Supplemental Information

Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations

Jyotirmaya Behera¹, Jessica Ison¹, Michael J. Voor^{2, 3}, Neetu Tyagi^{1*}

¹Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202 USA

²Department of Orthopaedic Surgery, School of Medicine, University of Louisville, Louisville, KY 40202 USA

³Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40202 USA

Running title: Gut Microbiota Manipulation Promotes Bone Formation in Obese Mice via Histone Methylations

*Address for Correspondence:

Neetu Tyagi, Ph.D., FAPS Associate Professor Bone Biology Laboratory Department of Physiology Health Sciences Centre, A-1201, University of Louisville Louisville, KY 40202 Phone: 502-852-4145 Fax: 502-852-6239 E-mail: n0tyag01@louisville.edu

Supplementary Figure.

Supplementary Figure S1

Supplementary Figure S1. Effect of probiotics or IPA treatment on endotoxin and inflammatory cytokine level in HFD mice. **(A)** The plasma endotoxin level was detected using the Limulus Amebocyte Lysate kit. *p < 0.0001 compared with the WT control, #p < 0.0001 compared with the HFD, by one-way ANOVA followed by a Tukey's multiple comparisons tests. **(B)** Plasma IL-1 β levels were measured using ELISA. *p < 0.0001 compared with the WT control, #p < 0.0001 (HFD+IPA), #p < 0.001 (HFD+Pro) compared with the HFD, by one-way ANOVA followed by a Tukey's multiple comparisons test. **(C)** Plasma TNF- α level was measured using ELISA. *p < 0.0001 compared with the HFD, #p < 0.0318 (HFD+Pro) compared with the HFD. **(D-F)** qPCR analysis of mRNA transcript expression of tight junctions' proteins (ZO-1, Occludin, and Claudin-5) in the experimental group. *p < 0.0001 compared with the WT control, #p < 0.0001 compared with the HFD for fig. S1D-F, by one-way ANOVA, followed by a Tukey's multiple comparisons test. All data are expressed as mean± s.e.m. n = 5-6 mice per group. The error bars represent the s.e.m.

Supplementary Figure S2. The prediction of the miR-22 binding site and its expression. (a) Schematic representation of the miR-22-3p binding sites in histone demethylase, Kdm6b/Jmjd3. (b) miR-22-3p expression in osteoblast. *p < 0.0003 compared with the WT control and ^{n.s}p < 0.1458 compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. n = 6 mice per group. All data are expressed as mean± s.e.m. The error bars represent the s.e.m.

Supplementary Figure S3. Effect of probiotics on osteoblast and glycolytic response. (a) 2-NBDG uptake in cultured osteoblast upon JMJD3/Kdm6b overexpression (normalized for DNA content of the well, n = 6). *p < 0.0001 compared with the WT control, #p< 0.0001 compared with the HFD. (b) mRNA transcript expression of Glut 1, 3, 4 expression in femoral tissue of various experimental conditions. *p < 0.0001 compared with the WT control and #p < 0.0109 (HFD+Pro), #p < 0.0001 (Tfam-Tg+HFD) compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. N.s denotes not significant. (c-d) Glucose and lactate level was estimated in osteoblast lysate and culture supernatants, respectively. *p < 0.0001 compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. n = 6 mice per group. (e) mRNA transcript expression of glycolytic enzymes (Hk II, Pgk 1, Pdk 1) by qPCR assay. *p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. n = 6 mice per group. (e) mRNA transcript expression of glycolytic enzymes (Hk II, Pgk 1, Pdk 1) by qPCR assay. *p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by one-way ANOVA followed by a multiple comparisons test. n = 6 mice per group.

Tukey's multiple comparisons test. **(f)** TCA cycle enzyme Cs and Idh2 mRNA transcript expression were analyzed by the qPCR assay. *p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. All data are expressed as mean± s.e.m. n = 3 mice per group. The error bars represent the s.e.m.

Supplementary Figure S4

Supplementary Figure S4. Tfam overexpression or probiotics supplementation prevents HFD-induced obesity and impaired glucose tolerance. (a) Photograph of representative mice of various experimental conditions. (b) Bodyweight monitored throughout the treatments (starting from 0 wks to 12 wks). *p < 0.001 compared with the WT control and #p < 0.001 compared with the HFD by two-way ANOVA followed by a Tukey's multiple comparisons test. (c) Average daily food intake by mice during 8 weeks of treatments. *p < 0.002 compared with

the WT control and #p < 0.0001 (HFD+IPA or HFD+Pro), #p < 0.0041 (Tfam-Tg+HFD) compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. (d-e) Glucose tolerance test (GTT) after 8 weeks of diet or probiotics or IPA supplementation by using an i.p. the dose of 1 g of glucose per kg of body weight. *p < 0.01 compared with the WT control and #p < 0.01 compared with the HFD by two-way ANOVA followed by a Tukey's multiple comparisons test. (f) Plasma insulin level was measured in the experimental mice. *p < 0.0001 compared with the WT control and #p < 0.0001 (Tfam-Tg+HFD), #p = 0.0004 (HFD+IPA) compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. All data are expressed as mean± s.e.m. The error bars represent the s.e.m.

Supplementary Figure S5

Supplementary Figure S5. Restoring the osteoblast mineralization using Tfam overexpression. (a) Effect of TIr4 knockout and miR-138 inhibition (anti-miR-138) on Osteoblast mineralization, were performed using alizarin red assay (ARS). *p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by two-way ANOVA followed by a Tukey's multiple comparisons test. All data are expressed as mean± s.e.m. (b) Effect of JMJD3 and Tfam overexpression on Osteoblast mineralization was demonstrated using ARS assay. *p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by one-way ANOVA followed by a Tukey's multiple compared with the WT control and #p < 0.0001 compared with the WT control and #p < 0.0001 compared with the WT control and #p < 0.0001 compared with the WT control and #p < 0.0001 compared with the WT control and #p < 0.0001 compared with the HFD by one-way ANOVA followed by a Tukey's multiple comparisons test. All data are expressed as mean± s.e.m. The error bars represent the s.e.m.

Gene Name	Primer sequence 5'-3'				
Runx2	FP: TTTAGGGCGCATTCCTCATC				
	RP: TGTCCTTGTGGATTGAAAGGAC				
Bglap	FP:GCGCTCTGTCTCTCTGACCT				
	RP: ACCTTATTGCCCTCCTGCTT				
Alpl	FP: CCAGAAAGACACCTTGACTGTGG				
	RP: TCTTGTCCGTGTCGCTCACCAT				
Col1a1	FP: CCTCAGGGTATTGCTGGACAAC				
	RP: CAGAAGGACCTTGTTTGCCAGG				
Spp1	FP: GACAACAACGGAAAGGGCAG				
	RP: GATCGGCACTCTCCTGGCT				
Ctsb	FP:GGATGAAATCTCTCGGCGTTT				
	RP:GGTTATGGGCAGAGATTTGCTT				
Nfatc1	FP:GAGACAGACATCCGGAGGAAGA				
	RP:GTGGGATGTGAACACGGAAGA				
RANK	FP:ACTGAGGAGGCCACCCAAGGA				
	RP:TGAAGAGGACCAGAACGATGAG				
Hk 2	FP: TGATCGCCTGCTTATTCACGG				
	RP: AACCGCCTAGAAATCTCCAGA				
Pdk1	FP: CCCCGATTCAGGTTCACG				
	RP: CCCGGTCACTCATCTTCACA				
Pgk1	FP: GGAGCGGGTCGTGATGA				
	RP: GCCTTGATCCTTTGGTTGTTTG				
Glut 4	FP: CCAGCCACGTTGCATTGTA				
	RP: ACACTGGTCCTAGCTGTATTCT				
Glut 3	FP:TGGTAGCTCAGATCTTTGGTTTGG				
	RP:GATCTCTGTAGCTTGGTCTTCCTC				
Glut 1	FP: GGGCATGTGCTTCCAGTATGT				
	RP: ACGAGGAGCACCGTGAAGAT				
mtTFA	FP: GGAGGCAAAGGATGATTCGG				
	RP: TCGTCCAACTTCAGCCATCT				
Sdha	FP: GAGATACGCACCTGTTGCCAAG				
	RP: GGTAGACGTGATCTTTCTCAGGG				
GAPDH	FP: TGCACCACCAACTGCTTGC				
	RP: GGCATGGACTGTAGTCAGAG				
miRNA-138-3p	FP: AGCTGGTGTTGTGAATCAGGCCG				
	RP: GCCTGATTCACAACACCAGCTTT				
U6snRNA	FP:CTCGCTTCGGCAGCACA				
	RP:AACGCTTCACGAATTTGCGT				
ChIP Primers					
mtTFA	FP:CAGTCCATAGGCACCGTATTG				
	RP:CAAGGCAGAAGGAGAGCG				

Supplementary Table S1: Sequences of primers used for real-time quantitative PCR

Footnotes: Runt-related transcription factor 2 (RUNX2), bone gamma-carboxyglutamic acidcontaining protein (Bglap), Mitochondrial transcription factor A (mtTFA or Tfam).

|--|

Antibody	Clone	Dilution	Source	Cat. No
Western blot				
Rabbit Anti-RUNX2 antibody	polyclonal	1:250	Abcam	ab23981
Rabbit Anti-Osteocalcin antibody	polyclonal	1:250	Abcam	ab93876
Rabbit anti-Kdm6b/Jmjd3 Antibody	polyclonal	1:500	Abcam	ab169197
Rabbit anti-Tfam Antibody	polyclonal	1:250	Abcam	ab131607
Mouse anti-GAPDH Antibody	Monoclonal, clone 6C5	1:500	Millipore	CB1001
Mouse anti-H3K27me3 Antibody	Monoclonal, ChIP grade	1:250	Abcam	ab6002
Rabbit anti-H3 Antibody	polyclonal	1:500	Abcam	ab18521
Flow cytometry and immunofluorescence	Indicator	Dilution	Source	Cat. No
MitoTracker™ Green FM	Mitochondria imaging	100 nM	Invitrogen Molecular Probes	M7514