Supplementary Material

Plasma-derived DNA containing-extracellular vesicles induce STING-mediated proinflammatory responses in dermatomyositis

Yubin Li^{1,2}, Christina Bax^{1,2}, Jay Patel^{1,2}, Thomas Vazquez^{1,2}, Adarsh Ravishankar^{1,2}, Muhammad M. Bashir^{1,2}, Madison Grinnell^{1,2}, DeAnna Diaz^{1,2}, Victoria P. Werth^{1,2,*}

¹Corporal Michael J. Crescenz Veterans Affairs Medical Center Philadelphia, PA

²Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA

19104

*Corresponding Author:

Victoria P. Werth, M.D.

Department of Dermatology, University of Pennsylvania,

Perelman Center for Advanced Medicine, Suite 1-330A,

3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.

Tel: +1 215 823 4208, Fax: +1 866 755 0625

E-mail: werth@pennmedicine.upenn.edu

Keywords

Extracellular vesicles; dsDNA; type I interferon; Stimulator of interferon genes; Dermatomyositis

Figure S1. The concentration and average size of large extracellular vesicles-derived from DM plasma and HC plasma.

(A) Total number of lEVs derived from healthy plasma $(5.358 \times 10^9 \pm 6.745 \times 10^9 \text{ particles/mL}, n = 6)$ and DM plasma $(2.786 \times 10^9 \pm 3.140 \times 10^9 \text{ particles/mL}, n = 7)$. (B) Average size of lEVs derived from healthy plasma $(177.0 \pm 5.539 \text{ nm}, n = 6)$ and DM plasma $(173.5 \pm 5.092 \text{ nm}, n = 7)$. Data were represented as mean \pm SD. Comparison between two groups was analyzed by the Student *t* test.

Figure S3. Proinflammatory cytokines captured by HC or DM plasma-derived EVs. Both HC and DM plasma-derived EVs captured IFN β and IL-6 were undetectable, TNF α captured by HC and DM plasma-derived EVs is very low and has no significant difference. HC plasma-derived EVs (n = 6) and DM plasma-derived EVs (n = 6). Data were represented as mean \pm SD. Comparison between two groups was analyzed by the Student *t* test.

Figure S4. HC or DM plasma-derived EVs had no effects on cell viability of PBMCs. PBMCs were placed in 96-well plates at a density of 1.5×10^6 cells/mL, 100μ L/well. After stimulation of cells with 5 μ L of large EVs or small EVs derived from 50 μ L of HC or DM plasma for 15 h, the plates were incubated with 10 μ L/well of WST-8 in the incubator with 95% air and 5% CO₂ at 37°C for 1 h, and then measured at 460 nm absorbance wavelength. HC plasma-derived EVs (n = 3) and DM plasma-derived EVs (n = 3) were studied. Data are represented as mean ± SD. Comparison between two groups was analyzed by the Student *t* test.

Figure S5. EVs internalized by PBMCs.

Cells were stimulated with 12.5 μ L of precipitated CM-DiI dye following ultracentrifugation or CM-DiI dye-labeled EVs for 15 h. The cells were fixed, incubated with 1 μ g/mL of DAPI in PBS for 1 min, washed 3 times, and then studied by using confocal microscopy. PBMCs were placed in EZ slide at a density of 1.5x10⁶ cells/mL, 500 μ L/well. The upper panel showed no interaction of the precipitated CM-DiI dye with PBMCs; the lower panel showed that CM-DiI dye-labeled EVs could be properly internalized by PBMCs (Scale bar = 10 μ m).

Figure S6. H-151 suppressed 2'3'-cGAMP-induced STING signaling pathway phosphorylation and proinflammatory cytokine release in PBMCs.

PBMCs were placed in 6-well plates at a density of 1.5×10^6 cells/mL, 2 mL/well. The cells were pretreated with/without 1 µM of H-151 for 1 h, and then stimulated in the presence/absence of 10 µg/mL or 20 µg/mL of 2'3'-cGAMP for 15 h. After stimulation, the cells were collected for immuno-blot to check the changes in the STING signaling pathway. ELISAs were performed to examine proinflammatory cytokines release in the supernatants. Data in (B,C,D) represent mean \pm SD. **P* < 0.05 ***P* < 0.01 ****P* < 0.001 between groups as indicated. Comparison among three or more groups was performed using ANOVA, followed by Student-Newman-Keuls test.

Figure S7. DM plasma-derived large extracellular vesicles induced STING-mediated IFNβ production in PBMCs.

(A) lEVs derived from DM plasma induced IFN β release in PBMCs. H-151 attenuated IEVstriggered IFN β release in PBMCs. (B) STING antagonist H-151 and lEVs derived from DM plasma had no effect on TNF α or (C) IL6 release in PBMCs. (D) Immunoblot image showed that lEVs derived from DM plasma induced Serine 366 phosphorylation of STING in PBMCs. STING antagonist H-151 attenuated lEVs-triggered STING phosphorylation. Data in (A,B,C) represent mean \pm SD. **P < 0.01 between groups as indicated. Comparison among three or more groups was performed using ANOVA, followed by Student-Newman-Keuls test.

FAM-siSTING

Figure S8. FAM-siSTING could be transfected and decreased STING expression in PBMCs.

PBMCs were placed in EZ slide at a density of 1.5×10^6 cells/mL, 500 µL/well. After cells were transfected by FAM-labelled siSTING for 36 h, the cells were fixed, permeabilized, and stained for STING. Cells were then incubated with 1 µg/mL of DAPI in PBS for 30 s, washed 3 times, and then studied by using fluorescent microscopy. (Scale bar = 31 µm).

Figure S9. DM plasma-derived sEVs triggered STING phosphorylation with IFNβ production in WT (B6) mice eluted peritoneal macrophages other than STING KO (*Sting1*^{gt/gt}) mice peritoneal macrophages.

WT mice and STING KO mice eluted peritoneal macrophages were stimulated with/without 50 μ L of DM plasma-derived sEVs for 15 h. (A) Immunoblot image showed that DM plasma-derived sEVs triggered STING phosphorylation in B6 mice eluted peritoneal macrophages other than *Sting1^{gt/gt}* mice eluted macrophages (B). B6 mice expressed total STING while *Sting1^{gt/gt}* mice dose not expressed total STING (C). sEVs triggered more IFN β production in B6 macrophages but not in *Sting1^{gt/gt}* macrophages (D). Data in (B,C,D) represent mean \pm SD. ***P* < 0.01 ****P* < 0.001 between groups as indicated. Comparison among three or more groups was performed using ANOVA, followed by Student-Newman-Keuls test.

Figure S10. TBK1 inhibitors impaired DM plasma-derived sEVs triggered TNFα release in PBMCs.

DM plasma-derived sEVs induced TNF α release in PBMCs (505.7 ± 59.81 pg/mL, n = 5) when compared with untreated PBMCs (276.5 ± 14.92 pg/mL, n = 5). 2.5 μ M of Amlexanox (TBK1 inhibitor) pretreatment impaired sEVs-triggered TNF α release in PBMCs (225.2 ± 39.04 pg/mL, n = 5); 2.5 μ M of MRT67307 (TBK1 inhibitor) pretreatment impaired DM sEVs-triggered TNF α release in PBMCs (124.0 ± 26.51 pg/mL, n = 5). Data was represented as mean ± SD. ****P* < 0.001 between groups as indicated. Comparison among three or more groups was performed using ANOVA, followed by Student-Newman-Keuls test.

Patient number	Age	Sex	sEVs concentration (X10 ¹¹ /mL plasma)	CDASI-A	Systemic therapy	Topical Therapy
1	72	F	12.6	9	MMF	CS
2	46	F	6.1	10	HCQ	CS
3	75	F	4.55	0		CS
4	19	М	11.8	11	Pred, HCQ, MMF, IVIG	CS, CI
5	18	М	15.5	24	Pred	
6	74	М	16.8	6		CI
7	62	F	15.7	35	Pred	CS, CI
8	63	F	20.6	27		CS, CI
9	60	F	9.97	5	MTX	CS
10	45	F	17.7	15	HCQ	CS
11	27	F	4.8	9	Pred	CI

Table S1. Patient characteristics

Abbreviations: sEVs, small extracellular vesicles; CDASI-A, Cutaneous Dermatomyositis Disease Area and Severity Index Activity Score; MMF, mycophenolate mofetil; HCQ, hydroxychloroquine; Pred, prednisone; MTX, methotrexate; CS, corticosteroid; CI, calcineurin inhibitor.