 co-localized with astrocytes. Scale bar, 20 µm. (B) Cultured astrocytes were exposed to 3 h of OGD. TSA (0.5 µM) was applied for 24, 48, and 72 h, starting 24 h after OGD. Immunoblots showing the time course of GAT-1 levels in cultured astrocytes after OGD exposure and TSA treatment. Bar graph showing the time course of GAT-1 levels in astrocytes after OGD exposure and TSA treatment. One-way ANOVA followed by post hoc Scheffe test, $F_{(4,25)} = 0.49$. OGD, oxygen glucose deprivation; TSA, trichostatin A.

116 Figure S6. HDAC2 but not HDAC1 negatively regulates GAT-1 expression.

(A) Representative immunoblots and bar graph showing HDAC1 content in the 117 peri-infarct cortex 5 days after stroke. One-way ANOVA followed by post hoc Scheffe 118 test, $F_{(2,12)} = 10.18$, $^{\#}p = 0.008$. (B) Representative immunoblots and bar graph 119 120 showing GAT-1 content in the peri-infarct cortex 5 days after stroke. One-way ANOVA followed by post hoc Scheffe test, $F_{(2,12)} = 1$. (C) Representative 121 immunoblots and bar graph showing HDAC2 content in the peri-infarct cortex 5 days 122 after stroke. One-way ANOVA followed by post hoc Scheffe test, $F_{(2,12)} = 52.41$, ***p123 < 0.001, ^{###}p < 0.001. (D) Representative immunoblots and bar graph showing GAT-1 124 content in the peri-infarct cortex 5 days after stroke. One-way ANOVA followed by 125 post hoc Scheffe test, $F_{(2,12)} = 15.75$, **p = 0.001, ##p = 0.003. HDAC, histone 126 deacetylase. 127

128

Figure S7. GAT-1 is critical for the TSA-mediated increase in dendritic spine 132 density and synaptogenesis after hypoxia. 133

(A) Primary cultured mouse cortical neurons were exposed to 3 h of OGD. TSA (0.5 134 μ M) or a mixture of TSA (0.5 μ M) and NO-711 (10 μ M) was applied for 24 h, starting 135 24 h after OGD. Representative fluorescence image showing synapsin and PSD-95 in 136 primary cultured mouse cortical neurons after OGD. Each lower panel is a magnified 137

selected area from the upper iamge showing dendritic spines. Arrows indicate 138 synapsin / PSD-95 double-positive puncta. Upper scale bars, 20 µm. Lower scale bars, 139 5 µm. (B) Bar graph showing the average density of synapsin puncta in dendritic 140 segments of primary cortical neurons of the indicated groups. One-way ANOVA 141 followed by post hoc Scheffe test, $F_{(3,116)} = 46.37$, *** p < 0.001, ### p < 0.001, && p < 0.001, *** p < 0.001, 142 0.001. n indicates the number of dendrites from 3 independent experiments. (C) Bar 143 graph showing the average density of synapsin puncta in dendritic segments of 144 primary cortical neurons with the indicated treatments. One-way ANOVA followed by 145 post hoc Scheffe test, $F_{(3,116)} = 40.74$, *** p < 0.001, ###p < 0.001, && p < 0.001. (D) Bar 146 graph showing the average density of synapsin / PSD-95 colocalized puncta in 147 dendritic segments of primary cortical neurons with the indicated treatments. 148 One-way ANOVA followed by post hoc Scheffe test, $F_{(3,116)} = 82.06$, ***p < 0.001, ###p149 < 0.001, $^{\&\&\&}p < 0.001$. (E) Representative images of primary cultured cortical 150 neurons infected with LV-GFP showing the morphology at 48 h after OGD. Scale bar, 151 5 µm. (F) Bar graph showing the ratio of mushroom-like spines versus thin spines in 152 the indicated groups. One-way ANOVA followed by post hoc Scheffe test, $F_{(3,116)} =$ 153 170.22, *** p < 0.001, ### p < 0.001, && p < 0.001. n indicates the number of dendrites 154 from 3 independent experiments. OGD, oxygen glucose deprivation; TSA, trichostatin 155 156 A. 157

161 **Figure S8. Generation of GAT-1**^{*flox/flox*} **mice.**

(A) Schematic illustration of the Slc6al gene, targeting vector and the Slc6al floxed 162 locus. The Slc6al gene has 16 exons, and exon 6 was floxed to generate GAT-1^{flox/flox} 163 mice. (B) ES clones with 5' arm homologous recombination were confirmed by PCR 164 verification with a 4.3 kb band, while wild type generated a 7.6 kb band. (C) ES 165 clones with 3' arm homologous recombination were confirmed by PCR verification 166 with a 3.9 kb band, while wild type generated a 7.9 kb band. (D) Genotyping of 167 GAT-1^{flox/flox} mice. DNA was isolated for PCR with two primer pairs. The GAT-1 168 primers generated a 304 bp product in the loxP-flanked allele or a 246 bp product in 169 the wild-type allele. M, marker; PCR, polymerase chain reaction. 170

173 Figure S9. Photothrombotic stroke model induces long-lasting motor cortex
174 injury in adult mice.

(A) Time course of representative T2-TurboRARE MRI of photothrombotic stroke
mice. Arrows indicate the injured areas. (B) Representative Nissl-stained sections on
day 33 after stroke. Arrows indicate the injured areas. (C) Bar graph showing stroke

- 178 volume.

191 **(A)** GAT-3 level in the peri-infarct cortex 8 days after AAV-CAG-3Flag-T2A-mcherry 192 (AAV-null) or AAV-CAG-GAT-3-3Flag-T2A-mcherry (AAV-GAT-3) infection. 193 One-way ANOVA followed by post hoc Scheffe test, $F_{(2,12)} = 7.87$, $^{\#}p = 0.023$. **(B)** 194 Representative images showing the dendritic spines of peri-infarct neurons infected

195	with AAV-null, AAV-GAT-1 or AAV-GAT-3. For spine density analysis, only apical
196	dendrites of layer 5 pyramidal neurons in the peri-infarct cortex (within 400 μm from
197	the infarct) were included. Scale bar, 5 μ m. (C) Bar graph showing spine densities of
198	the indicated group. One-way ANOVA followed by post hoc Scheffe test, $F_{(3,113)} =$
199	83.71, $p^{***} < 0.001$, $p^{###} < 0.001$, $p^{***} < 0.001$. n indicates the number of dendrites
200	from 3 independent experiments. (D) Representative traces showing tonic inhibitory
201	currents recorded from layer 5 pyramidal neurons in AAV-null- or
202	AAV-GAT-3-infected GAT-1 knockdown mice. (E) Bar graph showing tonic current
203	density from layer 5 pyramidal neurons in AAV-null- or AAV-GAT-3-infected GAT-1
204	knockdown mice. Two-tailed <i>t</i> -test, $F_{(1,21)} = 0.02$. (F) Left, foot faults of the left
205	forelimb in the grid-walking task. Middle, foot faults of the left hindlimb in the
206	grid-walking task. Right, forelimb symmetry in the cylinder task. Two-way
207	repeated-measures ANOVA followed by post hoc Bonferroni test. Left, $F_{(1,22)} = 0.001$.
208	Middle, $F_{(1,22)} = 0.353$. Right, $F_{(1,22)} = 1.537$. AAV, adeno-associated virus; BMI,
209	bicuculline methiodide.