Supplementary materials

	Control	Obesity
	(n=6)	(n=7)
Age (year)	47.33±12.19	43.00±11.52
Body weight (kg)	57.83±12.59	118.27±19.93***
Height (cm)	165.67±8.85	167.83±10.23
BMI (kg/m ²)	20.96±3.41	41.84±4.89***
Serum TG (mM)	1.03 ± 0.30	2.49±0.42***
Serum GH (ng/mL)	12.21±1.59	9.94±1.75*
Serum IGF-1 (ng/mL)	377.36±43.26	356.93±33.91
Serum Insulin (µU/mL)	6.23±0.97	15.79±1.77***

Table S1. Characteristics of human subjects

Data were expressed as mean \pm SD. *p < 0.05, ***p < 0.001, versus control group

(Student's *t-test*).

ID	Sense Sequence $(5' \rightarrow 3')$	Antisense Sequence $(5' \rightarrow 3')$
non-SRE	CTGACTATTTCGATCAGGCT	TTTCTTCTATGAGACGCACC
CCND1-SRE	CTCAACGAAGCCAATCAAGA	AATCGCTGCAAAGTTATTAGTCG
RBP4-SRE	TAAAAATGCATGGTAAACACTTGGC	TGGTGCTGTTTGGGTCAATATTTAT
non-HRE	GTTGGTTTCTAAGGCTGATG	AAGACCAGGCTAACCTTGA
VEGF-HRE	CGAGGGTTGGCGGCAGGAC	CAGTGGCGGGGGAGTGAGACG
TTR-HRE	AGAGTGAGTTCCAGGACAGC	TTACATAAGGATGTCCCCTGAT
SRE, STAT5 response elements; HRE, HIF1α response elements.		

Table S2. Primer sequences for ChIP

ID	Sense Sequence $(5' \rightarrow 3')$	Antisense Sequence $(5' \rightarrow 3')$
N.C.	UUCUCCGAACGUGUCACGU	ACGUGACACGUUCGGAGAA
siGHR	ACAUAAUCAGGGCAUUCUUUCCAtt	UGGAAAGAAUGCCCUGAUUAUGUtt
siSTAT5	UGAUGUUGAACAGUUUCUGUGCCtt	GGCACAGAAACUGUUCAACAUCAtt

Table S3. Primer sequences for siRNA

Gene	Sense Sequence $(5' \rightarrow 3')$	Antisense Sequence $(5' \rightarrow 3')$
mGHR	CTGCAAAGAATCAATCCAAGCC	CAGTTCAGGGGAACGACACTT
mG6Pase	CGACTCGCTATCTCCAAGTGA	GTTGAACCAGTCTCCGACCA
mPEPCK	CTGCATAACGGTCTGGACTTC	CAGCAACTGCCCGTACTCC
mPGC1a	CAATGAATGCAGCGGTCTTA	GTGTGAGGAGGGTCATCGTT
mPLIN5	CAGAGCAAACACCGTACCCAG	GGGATGGAAAGTAGGGCTAGG
mFoxO1	TCAAGGATAAGGGCGACAGC	TGTCCATGGACGCAGCTCTT
mPDK4	AGGGAGGTCGAGCTGTTCTC	GGAGTGTTCACTAAGCGGTCA
mGlut4	GTGACTGGAACACTGGTCCTA	CCAGCCACGTTGCATTGTAG
mATGL	CAACGCCACTCACATCTACGG	GGACACCTCAATAATGTTGGCAC
mHSL	TCCCTCAGTATCTAGGCCAGA	GGCTCATTTGGGAGACTTTGTTT
mRBP4	AGTCAAGGAGAACTTCGACAAGG	CAGAAAACTCAGCGATGATGTTG
mAngptl6	CTGGGCCGTCGTGTAGTAG	CAGTCCTCTAGGAGTATCAGCAG
mHepassocin	CCCTGTCAGGAACTTTTCATCC	CGGTAGTAAACACCGTTCAGGT
mAngptl8	CCAGCCTGTCGGAGATTCAG	GTGGCTCTGCTTATCAGCTCG
mInhbe	CTAACCAGCCGTCCCAGAATA	GTGCCCGGAAAAGAGGGAG
mEDA	GTGGACGGCACCTACTTCATC	CACCATCTTCACGGCGATTT
mFAM3C	GGACTCAGCCATTCGTTCTAC	GCTGCTCCACTAGCCATCTTAAA
mLECT2	CCCACAACAATCCTCATTTCAGC	ACACCTGGGTGATGCCTTTG
<i>m</i> Angptl4	CATCCTGGGACGAGATGAACT	TGACAAGCGTTACCACAGGC
mEGFR	GCATCATGGGAGAGAACAACA	CTGCCATTGAACGTACCCAGA
mIGF1	AAATCAGCAGCCTTCCAACTC	GCACTTCCTCTACTTGTGTTCTT
<i>m</i> Fetuin B	TGCCAAGGTTCTACGGTCCA	CAGCAGGGTTCTCATCTCCAG
mTSK	TGCAGGGCATCCTCCATCTA	GCCTGAAAACACCTCAGCTC
mApoJ	ACAATGGCATGGTCCTGGGAGAG	GTATGCTTCAGGCAGGGCTTGC
mHMGB1	GCTGACAAGGCTCGTTATGAA	CCTTTGATTTTGGGGGCGGTA
mSHBG	TCTGCTGTTGCTACTACTGATGC	GGGCCATTGCTGAGGTACTTA
mSerpinf1	GCCCTGGTGCTACTCCTCT	CGGATCTCAGGCGGTACAG
<i>m</i> Chemerin	GCTGATCTCCCTAGCCCTATG	CCAATCACACCACTAACCACTTC
mSMOC1	AATCCACAGGCTACTGTTGGT	CATCGGCCTCTATGCTCTTGG
mAdropin	CTCATCGCCATCGTCTGCAAT	GGGACTGGATTCCGAGAGAGA
mFST	TGCTGCTACTCTGCCAGTTC	GTGCTGCAACACTCTTCCTTG

Table S4. Primer sequences for qRT-PCR

mDPP4	ACCGTGGAAGGTTCTTCTGG	CACAAAGAGTAGGACTTGACCC
<i>m</i> Gpnmb	AGAAATGGAGCTTTGTCTACGTC	CTTCGAGATGGGAATGTATGCC
<i>m</i> Fetuin A	ATCCGCTCCACAAGGTACAG	GGTCCAAAGCATGGCAAGT
<i>m</i> Selenoprotein P	AGCCATTAAGATCGCTTACTGTG	GAGGGCTCCGCAGTTTTATTG
<i>m</i> GAPDH	ACATCATCCCTGCATCCACT	GTCCTCAGTGTAGCCCAAG
hGHR	AATGCAGATATTCAGAAAGGAT	ATAATTTCCAGAGTTTCGTTGT
hRBP4	GAGTTCTCCGTGGACGAGAC	TCCAGTGGTCATCATTTCCTTTC
<i>h</i> GAPDH	ATGGGGAAGGTGAAGGTCG	GGGGTCATTGATGGCAACAATA
18S	ACCGCACTAGGAATAATGGA	CAAATGCTTTCGCTCTGGTC

Figure S1. Fasting blood glucose are elevated in human and different mouse models of metabolic disorder

(A) Fasting blood glucose (FBG) levels examined after fasted for 12 h in control and obese humans (n=5-6). (B and C) Fasting blood glucose (FBG) levels examined after fasted for 12 h in *ob/ob* mice (B, n=6) or *db/db* mice (C, n=6), respectively. (D) FBG levels examined after fasted for 12 h in the mice fed with NCD or HFD for 12 weeks (n=6). Data are expressed as the mean \pm SD. **p* < 0.05; ***p* < 0.01; ****p* < 0.001 (Student's *t*-test).

Figure S2. Body weight and blood glucose levels are reduced in GHR-KO mice

(A and B) Representative photograph (A) and body weight (B, n=7-10) of 12-weekold male GHR^{-/-} (KO) mice, littermate wild-type (WT) mice used as the control group. (C and D) The RBG (C, n=7-10) and FBG (D, n=7-10) levels of GHR-WT or GHR-KO mice. Data are expressed as the mean \pm SD. ***p < 0.001 (Student's *t*-test).

Figure S3. Hepatic gluconeogenesis and insulin sensitivity are improved in the livers of GHR-KO mice

(A and B) Relative mRNA levels (A, n=7-10) and protein levels (B) of GHR in the livers of GHR-WT or GHR-KO mice. (C and D) The TG levels in the livers (C, n=7-9) and serum (D, n=7-10) of GHR-WT or GHR-KO mice. (E) Representative images of H&E staining (up) and Oil Red O staining (down) of liver sections from GHR-WT (left) or GHR-KO (right) mice. Scale bar, 500 μ m. (F) The serum insulin levels of GHR-WT or GHR-KO mice (n=7-9). (G) Western blots analysis of phosphorylated key molecules of insulin signaling pathway in the livers of GHR-WT or GHR-KO mice after insulin administration. (H and I): Relative mRNA levels (H, n=7-10) and protein levels (I) of gluconeogenesis-related genes or proteins in the livers of GHR-WT or GHR-WT or GHR-KO mice, respectively. (J) The amount of glycogen of GHR-WT or

GHR-KO mice normalized based on liver weight (n=6). (K) Representative images of PAS staining of liver sections from GHR-WT (left) or GHR-KO (right) mice. Scale bar, 500 μ m. Data are expressed as the mean \pm SD. *p < 0.05; **p < 0.01; ***p < 0.001 (Student's *t*-test).

Figure S4. Hepatic GHR overexpression induces skeletal muscle atrophy and white fat accumulation

(A and B) Relative mRNA levels (A, n=10) and protein levels (B) of GHR in the GAS of AAV-infected mice. (C) Representative GAS photograph of AAV-infected mice. (D and E) Relative mRNA levels (D, n=10) and protein levels (E) of GHR in the Ing of AAV-infected mice. (F) Representative Ing photograph of AAV-infected mice. Data are expressed as the mean \pm SD. ns, no significant (Student's *t*-test).

Figure S5. The level of RBP4 is reduced in the serum of GHR-KO mice

(A) The partial least squares-discriminant analysis (PLS-DA) of hepatokines were performed and the coefficients of them were shown as indicated. (B) Relative mRNA levels of RBP4 in the livers of GHR-WT or GHR-KO mice (n=7-10). (C) The concentrations of serum RBP4 of GHR-WT or GHR-KO mice (n=7-10). (D) Western blot and SDS-PAGE analysis were performed in the serum of GHR-WT or GHR-KO mice. (E) Elution profile of chylomicrons in the serum of GHR-WT (left) or GHR-KO (right) mice. Purified proteins were detected in column eluents by monitoring absorbance at 280 nm. (F) Western blots of RBP4 in serum of GHR-WT (up) or GHR-KO (down) mice, which were separated by gel filtration chromatography and collected according to ultraviolet absorption peak of fractions. (G) The concentrations of serum RBP4 of human (n=6-7). (H) Relative mRNA levels of RBP4 in the livers of

human (n=6-7). Data are expressed as the mean \pm SD. **p < 0.01, ***p < 0.001 (Student's *t*-test).

Figure S6. The inhibition of GHR induces depressed transcriptional activity of RBP4

(A) Western blots analysis of GHR, p-SAT5 and STAT5 in the livers of GHR-WT or GHR-KO mice. (B) Sequence alignment of RBP4 promoter from various species. (C) The HepG2 cells were cotransfected with siGHR and RBP4 SRE reporter plasmids. Luciferase activity was analyzed after transfection for 48 h (n=6). Data are expressed as the mean \pm SD. **p < 0.01 (Student's *t*-test).

Figure S7. The inhibition of HIF1a induces depressed RBP4 expression

(A) Western blots analysis of HIF1 α in the livers of GHT-WT or GHR-KO mice. (B) Elution profile of chylomicrons in the serum of GHR-WT (left) or GHR-KO (right) mice. Purified proteins were detected in column eluents by monitoring absorbance at 280 nm. (C) Western blots of RBP4 and TTR in serum of GHR-WT or GHR-KO mice, which were separated by gel filtration chromatography and collected according to ultraviolet absorption peak of fractions. (D) The HepG2 cells were cotransfected with HIF1 α -DM and TTR promoter reporter plasmids. Luciferase activity was analyzed after transfection for 48 h (n=6). Data are expressed as the mean ± SD. **p < 0.01 (Student's *t*-test).

Figure S8. Uncropped scans of the Western blots shown in Figures as indicated.

Fig. 1E GHR Fig. 1E β-actin Fig. 1H GHR Fig. 1H β-actin Fig. 1L GHR Fig. 1L β-actin

Fig. 3I p-IR

Fig. 3I IR

Fig. 3I p-Akt S473

Fig. 3I Akt

Fig. 3I p-FoxO1

Fig. 3I FoxO1

Fig. 3I p-GSK3β

Fig. 3I GSK3β

Fig. 3I β-actin

Fig. 3K PEPCK

Fig. 3K G6Pase

Fig. 3K β-actin

Fig. S3B GHR

Fig. S3B GAPDH

Fig. S3G p-IR

Fig. S3G IR

Fig. S3G p-Akt S473

Fig. S3G Akt

Fig. S3G p-FoxO1

Fig. S3G FoxO1

Fig. S3G p-GSK3β

Fig. S3G GSK3β

Fig. S3G GAPDH

Fig. S3I PEPCK

Fig. S3I GAPDH

Fig. S3I G6Pase

Fig. 4F FoxO1

Fig. 4F PDK4

Fig. 4F P-PDH

Fig. 4F PDH

Fig. 4F β-actin

Fig. 4L HSL

Fig. 4L ATGL


```
Fig. 4L β-actin
```


Fig. 4M p-IR

Fig. 4M β -actin

Fig. 4N p-IR

Fig. 4N IR

Fig. 4N p-Akt S473

Fig. 4N Akt

Fig. 4N p-FoxO1

Fig. 4N FoxO1

Fig. 4N p-GSK3β

Fig. 4N GSK3β

Fig. 4N β-actin

Fig. S4B GHR

Fig. S4B GAPDH

Fig. S4E GHR

Fig. S4E GAPDH

Fig. 5D RBP4

Fig. 5D CBB Staining

Fig. 5F AAV-GFP

Fig. 5F AAV-GHR

Fig. S5D RBP4

Fig. S5D CBB Staining

Fig. S5F WT

Fig. S5F KO

Fig. 6A GHR

Fig. 6A p-STAT5

Fig. 6A STAT5

Fig. 6A β-actin

Fig. 6E p-STAT5

Fig. 6E STAT5

Fig. 6E β-actin

Fig. 6C GHR

Fig. 6C p-STAT5

Fig. 6C STAT5

Fig. 6C β-actin

Fig. S6A GHR

Fig. S6A p-STAT5

Fig. S6A STAT5

Fig. S6A GAPDH

Fig. 7A GHR

Fig. 7A p-STAT5

Fig. 7A STAT5

Fig. 7A β-actin

Fig. 7E AAV-GFP-RBP4

Fig. 7E AAV-GHR-RBP4

Fig. 7E AAV-GFP-TTR

Fig. 7E AAV-GHR-TTR

Fig. 7F HIF1 α

Fig. 7F β-actin

Fig. 7H GHR

Fig. 7H TTR

Fig. 7H HIF1 α

