Supplementary material

Deficiency of Telomere-associated Repressor Activator Protein 1 Precipitates Cardiac Aging in Mice *via* p53/PPARα Signalling

Yin Cai, Hao Liu, Erfei Song, Lin Wang, Jindong Xu, Yi He, Dengwen Zhang, Liyan Zhang, Kenneth King-yip Cheng, Leigang Jin, Min Wu, Shiming Liu, Dake Qi, Liangqing Zhang, Gary D. Lopaschuk, Sheng Wang, Aimin Xu, Zhengyuan Xia

Supplemental Table

Young group (n = 7)Middle age/aged group (n = 5) 31.3 ± 1.7 $58.8 \pm 3.9^{*}$ Age (year) BW (kg) 55.4 ± 12.7 64.0 ± 8.2 BP (systolic, mmHg) 118 ± 12 140 ± 22 72 ± 9 80 ± 11 BP (diastolic, mmHg) LVEF% 56.8 ± 7.9 40.5 ± 8.6

Table S1 Basic information of recruited patients.

Data are shown as means \pm S.E.M; *P < 0.05 middle age/aged group *vs.* young group. Abbreviations: BW = body weight; BP = blood pressure; LVEF = left ventricular ejection fraction.

Supplemental Figures

Figure S1. Protein expression of Rap1 was reduced in H₂O₂-treated H9C2 cells. (A) Representative Western blots of p53, Rap1 expression and (B) lactate dehydrogenase (LDH) release in H9C2 cells stimulated with or without H₂O₂ [24 h following 2 h H₂O₂ (30 μ M) treatment], n = 4; Protein presence of p53 and Rap1 was normalized to GAPDH. Data are shown as means ± S.E.M; *P < 0.05 H₂O₂ *vs*. Control.

Figure S2. Rap1 deficiency leads to more pronounced age-associated phenotypes. (A) Representative photograph of male Rap1^{+/+} (left) and Rap1^{-/-} (right) mice at 20-months of age. (B) Body weight of Rap1^{+/+} (n = 9) and Rap1^{-/-} (n = 7) mice at 20-months of age. (C) Novel object recognition test (time spends on novel/time spends on old object) in the aged Rap1^{+/+} (n = 9) and Rap1^{-/-} (n = 7) mice (20-months of age). (D) Kaplan–Meyer survival curves and (E) median survival from Kaplan–Meyer plots of male Rap1^{+/+} (n = 24) and Rap1^{-/-} (n = 40) mice. Data are shown as means ± S.E.M.; [#]P < 0.05 Rap1^{-/-} vs. Rap1^{+/+}.

Figure S3. Rap1 does not alter the protein presence of mitochondrial complex I-V. Representative Western blots of mitochondrial complex I-V in the hearts of Rap1^{+/+} and Rap1^{-/-} mice at 12-month of age. Protein presence of mitochondrial complex I-V was normalized to GAPDH. Data are shown as means \pm S.E.M. n = 5.

Figure S4. Pharmacological inhibition of p53 enhances mitochondrial respiration in wildtype primary cardiomyocytes. Oxygen consumption rates (OCR) using fatty acids as a substrate were measured under basal conditions in the primary cardiomyocytes from the hearts of Rap1^{+/+} mice at 12-month of age, with or without treatment of PFT α (a selective p53 inhibitor, 10 μ M, 12 h). Data are shown as means \pm S.E.M. ^{*}P < 0.05 PFT α *vs*. Vehicle. n = 5.