# Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells

Yabing Chen<sup>1,2 #</sup>, Chun Pan<sup>1,2 #</sup>, Xiaotong Wang<sup>3</sup>, Dihui Xu<sup>1,2</sup>, Yuhan Ma<sup>1,2</sup>, Jianhang Hu<sup>1,2</sup>, Peilin Chen<sup>1,2</sup>, Zou Xiang<sup>4</sup>, Qiu Rao<sup>3</sup>⊠, Xiaodong Han<sup>1,2</sup>⊠

 <sup>1</sup> Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
<sup>2</sup> Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
<sup>3</sup> Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China

<sup>4</sup> Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China

<sup>#</sup>These authors contributed equally to this study.

Corresponding authors: Qiu Rao, raoqiu1103@126.com, Department of Pathology, Jinling Hospital, Nanjing 210002, China; Xiaodong Han, hanxd@nju.edu.cn, Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China, Tel/fax: +86 25 83686497.

| Source                   | Primary antibodies           | Catalog no. | Working dilution                |
|--------------------------|------------------------------|-------------|---------------------------------|
| Abcam                    | Rabbit anti-METTL3           | ab195352    | WB, 1:2000 IHC, 1: 800          |
| Abcam                    | Mouse anti-FTO               | ab92981     | WB, 1:1000 IHC, 1:400           |
| Abcam                    | Rabbit anti-ZEB1             | ab203829    | WB, 1:500 IHC                   |
| Santa Cruz Biotechnology | Mouse anti-ARHGDIB           | sc-376473   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-E-cadherin        | sc-8426     | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-HNRNPD            | sc-166577   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-MMP-9             | sc-393859   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-NCL               | sc-17826    | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-RAC1/2/3          | sc-514583   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-RHOA              | sc-418      | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-USP4              | sc-376000   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-USP8              | sc-376130   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-USP11             | sc-365528   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-USP25             | sc-398414   | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-Vimentin          | sc-6260     | WB,1:500                        |
| Santa Cruz Biotechnology | Mouse anti-ZEB2              | sc-271984   | WB,1:500                        |
| Proteintech              | Rabbit anti-ARHGDIA          | 10509-1-Ig  | WB,1:1000, IHC,1:100            |
| Proteintech              | Mouse anti-GAPDH             | 60004-1-Ig  | WB,1:20000                      |
| Proteintech              | Rabbit anti-ELAVL1           | 11910-1-AP  | WB,1:1000                       |
| Proteintech              | Rabbit anti-ALKBH5           | 16837-1-AP  | WB,1:1000 IHC,1:400             |
| Proteintech              | Mouse anti-USP4              | 66822-1-Ig  | WB,1:1000 IHC, 1:400            |
| Proteintech              | Rabbit anti-USP28            | 17707-1-AP  | WB,1:1000                       |
| Proteintech              | Rabbit anti-YTHDF1           | 17479-1-AP  | WB,1:1000 Co-IP, 1:50 RIP, 1:50 |
| Proteintech              | Rabbit anti-YTHDF2           | 24744-1-AP  | WB,1:1000 Co-IP, 1:50 RIP, 1:50 |
| Sigma                    | Rabbit anti-METTL14          | HPA038002   | WB,1:2000 IHC,1:800             |
| Synaptic Systems         | Rabbit anti-m <sup>6</sup> A | 202003      | IF,1:200                        |

Table S1. Primary antibodies used in this study.

|                |         | Primer sequence (5'-3')   |                        |      |      |  |
|----------------|---------|---------------------------|------------------------|------|------|--|
| Accession      | Target  |                           |                        | Size | Tm   |  |
| number         | gene    | Forward                   | Reverse                | (bp) | (°C) |  |
| XM_011536968.2 | METTL3  | CTATCTCCTGGCACTCGCAAGA    | GCTTGAACCGTGCAACCACATC | 130  | 58.5 |  |
| NM_001185077.3 | ARHGDIA | GGATGAGCACTCGGTCAACTA     | GGCCTCCTTGTACTTTCGCAG  | 103  | 58.5 |  |
| NM_001419.3    | ELAVL1  | TTGGGCGGATCATCAACTCG      | TCAAACCGGATAAACGCAACC  | 79   | 60   |  |
| NM_003363.4    | USP4    | TGCAGCCTCAGAAGAAGAAGAAGAA | ATGGTGGTGAAGAGCTCGATG  | 67   | 58.5 |  |
| NM_001256799.3 | GAPDH   | AGAAGGCTGGGGGCTCATTTG     | AGGGGCCATCCACAGTCTTC   | 258  | 60   |  |

#### Table S2. Primers used for real-time PCR.

|      |        | Primer sequence (5'-3')   |                        |      |      |  |
|------|--------|---------------------------|------------------------|------|------|--|
|      |        |                           |                        | Size | Tm   |  |
| Gene | Sites  | Forward                   | Reverse                | (bp) | (°C) |  |
| USP4 | Site 1 | TGGCCCAATAGACAACTCTGG     | GCCTTCTACACAGCCGTACCA  | 142  | 60   |  |
| USP4 | Site 2 | GGTGGATCTGGCTTTTCTGCT     | CTCAAACACTGCAAAGCGGAG  | 128  | 60   |  |
| USP4 | Site 3 | TTGGAAACCTGGGAAACACCT     | CCCAGAGGGTTGTCTCTGTTGA | 203  | 58.5 |  |
| USP4 | Site 4 | AACTCTCGATCTACACTGGCCA    | TCGTAGGCCTCAGATTCTTGC  | 83   | 58.5 |  |
| USP4 | Site 5 | TGCAGCCTCAGAAGAAGAAGAAGAA | ATGGTGGTGAAGAGCTCGATG  | 67   | 58.5 |  |
| USP4 | Site 6 | CATTGCCGTGTCCAATCATTAT    | TATCTGATCCTCAGAGGCCAGG | 130  | 58.5 |  |
| USP4 | Site 7 | ACCCAGCAGTTCTGTTATATCCC   | AACAACTAGACGGGACACAGCA | 155  | 58.5 |  |

## Table S3. Primers used for m<sup>6</sup>A MeRIP-qRT-PCR analyses.

| Primer sequence (5'-3') |                        |                        |      |      |  |  |
|-------------------------|------------------------|------------------------|------|------|--|--|
|                         |                        |                        | Size | Tm   |  |  |
| Gene                    | Forward                | Reverse                | (bp) | (°C) |  |  |
| USP4 pre-mRNA           | ACTGAATGGTCTTTCCCCCTCT | TGCTTGGTCGTGTCCCTCC    | 138  | 60   |  |  |
| USP4                    | CATTGCCGTGTCCAATCATTAT | TATCTGATCCTCAGAGGCCAGG | 130  | 58.5 |  |  |

#### Table S4. Primers used for RIP analyses.

| Table 55. C        | naracteris | ucs of numan Pro | ostate cancer pat | ients.     |
|--------------------|------------|------------------|-------------------|------------|
| Madical manufact   | 4          | <u>C</u> 1       | WHO/ISUP          | Lymphnode  |
| Medical record no. | Age        | Gleason score    | classification    | matastasis |
| 2005653            | 71         | 9                | 5                 | -          |
| 2003086            | 60         | 9                | 5                 | -          |
| 2002795            | 52         | 8                | 4                 | -          |
| 1943107            | 61         | 8                | 4                 | -          |
| 1942249            | 76         | 8                | 4                 | -          |
| 1941411            | 53         | 9                | 5                 | -          |
| 1939213            | 67         | 9                | 5                 | -          |
| 1937473            | 76         | 9                | 5                 | -          |
| 1937115            | 62         | 9                | 5                 | -          |
| 1936722            | 65         | 8                | 4                 | -          |
| 1935640            | 63         | 6                | 1                 | -          |
| 1934978            | 72         | 9                | 5                 | -          |
| 1934972            | 62         | 9                | 5                 | -          |
| 1933891            | 74         | 8                | 4                 | -          |
| 1933609            | 66         | 7                | 3                 | -          |
| 1933570            | 69         | 7                | 3                 | -          |
| 1932399            | 68         | 9                | 5                 | -          |
| 1932055            | 63         | 8                | 4                 | -          |
| 1930183            | 57         | 9                | 5                 | -          |
| 1929314            | 81         | 7                | 3                 | -          |
| 1929013            | 53         | 7                | 3                 | -          |
| 1928395            | 55         | 8                | 4                 | -          |
| 1927577            | 62         | 7                | 3                 | -          |
| 1924448            | 70         | 6                | 1                 | -          |
| 1923382            | 66         | 6                | 1                 | -          |

Table S5. Characteristics of human Prostate cancer patients.

|      |          |                           |                            | Size | Tm   |
|------|----------|---------------------------|----------------------------|------|------|
| Gene | Sites    | Forward                   | Reverse                    | (bp) | (°C) |
| USP4 | Island 1 | GATTTTAAAGTTTTTTTAGTGTCGG | CGAACATACTTCTTTATATTAACGAA | 152  | 56.5 |
| USP4 | Island 2 | TAATATTAGTTATTCGGGAGGTTGC | TTTAAAACGAAATTTCACTCTATCG  | 125  | 56.5 |
| USP4 | Island 3 | GTTAGGGCGATAGAGTGAAATTTC  | CATATTACTTATAAACGCGCATACG  | 169  | 55   |

### Table S6. Primers used for methylation-specific PCR.

|       | Ex     | pression levels | S      | <i>p</i> value       |                                  |  |
|-------|--------|-----------------|--------|----------------------|----------------------------------|--|
| Genes | Normal | N0              | N1     | Normal-vs-N0         | Normal-vs-N1                     |  |
| USP1  | 19.097 | 17.083          | 17.936 | 3.758200E-02         | 3.829400E-01                     |  |
| USP2  | 1.545  | 0.667           | 0.612  | 7.971200E-04         | 2.48399999999149E-05             |  |
| USP3  | 17.678 | 19.599          | 21.357 | 5.400900E-03         | 1.719780E-03                     |  |
| USP4  | 25.347 | 21.511          | 22.844 | 3.972600E-04         | 1.262170E-02                     |  |
| USP5  | 59.691 | 53.198          | 52.657 | 5.820300E-02         | 3.853800E-02                     |  |
| USP6  | 0.294  | 0.333           | 0.425  | 6.517400E-01         | 2.235700E-02                     |  |
| USP7  | 42.897 | 47.399          | 53.116 | 6.797100E-03         | 1.93029999995264E-06             |  |
| USP8  | 17.43  | 14.129          | 13.398 | 9.643400E-03         | 1.306350E-02                     |  |
| USP10 | 45.785 | 43.683          | 41.719 | 7.051800E-01         | 5.812800E-01                     |  |
| USP11 | 50.56  | 32.608          | 35.008 | 3.77200048973236E-10 | 3.28989999687224E-08             |  |
| USP12 | 8.442  | 5.844           | 6.215  | 1.570430E-04         | 1.197230E-03                     |  |
| USP13 | 4.366  | 5.053           | 5.733  | 3.719400E-01         | 1.212770E-01                     |  |
| USP14 | 28.747 | 27.471          | 26.107 | 3.104200E-01         | 4.406400E-01                     |  |
| USP15 | 13.363 | 11.535          | 13.129 | 7.735500E-03         | 4.865400E-01                     |  |
| USP16 | 33.515 | 32.095          | 31.404 | 9.122100E-02         | 2.533800E-01                     |  |
| USP18 | 8.814  | 10.098          | 10.285 | 3.81470000000439E-05 | 2.440999999999747E-0             |  |
| USP19 | 31.391 | 32.095          | 32.774 | 8.967600E-01         | 8.175600E-01                     |  |
| USP20 | 28.049 | 27.033          | 28.854 | 3.711700E-02         | 4.020700E-04                     |  |
| USP21 | 19.925 | 20.868          | 21.133 | 9.778400E-01         | 6.420200E-02                     |  |
| USP22 | 69.829 | 89.058          | 93.404 | 4.85649999992788E-07 | 4.42329999994495E-0              |  |
| USP24 | 9.078  | 9.429           | 9.614  | 3.534400E-01         | 5.075000E-01                     |  |
| USP25 | 14.543 | 11.502          | 11.586 | 1.5198899999902E-05  | 2.168100E-04                     |  |
| USP28 | 13.847 | 10.396          | 12.239 | 3.71829999999962E-05 | 3.127400E-01                     |  |
| USP30 | 11.186 | 10.145          | 10.438 | 8.824600E-03         | 5.881800E-01                     |  |
| USP31 | 5.058  | 3.992           | 4.478  | 2.174000E-02         | 6.630800E-01                     |  |
| USP32 | 9.208  | 8.375           | 9.763  | 2.836000E-01         | 2.592400E-01                     |  |
| USP33 | 38.25  | 41.1            | 39.874 | 1.184060E-02         | 1.728360E-01                     |  |
| USP34 | 56.891 | 52.26           | 54.557 | 1.437380E-01         | 8.857200E-01                     |  |
| USP35 | 2.603  | 2.355           | 2.792  | 8.641600E-02         | 1.926570E-01                     |  |
| USP36 | 21.229 | 22.993          | 25.261 | 1.841380E-01         | 9.188400E-04                     |  |
| USP37 | 4.208  | 3.388           | 3.561  | 1.132420E-02         | 2.622000E-01                     |  |
| USP38 | 11.026 | 10.621          | 10.559 | 4.891200E-01         | 8.117000E-01                     |  |
| USP39 | 39.83  | 35.638          | 38.784 | 5.097700E-02         | 1.979630E-01                     |  |
| USP40 | 34.711 | 43.115          | 41.726 | 4.021000E-03         | 3.033500E-02                     |  |
| USP42 | 4.549  | 5.624           | 6.435  | 1.664710E-03         | 5.69649999948574E-0 <sup>~</sup> |  |
| USP43 | 8.735  | 9.116           | 9.296  | 5.241800E-01         | 3.114600E-01                     |  |
| USP44 | 0.399  | 0.161           | 0.116  | 2.79230000010955E-07 | 2.1378000003569E-07              |  |
| USP45 | 5.468  | 5.651           | 5.581  | 6.535800E-02         | 2.239800E-02                     |  |
| USP46 | 6.001  | 4.872           | 4.636  | 1.365610E-02         | 2.320200E-02                     |  |
| USP47 | 31 498 | 28 808          | 28 114 | 1 756120E-02         | 8/158600E-01                     |  |

Table S7. Expression levels of 42 USP members based on the TCGA dataset

| USP48 | 23.304 | 22.778 | 24.227 | 8.427800E-01 | 2.741000E-01 |
|-------|--------|--------|--------|--------------|--------------|
| USP49 | 0.327  | 0.354  | 0.375  | 1.801020E-01 | 8.242400E-02 |



Figure S1. METTL3 but not METTL14, FTO, and ALKBH5 was markedly upregulated in the nuclei of prostate cacer (PCa) cells relative to RWPE-1 cells. Distribution of METTL3, METTL14, FTO, and ALKBH5 in cytoplasm and nuclear were examined by western blotting and quantitatively analyzed. Data were presented as means  $\pm$  SEM (n = 3) where relevant, \**p* < 0.05 vs. the RWPE-1 cells.



Figure S2. No significant difference of METTL14, FTO, or ALKBH5 expression is observed in human prostate cancer (PCa) tissues. A, Representative H&E staining results of human PCa tissue were shown. B-D, Immumohistochemical staining was performed to evaluate the expression of METTL14 (B), FTO (C), and ALKBH5 (D) in 25 paired human PCa tissues and their adjacent normal prostate tissues. E-G, The expression levels of target protein were analyzed by calculating the integrated optical density per area (IOD/area). Data were presented as means  $\pm$  SEM (n = 25). An "ns" denotes no statistically significant difference between the testing groups.



**Figure S3. METTL3 promotes prostate cancer (PCa) metastasis.** A-C, Two independent shRNA targeting *METTL3* (sh-*METTL3*#1 and sh-*METTL3*#2) were separately transfected into LNCaP cells. Protein levels of METTL3 were examined by western blotting and quantitatively analyzed (A, B), and cellular m<sup>6</sup>A levels were measured by ELISA-based m<sup>6</sup>A quantitative analyses (C). D-E, PC3 and DU145 cells were transfected with sh-*METTL3*#1, respectively. Western blotting was used to examine protein expression of other m<sup>6</sup>A-modification related proteins. F-G, The migration and invasion abilities of indicated LNCaP cells were evaluated. H-L, Overexpression constructs of *METTL3* (O/E-*METTL3*) were stably transfected into

LNCaP cells. Protein levels of METTL3 were examined by western blotting and quantitatively analyzed (**H**, **I**), and cellular m<sup>6</sup>A levels were measured by ELISA-based m<sup>6</sup>A quantitative analyses (**J**). The migration and invasion abilities of indicated cells were assessed (**K**, **L**). Data were presented as means  $\pm$  SEM where relevant, \**p* < 0.05 vs. the control cells.



Figure S4. METTL3 is required for migration and invasion of PCa cells. METTL3 knockout (KO) in PCa cells was accomplished by using the lentiviral-based CRISPR gene editing system (pLentiCRISPR v2), and then these cells were transfected with METTL3 expression plasmid. The migration and invasion abilities of indicated cells were evaluated. Data were presented as means  $\pm$  SEM (n=5), \*p < 0.05 vs. the control cells, # p < 0.05 vs. the *METTL3* KO cells.



Figure S5. Testosterone promotes expression of METTL3 in androgen-sensitive LNCaP cells. A-C, PC3, DU145, and LNCaP cells were treated with testosterone for 24 h, respectively. The cell lysates were subjected to western blotting to detect the expression of METTL3 (A, B), and cellular m<sup>6</sup>A levels were measured by ELISA-based m<sup>6</sup>A quantitative analyses (C). D-H, The migration and invasion abilities of indicated cells were evaluated. Representative images (D-G) and quantification (E, H) of the cell migration and invasion assay results were shown. Data were presented as means  $\pm$  SEM (n = 3) where relevant, \*p < 0.05 vs. the control cells.



Figure S6. ELAVL1 reduces *ARHGDIA* mRNA stability and prostate cancer (PCa) metastasis. A-E, DU145 cells were transfected with shRNA targeting *METTL3* (sh-*METTL3*#1). The *ARHGDIA* mRNA levels in indicated cells were determined by qRT-PCR assay (A). The *ARHGDIA* promoter constructs were transfected into PC3 cells, and luciferase activity was measured (B). DU145 cells were treated with actinomycin D (5  $\mu$ g/mL) for 2 h, followed by measurement of *ARHGDIA* mRNA

levels at indicated times (C). Protein levels of ELAVL1, NCL, and HNRNPD were examined by western blotting and quantitatively analyzed (D, E). Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.05 vs. the control cells. F-H, DU145 cells were transfected with sh-ELAVL1. Protein levels of ELAVL1 and ARHGDIA were examined by western blotting (F). The migration and invasion abilities of indicated cells were evaluated. Representative images (G) and quantification (H) of the cell migration and invasion assay results were shown. Data were presented as means  $\pm$ SEM (n = 5), \* p < 0.05 vs. the control cells. I-M, DU145 cells were transfected with sh-METTL3 before transfection with sh-ELAVL1. Protein levels of METTL3, ELAVL1, and ARHGDIA were examined by western blotting and quantitatively analyzed (I, J). The migration and invasion abilities of indicated cells were evaluated. Representative images (K) and quantification (L) of the cell migration and invasion assay results were shown. DU145 cells were treated with actinomycin D (5  $\mu$ g/mL) for 2 h, followed by measurement of ARHGDIA mRNA levels at indicated times (M). Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.05 vs. the control cells, # p <0.05 vs. the sh-METTL3-treated cells. N, ELAVL1 was immunoprecipitated, followed by qRT-PCR assay to evaluate the association of the ARHGDIA transcripts with ELAVL1 protein. Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.05.



**Figure S7. USP4 is an METTL3 downstream effector and mediates ELAVL1 protein stability.** DU145 cells were transfected with shRNA targeting *METTL3* (sh-*METTL3*#1). **A**, The *ELAVL1* mRNA levels in indicated cells were determined by qRT-PCR assay. **B-C**, The indicated DU145 cells were pretreated with cycloheximide (CHX, 10 µg/mL) for 3 h, followed by measurement of ELAVL1 protein levels at indicated times. **D-E**, DU145 cells were treated with CHX for 12 h. After washing out cycloheximide, cells were cultured for the indicated times. ELAVL1 synthesis levels were detected by western blotting and quantitatively analyzed. **F**, DU145 cells were treated with MG132 for 6 h. Lysates from the indicated cells were subjected to coimmunoprecipitation (Co-IP) assay with anti-ELAVL1 antibody, and the blots were then probed with anti-ubiquitin (UB) antibody for detection of ubiquitination of ELAVL1. **G-H**, Protein levels of USP4, USP8, USP11, USP25, and USP28 in indicated cells were examined by western blotting and quantitatively analyzed. Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.001 vs. the control cells. I-N, DU145 cells were transfected with sh-*METTL3* before transfection with sh-*ELAVL1*. Protein levels of METTL3, USP4, ELAVL1, and ARHGDIA were examined by western blotting and quantitatively analyzed (I, J). The migration and invasion abilities of indicated cells were evaluated (K). The indicated cells were pretreated with cycloheximide (CHX, 10 µg/mL) for 3 h, followed by measurement of ELAVL1 protein levels at indicated times (L, M). Lysates from the indicated cells were subjected to Co-IP with anti-ELAVL1, and the blots were probed with anti-USP4 antibody (N). O, DU145 cells were transfected with indicated plasmids, and ubiquitination of ELAVL1 was detected by Co-IP assay. Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.05 vs. the control cells, # p < 0.05 vs. the sh-*METTL3*-treated cells. WCL: whole cell lystate.



**Figure S8. Immunoprecipitated YTHDF2/HNRNPD/ELAVL1 protein levels are examined by western blotting**. PC3 cells were transfected with shRNA targeting *METTL3* (sh-*METTL3*#1). **A-C**, Lysates from the PC3 cells were subjected to immunoprecipitation with anti-YTHDF2/HNRNPD/ELAVL1, and the association of the *USP4* transcript with each protein was determined by qRT-PCR. Immunoprecipitated YTHDF2 (**A**), HNRNPD (**B**), or ELAVL1 (**C**) were examined by western blotting.



**Figure S9. METTL3-USP4-ELAVL1-ARHGDIA regulatory axis mediates prostate cancer (PCa) metastasis.** Overexpression constructs of *METTL3* (O/E-*METTL3*) were stably transfected into PC3 and DU145 cells, respectively. Protein levels of METTL3, USP4, ELAVL1, and ARHGDIA were determined by western blotting.



Figure S10. Knockdown of METTL3 exerted inhibitory effects on cell proliferation of PC3 cells. PC3 were transfected with shRNA targeting *METTL3* (sh-*METTL3*#1), respectively; cells were stained with PI and then analyzed by flow cytometry. Data were presented as means  $\pm$  SEM (n = 3), \* p < 0.05 vs. the control cells.



**Figure S11.** m<sup>6</sup>A methylation regulates in vivo cancer progression. PC3 cells were transfected with shRNA targeting *METTL3* (sh-*METTL3*) before transfection with sh-*USP4*. Athymic nude mice were subcutaneously injected into the right axillary region of each mouse with indicated cells. A-F, Eight weeks after cell injection, the xenograft tumor tissues obtained from athymic nude mice were subjected to immumohistochemical staining assay for evaluating METTL3 (A), m<sup>6</sup>A modification (B), USP4 (C), ELAVL1 (D), and ARHGDIA (E) levels; the m<sup>6</sup>A levels and the expression levels of the target proteins were analyzed by calculating the integrated optical density per area (F). Data were presented as means  $\pm$  SEM (n = 6), \* *p* < 0.05 vs. the control cells, # *p* < 0.05 vs. the sh-*METTL3*-treated cells.