Supporting information

Supplementary figure 1. Faster cellular uptake and higher cytotoxicity of idarubicin (IDA) versus doxorubicin (DXR) *in vitro*. (A, B) Based on the average uptake percentage by the 3 cell lines shown in Figure 1A, calculations show a significantly higher cellular uptake rate for free IDA compared to free DXR (n = 4 per group). (C) B16BL6, BLM and BFS-1 cells were treated with either IDA or DXR for 1 or 24 h, showing a higher toxicity for IDA as compared to DXR (n = 3 per group). Data are represented as mean \pm SD.

Supplementary figure 2. IDA (red) tends to accumulate in cytoplasm and little goes to the nucleus (blue) while DXR (red) accumulates predominantly in cell nucleus. Settings: IDA gain = 500, DXR gain = 630, resolution = 512×512 . Scale bar = $10 \mu m$. (Note, nuclei were stained through transient transfection resulting in not all cells to be positive).

Supplementary figure 3. Biodistribution of IDA-SDDS and DXR-SDDS (2.7 μ mol/kg) with HT. Data are represented as mean \pm SEM, N = 3.

Supplementary figure 4. Administration of idarubicin (IDA)-SDDS (2.7 μ mol/kg, green line) or doxorubicin (DXR)-SDDS (9 μ mol/kg, red line) in combination with local hyperthermia (HT) inhibits tumor growth in both BLM and BFS-1 bearing mice, is accompanied by acceptable side-effects resulting in improved survival rates. (**A**, **B**) Body weight profiles of BLM (**A**) or BFS-1 (**B**) tumor-bearing mice after treatment with IDA- or DXR-SDDS plus HT. A reduction in body weight in the first week post treatment was observed in IDA-SDDS treated mice, followed by recovery. Mice treated with free drug with or without HT, or drug-containing SDDS combined with normothermia (NT) did not show significant weight loss (data not shown). Data are presented as mean \pm SEM (n = 7 each group for IDA- or DXR-SDDS HT group, n = 5 each group for the rest). (**C**, **D**) Survival rates of BLM (**C**) or BFS-1 (**D**) tumor-bearing mice reveal longer survival period when treated with IDA- or high dose DXR-SDDS combined with HT as compared to the other groups. Mice we removed from the experiment when tumors reached a volume of 1500 mm³. However, at the maximum tolerated dose no significant difference in survival rates was observed between mice treated with IDA- or high dose DXR-SDDS plus HT (n = 7 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for IDA-/DXR-SDDS HT group, n = 5 each group for the rest).

Supplementary figure 5. Pharmacokinetics and biodistribution of IDA- or DXR-SDDS comparison in healthy mice under normothermia. (A) Both IDA (2.7 μ mol/kg) and DXR (9 μ mol/kg) show prolonged circulation after encapsulation in SDDS (n = 9 mice per group), and (B) comparable biodistribution profiles (n = 3 mice per group). Data are represented as mean ± SEM.

Supplementary Table 1. Characterization parameters of IDA- and DXR-SDDS used in this study. Data are presented as mean \pm SD, N = 4.

Liposome composition	Diameter (nm)		Polydispersity index (PDI)	
(mole)	Before	After	Before	After
IDA-SDDS (DPPC/DSPC/DSPE-PEG 6/3.5/0.5)	84 ± 2	81 ± 2	0.05 ± 0.02	0.04 ± 0.03
DXR-SDDS (DPPC/DSPC/DSPE-PEG 7/2.5/0.5)	86 ± 2	84 ± 3	0.03 ± 0.03	0.05 ± 0.02