## SUPPLEMENTARY MATERIAL

#### This file includes:

#### Supplementary Figures and Figure Legends

- Figure S1. The purity of the extracted CFs
- Figure S2. Expression of FccR1 and fibrotic genes after IgE treatment at different times and

doses in CFs

- Figure S3. Construction of FccR1-cKO mice
- Figure S4. Effect of CF FccR1 deletion on Ang II-infused mice
- Figure S5. Immunohistochemical staining of fibrotic markers in heart tissues from CF-
- specific FceR1 KO mice
- Figure S6. Basal levels of miRNAs in CFs
- Figure S7. Gene ontology and KEGG Pathway enrichment analyses for screening potential

miR-486a-5p targets

- Figure S8. Efficiency data for miR-486a-5p mimic and miR-486a-5p inhibitor
- Figure S9. Expression of SMAD2 and phospho-SMAD2 after miR-486a-5p overexpression

or knockdown in CFs

- Figure S10. SMAD1 mRNA expression after IgE stimulation in CFs
- Figure S11. Rescue assays performed in CFs
- Figure S12. Overexpression of lenti-miR486 indicated by GFP detection
- Figure S13. Effect of miR-486a-5p overexpression on Ang II-infused mice
- Figure S14. Immunohistochemical staining of fibrotic markers in heart tissues from miR-
- 486a-5p-overexpressed mice
- Figure S15. Effect of Ang II on WT and FccR1-KO CFs in vitro
- Figure S16. Effect of CF FccR1 deletion on Ang II-induced cardiomyocyte hypertrophy

Figure S17. Expression of TGF-β after miR-486a-5p overexpression or knockdown in CFs

## **Supplementary Tables**

Table S1. Primer sequences (provided as an Excel file)

Table S2. Echocardiographic analysis of Ang II- or saline-infused FccR1-Flox and FccR1cKO mice

Table S3. Candidate miR-486a-5p targets predicted by Targetscan 7.1 and miRanda combined analyses (provided as an Excel file)

Table S4. GO analysis of the candidate miR-486a-5p targets (provided as an Excel file)

Table S5. KEGG analysis of the candidate miR-486a-5p targets (provided as an Excel file)

Table S6. Echocardiographic analysis of Ang II- or saline-infused WT mice treated with lenti-miR-486a-5p or scramble

## Supplementary Figures and Figure Legends





Figure S1. The purity of the extracted CFs

Flow cytometry analysis of PDGFR- $\alpha$  (CD140a) <sup>+</sup> cells in the isolated primary mouse CFs.

**Figure S2** 



Figure S2. Expression of FccR1 and fibrotic genes after IgE treatment at different times and doses in CFs

A. *Fcer1a* mRNA expression levels in mouse primary CFs after IgE stimulation at different concentrations (0, 1, 2, and 5 µg/ml). **B–D.** qPCR analysis of key fibrotic genes (*a-SMA*, *Col1a1*, and *Col3a1*) mRNA expression in 0, 1, 2, 5, and 10 µg/ml IgE-stimulated FccR1-WT CFs. **E.** Immunoblot analysis of  $\alpha$ -SMA, COL1A1, and COL3A1 protein expression after IgE treatment of CFs at 0, 1, 3, 6, 12, and 24 hours. Data are mean ± SD from 3 independent experiments. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, \*\*\*p < 0.001 by *one-way ANOVA* with Bonferroni's post hoc test.



Figure S3. Construction of FccR1-cKO mice

A–B. The construction pipeline (A) and identification (B) of FccR1-cKO mice.





Figure S4. Effect of CFs FccR1 deletion on Ang II-infused mice

A. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) were measured by non-invasive tail-cuff monitor in Ang II- or saline-infused FccR1-Flox and FccR1-cKO mice. **B.** ELISA analysis of serum IgE in Ang II- or saline-infused FccR1-Flox and FccR1-cKO mice. **C.** Left ventricular weight versus body weight after 2-week Ang II treatment in FccR1-Flox and FccR1-cKO mice. **D-E.** Representative heart sections examined by Masson (**D**) and Sirius Red staining (**E**). Scale bars, 1 mm. Total n = 5 (Saline/FccR1-Flox), n = 5 (Saline/FccR1-cKO), n = 10 (Ang II/FccR1-Flox) or n = 9 (Ang II/FccR1-cKO) per group. The results are shown as mean  $\pm$  SEM. \*\*p < 0.01, \*\*\*\*p < 0.0001, n.s. indicates no significance in *Two-way ANOVA* with Bonferroni's post hoc test.



Figure S5. Immunohistochemical staining of fibrotic markers in heart tissues from CFspecific FceR1 KO mice

A-H. Representative images of POSTN (A),  $\alpha$ -SMA (C), COL1A1 (E) and COL3A1 (G) staining in heart tissues from Ang II- or Saline-infused FccR1-cKO or FccR1-Flox mice. Images were taken at 400X magnification. Scale bars, 50 µm. Quantification of POSTN (B),  $\alpha$ -SMA (D), COL1A1 (F) and COL3A1 (H) staining. A total of nine fields from three sections (three fields from each section) per mouse were randomly selected for analysis. Total n = 5 (Saline/FccR1-Flox), n = 5 (Saline/



Figure S6. Basal levels of miRNAs in CFs

Basal expressions of three candidate miRNAs (miR-467a-3p, miR-196a-5p, and miR-486a-5p) in CFs detected by qPCR. Results are shown as mean  $\pm$  SD. Data are mean  $\pm$  SD from 3 independent experiments.



Figure S7. Gene ontology and KEGG Pathway enrichment analyses for screening potential miR-486a-5p targets

**A–B.** The predicted candidates from the Targetscan7.1 and miRanda intersection were analyzed by GO and KEGG pathway bioinformatic analyses. (A) Upper panel: bar chart of the top fifteen GO terms, listed by  $-\log 10 p$  value. The x-axis shows the gene counts in each GO term and y-axis shows GO terms. Lower panel: The high-frequency genes enriched in top 15 GO. (B) upper panel: The enriched KEGG pathways of predicted targets of miR-486a-5p. The x-axis shows the gene counts in each KEGG pathway and y-axis shows KEGG pathways. Lower panel: The high-frequency genes enriched in top 10 KEGG pathways. By overlapping the results from GO and KEGG analyses, three genes (*Smad1, Smad2* and *Igf1r*) were identified and marked in red.



Figure S8. Efficiency data for miR-486a-5p mimic and miR-486a-5p inhibitor

A-B. Expression of miR-486a-5p in CFs after transfected with miR-486a-5p mimic (A) or miR-486a-5p inhibitor (B) detected by qPCR (fold change versus Scramble controls). Data are mean  $\pm$  SD from 3 independent experiments. All statistics were performed using Student's *t*-test. \*\*\*\*p < 0.0001, \*\*p < 0.01.



Figure S9. Expression of SMAD2 and phospho-SMAD2 after miR-486a-5p overexpression or knockdown in CFs

**A–B.** Representative immunoblot (**A**) and quantification analysis (**B**) of SMAD2 and phospho-SMAD2 expression in CFs after transfected with miR-486a-5p mimic or scrambled control. **C–D.** Representative immunoblot (**C**) and quantification analysis (**D**) of SMAD2 and phospho-SMAD2 in CFs after transfected with miR-486a-5p inhibitor or scrambled control. Data are mean  $\pm$  SD from 3 independent experiments. All statistics were performed using Student's *t*-test. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.



Figure S10. Smad1 mRNA expression after IgE stimulation in CFs

A–B. qPCR analysis of *Smad1* mRNA expression in IgE-stimulated FccR1-WT (A) and FccR1-KO (B) CFs at indicated times (0, 3, 24 h). Data are mean  $\pm$  SD from 3 independent experiments. \*\*p < 0.01, n.s. indicates no significance in *One-way ANOVA* with Bonferroni's post hoc test.



Figure S11. Rescue assays performed in CFs

**A–B.** CFs were transfected with miR-486a-5p mimic or scrambled control for 24 hours and then treated with IgE for another 24 hours. qPCR analysis of miR-486a-5p (**A**), *Smad1*, *Col1a1*, and *Col3a1* (**B**) expression. Data are mean  $\pm$  SD from 3 independent experiments. All statistics were performed using *Two-way ANOVA* with Bonferroni's post hoc test. \*\*\*\*p < 0.0001.



Figure S12. Overexpression of lenti-miR486 indicated by GFP detection

A. Immunoblot analysis of GFP expression to verify that the lentiviruses were delivered successfully to the heart tissue. **B.** Representative images of immunofluorescence analysis of  $\alpha$ -SMA (red), GFP (green) and DAPI (blue) on the heart sections from GFP lentivirus-injected mice and negative controls. Scale bars, 50 µm. DAPI, 4'6-diamidino-2-phenylindole.

Figure S13



Figure S13. Effect of miR-486a-5p overexpression on Ang II-infused mice

A. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) were measured by non-invasive tail-cuff monitor in lenti-miR486 or scramble-treated Ang II- or saline-infused mice. **B.** Left ventricular weight versus body weight after lenti-miR486 or scramble-treated Ang II-or saline-infused mice. **C–D.** Representative heart sections examined by Masson (C) and Sirius Red staining (D). Scale bars, 1 mm. Total n = 5 (Saline/Scramble), n = 6 (Saline/Lenti-miR486), n = 10 (Ang II/Scramble), or n = 8 (Ang II/Lenti-miR486) per group. The results are shown as mean  $\pm$  SEM. \*\*p < 0.01, \*\*\*\*p < 0.0001, n.s. indicates no significance in *Two-way* ANOVA with Bonferroni's post hoc test.



# Figure S14. Immunohistochemical staining of fibrotic markers in heart tissues from miR-486a-5p-overexpressed mice

A-H. Representative images of POSTN (A),  $\alpha$ -SMA (C), COL1A1 (E), and COL3A1 (G) staining of heart tissues from lenti-miR-486a-5p (lenti-miR486) and scramble treated Ang IIor saline-infused WT mice. Images were taken at 400X magnification. Scale bars, 50 µm. Quantification of POSTN (B),  $\alpha$ -SMA (D), COL1A1 (F), and COL3A1 (H) staining. A total of nine fields from three sections (three fields from each section) per mouse were randomly selected for analysis. Total n = 5 (Saline/Scramble), n = 6 (Saline/Lenti-miR486), n = 10 (Ang II/Scramble), or n = 8 (Ang II/Lenti-miR486) per group. The results are shown as mean  $\pm$  SEM. \*\*\*p < 0.001, \*\*\*\*p < 0.0001, n.s. indicates no significance in *Two-way* ANOVA with Bonferroni's post hoc test.

Figure S15



Figure S15. Effect of Ang II on WT and FccR1-KO CFs in vitro

**A-B.** qPCR analysis of *a-SMA* and *Colla1* mRNA expression in WT (A) and FccR1-KO (B) CFs after IgE after IgE treatment for 24h. Results are shown as mean±SD. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 by Student's *t*-test.



Figure S16. Effect of CF FccR1 deletion on Ang II-induced cardiomyocyte hypertrophy

**A-B.** WGA (green) staining of cardiac sections (6  $\mu$ m) from Ang II- or saline-infused FccR1-Flox and FccR1-cKO mice. 450 cells per mouse were randomly selected from 9 fields in three sections (three random fields from each section) were measured. Scale bars, 50  $\mu$ m. Total n = 5 (Saline/FccR1-Flox), n = 5 (Saline/cKO), n = 10 (Ang II/FccR1-Flox), or n = 9 (Ang II/cKO) per group. Results are shown as mean ± SEM. \*\*\*\*p < 0.0001, n.s indicates no significance in *Two-way ANOVA* with Bonferroni's post hoc test.



Figure S17. Expression of TGF-β after miR-486a-5p overexpression or knockdown in CFs

**A.** Western blot analysis of TGF- $\beta$ 1 protein expression in CFs after transfected with miR-486a-5p mimic or scrambled control. **B.** Western blot analysis of TGF- $\beta$  protein expression in CFs after transfected with miR-486a-5p inhibitor or scrambled control.

#### **Supplementary Tables**

|                            | Saline-treated             |                           | Ang II-treated                                      |                           |
|----------------------------|----------------------------|---------------------------|-----------------------------------------------------|---------------------------|
| -                          | FceR1-Flox mice<br>(n = 5) | FceR1-cKO mice<br>(n = 5) | FccR1-Flox mice<br>(n = 10)                         | FceR1-cKO mice<br>(n = 9) |
| LVAW;d (mm)                | $0.76\pm0.01$              | $0.75\pm0.02$             | $1.11\pm0.02^{\dagger\dagger\dagger\dagger\dagger}$ | $0.90 \pm 0.04^{****}$    |
| LVAW;s (mm)                | $1.17\pm0.04$              | $1.08\pm0.06$             | $1.59\pm0.03^{\dagger\dagger\dagger\dagger}$        | $1.37 \pm 0.06 **$        |
| LVID;d (mm)                | $3.99\pm0.14$              | $4.05\pm0.09$             | $3.65\pm0.11$                                       | $3.94 \pm 0.07$           |
| LVID;s (mm)                | $2.80\pm0.09$              | $2.88\pm0.07$             | $2.64\pm0.07$                                       | $2.93\pm0.10$             |
| LVPW;d (mm)                | $0.75\pm0.01$              | $0.82\pm0.04$             | $1.18\pm0.08^{\dagger\dagger}$                      | $0.97\pm0.04$             |
| LVPW;s (mm)                | $1.04\pm0.02$              | $1.14 \pm 0.10$           | $1.42\pm0.09^{\dagger}$                             | $1.22\pm0.04$             |
| EF (%)                     | $57.62\pm0.55$             | $56.34 \pm 1.03$          | $54.04\pm2.70$                                      | $50.97\pm2.73$            |
| FS (%)                     | $29.89\pm0.42$             | $29.08\pm0.68$            | $27.57 \pm 1.69$                                    | $25.75\pm1.65$            |
| LV mass AW                 | $108.85\pm4.73$            | $117.71 \pm 5.11$         | $169.02 \pm 6.31^{\dagger\dagger\dagger\dagger}$    | $142.48\pm6.82\texttt{*}$ |
| LV Mass (correct)          | $87.08\pm3.78$             | $94.17\pm4.09$            | $135.22 \pm 5.05^{\dagger\dagger\dagger\dagger}$    | $113.98 \pm 5.46*$        |
| Heart rate (HR, beats/min) | $498.80\pm15.14$           | $516.80\pm16.33$          | $482.40\pm10.76$                                    | $504.22\pm10.83$          |

Table S2. Echocardiographic analysis of Ang II- or saline-infused FccR1-Flox and FccR1-cKO mice

The results are shown as mean  $\pm$  SEM.

Ang II-treated FccR1-cKO versus Ang II-treated FccR1-Flox mice, \*p < 0.05, \*\*p < 0.01, \*\*\*\*p < 0.0001.

Ang II-treated FccR1-Flox mice versus Saline-treated FccR1-Flox mice,  $^{\dagger}p < 0.05$ ,  $^{\dagger\dagger}p < 0.01$ ,  $^{\dagger\dagger\dagger\dagger}p < 0.0001$ .

Abbreviations: LVAW;d: left ventricular anterior wall thickness in diastole; LVAW;s: left ventricular anterior wall thickness in systole; LVID;d: left ventricular internal diameter in diastole; LVID;s: left ventricular internal diameter in systole; LVPW;s: left ventricular posterior wall thickness in systole; LVPW;d: left ventricular posterior wall thickness in diastole. EF: ejection fraction; FS: fraction shortening; LV mass AW: left ventricle mass anterior wall. LV Vol;d: left ventricular volume in diastole ; LV vol;s: left ventricular volume in systole.

|                            | Saline-treated      |                              | Ang II-treated                     |                              |
|----------------------------|---------------------|------------------------------|------------------------------------|------------------------------|
| _                          | Scramble<br>(n = 5) | Lenti-miR-486a-5p<br>(n = 6) | Scramble<br>(n = 10)               | Lenti-miR-486a-5p<br>(n = 8) |
| LVAW;d (mm)                | $0.82\pm0.06$       | $0.87\pm0.05$                | $1.07\pm0.05^{\dagger}$            | $0.84 \pm 0.04$ **           |
| LVAW;s (mm)                | $1.17\pm0.07$       | $1.25\pm0.09$                | $1.59\pm0.05^{\dagger\dagger}$     | $1.19 \pm 0.09$ **           |
| LVID;d (mm)                | $3.72\pm0.08$       | $3.74\pm0.13$                | $3.54\pm0.10$                      | $3.79\pm0.13$                |
| LVID;s (mm)                | $2.50\pm0.08$       | $2.50\pm0.14$                | $2.34\pm0.11$                      | $2.71\pm0.19$                |
| LVPW;d (mm)                | $0.82\pm0.03$       | $0.80\pm0.04$                | $1.01\pm0.05$                      | $0.84\pm0.04$                |
| LVPW;s (mm)                | $1.13\pm0.03$       | $1.24\pm0.05$                | $1.41\pm0.08$                      | $1.26\pm0.06$                |
| EF (%)                     | $62.13 \pm 1.81$    | $62.59 \pm 2.62$             | $63.39\pm3.45$                     | $55.44 \pm 4.77$             |
| FS (%)                     | $32.89 \pm 1.24$    | $33.34 \pm 1.88$             | $34.17\pm2.44$                     | $28.89 \pm 2.97$             |
| LV mass AW                 | $107.95\pm1.97$     | $110.42\pm4.80$              | $140.96 \pm 6.73^{\dagger\dagger}$ | $114.83 \pm 5.86*$           |
| LV Mass (correct)          | $86.36 \pm 1.58$    | $88.34\pm3.84$               | $112.77\pm5.38^{\dagger\dagger}$   | $91.86\pm4.69*$              |
| Heart rate (HR, beats/min) | $515.20\pm7.61$     | $509.33\pm12.71$             | $502.80\pm10.30$                   | $527.25\pm6.07$              |

Table S6. Echocardiographic analysis of Ang II- or saline-infused WT mice treated with lenti-miR-486a-5p or scramble

The results are shown as mean  $\pm$  SEM.

Ang II-treated Scramble group versus Ang II-treated Lenti-miR-486a-5p group, \*p < 0.05, \*\*p < 0.01.

Ang II-treated Scramble group versus Saline-treated Scramble group,  $^{\dagger}p < 0.05$ ,  $^{\dagger\dagger}p < 0.01$ .

Abbreviations: LVAW;d: left ventricular anterior wall thickness in diastole; LVAW;s: left ventricular anterior wall thickness in systole; LVID;d: left ventricular internal diameter in diastole; LVID;s: left ventricular internal diameter in systole; LVPW;s: left ventricular posterior wall thickness in systole; LVPW;d: left ventricular posterior wall thickness in diastole. EF: ejection fraction; FS: fraction shortening; LV mass AW: left ventricle mass anterior wall. LV Vol;d: left ventricular volume in diastole ; LV vol;s: left ventricular volume in systole.