Supplementary Data

Case	Sex	Age (yrs)	Location	Number of LM	Histological grade	TNM stage
1	М	57	Sigmoid colon	1	II	pT3N1aM1a IVA
2	F	44	Ascending colon	1	II	pT3N2aM1a IVA
3	М	62	Rectum	1	II	pT3N1aM1a IVA
4	М	52	Rectum	1	III	pT3N1aM1a IVA
5	F	43	Decending colon; Sigmoid colon	3	III	pT3N1aM1a IVA
6	F	53	Ascending colon	2	II	pT3N2aM1a IVA
7	М	64	Ascending colon	1	II	pT3N1aM1a IVA
8	F	27	Rectum	1	II	pT3N1aM1a IVA
9	М	46	Decending colon	1	II	pT3N1aM1a IVA
10	F	71	Ascending colon	1	II	pT3N2aM1a IVA
11	М	49	Ascending colon	1	III	pT3N1aM1a IVA
12	М	79	sigmoid colon	1	II	pT3N2aM1a IVA
13	F	56	Ascending colon	1	III	pT3N2aM1a IVA
14	F	35	Ascending colon	1	II	pT3N1aM1a IVA
15	М	58	sigmoid colon	7	II	pT3N2aM1a IVA
16	М	51	sigmoid colon	1	II	pT3N2aM1a IVA
17	М	31	Rectum	3	II	pT3N2aM1a IVA

Table S1. Clinicopathological information of CRC patients with liver metastasis

Abbreviation: LM, liver metastasis.

Gene	Gene Bank Accession NO.	Sequence(5' to 3')	
CDEDD2	NIM 004500	CTCACCTTCCTGTGCCTCTC	
SKEBP2	NM_004599	AGGCATCATCCAGTCAAACC	
INCOD	NIM 001120006	GTCATTCCAGCCAAGGTTGT	
HMGCK	NM_001130996	CATGGCAGAGCCCACTAAAT	
IIMCCS	NIM 001009272	GATGGACGGTATGCCCTGGTAT	
HMGCS	NM_001098272	CTCCACCTGTAGGTCTAGCATG	
CDD1	NIM 001092050 2	GCTCGGAGAGCGACTACATC	
SKB1	NM_001082939.2	CCACATGATCTCACCCACAG	
	NIM 001010079	GCTTGTCTGTCACCTGCAAA	
LDLK	NM_001010978	AACTGCCGAGAGATGCACTT	
	NIM 000010	GATGAAGGAAGGCTGGTGC	
ACATI	NM_000019	GGAAGCTGGTGGCAGTGTAT	
	NIM 005901	CATGCTGCTGCTCATCTTCT	
ACATZ	NM_003891	ACTGCGGAGACCAGGAACA	
	NIM 080282	AACAGTTTGTGGCCCTTTTG	
ABCAI	NM_080282	AGTTCCAGGCTGGGGTACTT	
ADCC1	NIM 207174	ACGCAGTTCTGCATCCTCTT	
ABCGI	NM_207174	CGGAGTTGCTCAAGACCTTC	
	NIM 000790	CACCTTGAGGACGGTTCCTA	
CIP/AI	INIM_000780	CGATCCAAAGGGCATGTAGT	
	NIM 000794	AAGCGATACCTGGATGGTTG	
CYP2/AI	NM_000784	TGTTGGATGTCGTGTCCACT	
	ND4 001101	GAGCTACGAGCTGCCTGACG	
p-ACTIN	NM_001101	CCTAGAAGCATTTGCGGTGG	
ATCI	ND4 020276	GGCTTCCTCGGCGTCTACTA	
AIGL	NM_020376	TTTACCAGGTTGAAGGAGGGG	
LIDE	NIM 005257	TCAGTGTCTAGGTCAGACTGG	
LIFE	ININI_000000/	AGGCTTCTGTTGGGTATTGGA	
	NDA 002711	GGCAGGTTGTCCTTCTATTCAG	
PLPPI	NM_003/11	CAGTGTGGGGGCGTAAGAGT	
		GTGCATAACCGGCCCGAATA	

ACGAGGACGTTGTCAATTCCC GGTATCCGCAAACTCTACATGAA

CCACTTCGACGAATCTCTTTGA ATGCCAGAGGAAAGTTCCCC

CGTCTGCATTGACCAGGTG

GCATGGGTATCTACGTGGGG

MGAT1

AGPAT6

MGLL

PFK

NM_001114619

NM 178819

NM_001003794

NM 002626

Table S2. Sequences of primer sets used in quantitative RT-PCR

		CTCTGCGATGTTTGAGCCTC	
DCV1	NIM 000201	GAACAAGGTTAAAGCCGAGCC	
PGKI	NM_000291	GTGGCAGATTGACTCCTACCA	
DVM	NIM 192471	ATAACGCCTACATGGAAAAGTGT	
PKM	INIM_182471	TAAGCCCATCATCCACGTAGA	
CADD	NIM 000402	CGAGGCCGTCACCAAGAAC	
GOPD	INIM_000402	GTAGTGGTCGATGCGGTAGA	
ENO	NIM 001075	AGCCTCTACGGGCATCTATGA	
ENUZ	NM_001973	TTCTCAGTCCCATCCAACTCC	
111/1	NIM 022409	GCTCTCCGATGAAACTCTCATAG	
пкі	NM_055498	GGACCTTACGAATGTTGGCAA	
111/2	NIM 000190	GAGCCACCACTCACCCTACT	
ΠΚ2	NM_000189	CCAGGCATTCGGCAATGTG	
	NIM 001165415	ATGGCAACTCTAAAGGATCAGC	
LDNA	INIM_001103413	CCAACCCCAACAACTGTAATCT	

Table S3. shRNA targeting sequence

Target gene	shRNA number	Sequence	
	shRNA#1	GCCCTCTATTGGATGATGCAA	
SREBP2	shRNA#2	GCAACAACAGACGGTAATGAT	
	shRNA#3	GACCTGAAGATCGAGGACTTT	

Figure S1. Expression of key genes involved in glycometabolism and triglyceride metabolism in liver metastasis of colorectal cancer

A-H, Quantitative RT–PCR analysis of mRNA levels for genes involved in glycometabolism and triglyceride metabolism in 17 paired samples from patients diagnosed with primary colorectal cancer (CRC) and liver metastasis. Primary tumor tissues (PT) and paired liver metastasis tissues (LM). Data are shown as mean \pm SEM after log transformation (n = 17). Each dot represents the mean of relative mRNA level (log10) in triplicates for the indicated gene in each tissue sample. I-N, Quantitative RT–PCR analysis of mRNA levels for triglyceride metabolism-

related genes in 17 paired samples from patients diagnosed with primary colorectal

cancer and liver metastasis. Data are shown as mean \pm SEM after log transformation (n = 17). Each dot represents the mean of relative mRNA levels (log10) in triplicates for the indicated gene in each tissue sample.

Significance was determined by a two-tailed paired *t*-test (A-N). *P < 0.05, **P < 0.05, *P < 0.05,

0.01, ***P < 0.001, ns, not significant.

A, Relative SREBP2 expression in paired samples of PTs and LMs from 4 GEO datasets. The relative SREBP2 expressions in PTs and LMs from 4 GEO datasets are calculated by dividing the intensity of *SREBP2* to that of internal control gene *GAPDH*, and were then used to calculate the LM/PT ratio. **B**, Relative SREBP2 mRNA levels in PTs and paired adjacent non-tumorous colorectal tissues (NTs). Data are shown as mean \pm SEM after log transformation (n = 13). Triplicates conducted in each tissue sample. **C**, Relative SREBP2 mRNA levels in PTs and NTs from TCGA database. For (**B**) and (**C**), Significance was determined by a two-tailed paired *t*-test. *P < 0.05,

P < 0.01, *P < 0.001, ns, not significant.

Figure S3. The mRNA levels of SREBP2 in different colon cancer cell lines.

RT-qPCR analysis of mRNA levels for SREBP2 involved in cholesterol biosynthesis pathway in 6 colon cancer cell lines, including HT29, SW620, LoVo, SW480, DLD-1 and HCT116. Representative results from at least three independent experiments are shown. Data are shown as mean \pm SD of triplicate experiments.

Figure S4. Knockdown of SREBP2 inhibits CRC tumor growth in vivo

A-F, Effects of SREBP2 knockdown on CRC xenograft tumor growth. Different HT29 or SW620 stable cell lines were used to establish xenograft tumors in nude mice. Tumor volumes were assessed on the indicated days (**A** and **D**) and tumors were dissected for photo (**B** and **E**) and weight (**C** and **F**). Data are shown as mean \pm SEM. Significance was determined by two-way ANOVA (n = 7) (**A** and **D**) or one-way ANOVA (n = 7) (**C** and **F**).

G-J, Confirmation of *SREBP2* knockdown in HT29 or SW620 xenograft tumors. The expression of *SREBP2*, *HMGCR* and *HMGCS* (G-H) and total cholesterol content (I and J) were determined in HT29 and SW620 xenograft tumors. Representative results from at least three independent experiments are shown. Data are shown as mean \pm SEM of triplicate experiments. Significance was determined by one-way ANOVA. **P < 0.01, ***P < 0.001.

Figure S5. Knockdown of SREBP2 inhibits CRC liver metastasis in vivo

A-C, The effect of SREBP2 silencing on CRC liver metastasis in liver orthotropic injection model. Different SW620 stable cell lines were injected into liver of mice (A). At the end of the experiment, liver metastases were taken photos (B), and were dissected for assessing tumor volume (C). Data are shown as mean \pm SEM (n = 4). Significance was determined by one-way ANOVA. *P < 0.05.

Figure S6. Cholesterol biosynthesis pathway is required for CRC liver metastasis.

The effect of betulin and simvastatin on CRC liver metastasis in intrasplenic injection model. Schematic diagram of intrasplenic injection mice model was presented in (**A**). Representative pictures of group Con/Betulin/Simvastatin, Red arrow indicates liver metastases (**B**) and metastatic lesion numbers were counted (**C**), and liver metastases tissues were dissected for assessing total cholesterol (**D**). Data are shown as mean \pm SEM (n = 5). Significance was determined by one-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S7. Evaluation of the cholesterol biosynthesis and influx pathway in CRC liver metastasis tissue (LM) and normal liver tissue (NL)

Quantitative RT–PCR analysis of mRNA levels for LDLR (**A**) and SR-B1 (**B**) in LM and paired NL. Data are shown as mean \pm SEM after log transformation (n = 14). Each dot represents the mean of relative mRNA levels (log10) in triplicates for the indicated gene in each tissue sample.

Significance was determined by a two-tailed paired *t*-test. ***P < 0.001.