Supplementary Information

Aberrant activation of the CD45-Wnt signaling axis promotes stemness and therapy resistance in colorectal cancer cells

So-Yeon Park^{1,2}, Ji-Young Kim¹, Gyu-Beom Jang¹, Jang-Hyun Choi¹, Jee-Heun Kim¹, Choong-Jae Lee¹, Sunjae Lee¹, Jeong-Heum Baek³, Kwan-Kyu Park⁴, Jin-Man Kim⁵, Hee Jin Chang⁶, and Jeong-Seok Nam^{1,2#}

¹School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

²Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

³Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon 21999, Republic of Korea

⁴Department of Pathology, College of Medicine, Catholic University of Daegu, College of Medicine,

Daegu 38430, Republic of Korea

⁵Department of Pathology, College of Medicine, Chungnam National University, Daejeon 34134,

Republic of Korea

⁶Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea

[#]Corresponding Author: Jeong-Seok Nam

School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

E-mail: namje@gist.ac.kr

Phone: +82-62-715-2893

Fax: +82-62-715-2484

Supplementary figures

Scale bar: 50 µm

4

C P#20052914

SSC

Cancerous	C 3			
Normal				

Scale bar: 100 µm

CD4

Jurkat P# 6441493 P# 21257113 P# 31784993 P# 14005083 0.03 0.04 % 0.14 % 0.08 % 0.08 % Ab-stained EpCAM 0.28 % 0.00 % 0.00 % 0.00 % 0.00 % 0.02 % Iso Ab control 0.01 % 0.11 % 0.14 % 0.01 % 0.10 % 0.02 % 0.02 % 0.12 % 0.00 %

CD25

Fig. S1

kDa

- 250

- 130

— 15 — 55 — 35

Jurkat: positive control for CD45 immortalized line of human T lymphocyte cells CCD-18Co: normal colon cell line

Figure S1 (related to Figure 1).

(A) Immunohistological validation of CRC cells isolated from primary tumors from patients with CRC (P#31784993, P#14005083, P#6441493, P#21257113, P#22611293, and P#31815783). CRC epithelial cells were isolated using a Tumor Cell Isolation Kit (#130-108-339, Miltenyl Biotec, USA) with modifications. Briefly, we isolated epithelial CRC cells through positive selection of EpCAM+ cells using an anti-EpCAM antibody (#130-111-000, Miltenyl Biotec) and a magnetic separation column (#130-090-544, Miltenyl Biotec). HCT116 cells were used as a positive control for the CRC epithelial phenotype (EpCAM+, Vimentin-, CK7-), and MRC5 cells were used as a positive control for the fibroblast phenotype (EpCAM- Vimentin+, CK7-). (B) The scRNA-seq data of CRC tumors were obtained from the GEO web server (GSE81861). Comparison of multiple hematopoietic lineage marker expressions between in CD45-expressing epithelial cancer cells and non-expressing counterparts. (C) Triple-staining FACS analyses were performed in CRC tumor tissues as follows: (i) CD3, EpCAM, and CD45; (ii) CD4, EpCAM, and CD45; and (iii) CD8, EpCAM, and CD45. The dot blot shows the percentage of the indicated cellular population in tissues from patients with CRC (P#20051910, P#20051914, P#20052910, and P#20052914). (D) FACS plots show higher CD45 protein levels in CRC epithelial cells than in matched normal colorectal epithelial cells. Primary cells were isolated independently from normal or cancerous tissues obtained from patients with CRC (P#31325173, P#31701313, P#27423233). The total isolated cells were subjected to FACS analysis. Single cells were selected through sequential gating strategies, including scatter plots, SSC gates, and FSC gates. Then, live cells were gated through PI staining. These live cells were stained with antibodies against EpCAM (#53-8326-41, Thermo Fisher Scientific, NJ, USA) and CD45 (#555485, BD Pharmingen, CA, USA). EpCAM and CD45 expression patterns were plotted and

compared to those of cells stained with isotype control antibodies. (E) The CD45 protein expression pattern in CRC epithelial cells (EpCAM+) was visualized using immunofluorescence staining of formalin-fixed paraffin-embedded primary tumors from patients with CRC. Red, green, and blue indicate CD45 (#8216, Abcam, MA, USA), EpCAM (#93790, Cell Signaling Technology, MA, USA) and nuclei, respectively. Membrane expression of CD45 was detected in some CRC epithelial cells and displayed as a yellow signal in the merged images. H&E counterstaining was used to distinguish normal and tumor regions. (F) Primary cells were isolated from the normal intestine of wild-type mice or from adenomatous intestinal polyps of $APC^{Min/+}$ mice (n = 4 animals/group). Singe cells were gated as described in (D). Live cells were gated through Annexin V staining. Then, these live cells were stained with antibodies against EpCAM (#347198, BD Pharmingen) and CD45 (#555485, BD Pharmingen). (G) The FACS plot shows the CD45 and EpCAM expression patterns in CRC epithelial cells isolated from patients' primary tumors using the Jurkat cell line, which is a positive control for CD45 expression but lacks EpCAM expression (n = 3/group). All tested patient-derived CRC cells (P#6441493, P#21257113, P#31784993, and P#14005083) expressed EpCAM, suggesting their epithelial origin, and included the CD45-expressing population. Moreover, FACS analyses of the colocalization of EpCAM with other leukocyte markers confirmed the absence of other leukocyte markers (CD3, CD4, CD8, CD25, CD56, and CD16) in all patient-derived CRC cells, suggesting that the CD45-expressing population identified among patient-derived CRC cells comprises epithelial cells distinct from hematopoietic lineage cells. (H) RT-qPCR analysis of CD45 (PTPRC) expression in various CRC cells. The bar graph shows the PTPRC transcript level as the fold change compared with that of CCD-18Co, a normal colonic epithelial cell line. CD45 protein levels were determined in the same cell lysate samples used in Figure 1G by

performing a Western blot analysis with different anti-CD45 antibodies (#ab8216). β -Actin served as a loading control. (I) Cells were treated with 5-fluorouracil (5-FU, 1 μ M) and radiation (4 Gy). After 48 h, the surviving cells were subjected to Western blot analysis to determine CD45 protein levels (#10558, Abcam). γ H2AX (#11175, Abcam) was used as a marker for DNA damage induced by 5-FU or radiation. Statistical analyses comparing two groups were performed using Student's t-test. *** indicates p-values <0.001. Α

GSE39582 100 Recurrence-free survival 50

0 0 24 48 72 96

PTPRC-high (n=44) PTPRC-low (n=132)

Follow-up in month

1.00 1.111

p-value= 0.015

120 144

1.1.11 _

Clinicopathological characteristics of patients in the retrospective study

Residual tumor size		
mean	1.90±1.62 cm (range 0	-5.0 cm)
Tumor grade	Lo	w grade
Depth of tumor invasion (yp	DT)	
0	15	34.1%
1	0	8.0%
2	8	18.2%
3	20	45.5%
4	1	2.3%
Lymph node metastasis (yp	N)	
0	35	79.5%
1	7	15.9%
2	2	4.5%
Post-therapeutic primary tu	mor stage (yStage)	
0	12	27.3%
1	9	20.5%
I	14	31.8%
III	5	11.4%
IV	4	9.1%
Post-therapeutic primary tu	mor regression grade (TRG)*
TRG0	12	27.3%
TRG1	2	4.5%
TRG2	23	52.3%
TRG3	7	15.9%

CD45-expressing CRC epithelial cells

Mean ratio 0.16096±0.24376 (range 0.0009-0.872804)

Recurrence		
absent	31	70.5%
present	13	29.5%
Survival		
alive	32	72.7%
dead	12	27.3%

Follow-up duration

100±66.5 mos (range 5-237 mos) mean

*AJCC tumor regression grade (TRG)

-TRG0: complete response; no viable cancer cells -TRG1: near-complete response; single cells or rare small groups of cancer cells -TRG2: partial response; residual cancer with evident tumor regression -TRG3: poor response; extensive residual cancer

Figure S2 (related to Figure 2).

(A) Kaplan-Meier plots show the recurrence-free survival of 176 patients with colon cancer (GSE39582), according to the *PTPRC* expression levels in primary tumor tissues (p-value = 0.015, upper panel). RNAsequencing data of colon cancer patients were obtained from public database, R2: Genomic analysis and visualization platform (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi). (B) The clinicopathological characteristics of the patients (n = 44) in the retrospective study are summarized. CD45 expression in CRC cells was measured by performing immunofluorescence staining (#8216, Abcam) of pretreatment biopsy cancer tissues from patients with CRC who had received preoperative chemoradiotherapy (CRT). The results were scored based on the ratio of the colocalized area (EpCAM+CD45+) to the entire area of epithelial cancer cells (EpCAM+, #93790, Cell Signaling Technology) using image analysis software (Image-Pro Premier 9.0, Media Cybernetics, MD, USA). Three to five spots per sample were selected randomly and subjected to image analysis, and the mean value was calculated for each sample. The surgically resected tumors were pathologically diagnosed according to the World Health Organization classification scheme and classified according to the American Journal of Critical Care (AJCC) TNM system. Therapeutic responses to preoperative CRT were estimated by two pathologists according to the AJCC tumor regression grade (TRG).

14

p-value

p<0.001

p<0.001

т

U

kDa

100

- 70 - 55

35

s

HCT116											
NQ-301 (0.5 µM)		-			+						
Radiation	-	-	+	-	-	+					
5-Fluorouracil	-	+	-	-	+	-	_ kDa				
PARP	-	-					- 100				
cleaved-PARP		10000	-	-	-	-	- 70				
β-actin	-	-	-	~	-	-	- 55 - 35				

Figure S3 (related to Figure 3).

(A) Patient-derived primary CRC cells were separated into two groups according to the CD45 expression level (CD45^{high} and CD45^{low}). The IC₅₀ values of 5-FU were determined using an MTT assay (n = 5/group) and calculated using GraphPad Prism 5 software (GraphPad Software, Inc., CA, USA). (B) Radiation sensitivity was measured using traditional methods, in which the survival potential of irradiated cells was estimated with clonogenic assays, and the radiation biological parameters and statistical significance were then analyzed using a linear-quadratic model (n = 3/group). The parameters and statistical values were calculated using GraphPad Prism 5 software. (C) The extent of proliferating cells at 24 h after 5-FU or radiation treatment was measured by using Bromodeoxyuridine (BrdU) incorporation assay. (D) Reduction in the therapy resistance phenotype in CD45^{high} cells (P#6441493) by interference with the DNA damage response via treatment with a CHK1 inhibitor (n = 5/group, left panel). The IC₅₀ values of 5-FU were determined as described in (A) in the presence or absence of the CHK1 inhibitor (0.3 µM). Relative sensitivities of cells to radiation in the presence of absence of the CHK1 inhibitor were determined as described in (B). (E) PTPRC mRNA levels were determined using RT-qPCR after 5-FU or radiation treatment with or without CHK1 the inhibitor (0.3 μ M, n = 3/group). (F) CD45 knockdown experiments were performed with siRNAs targeting the *PTPRC* gene (siPTPRC). At 24 h after siRNA transfection, total RNA was extracted and subjected to RTqPCR. Significant reductions in PTPRC mRNA levels were determined using one-way ANOVA with Dunnett's multiple comparison tests (GraphPad Prism 5, n = 3/group). (G) Decreases in CD45 protein levels were confirmed using Western blotting. (H) FACS analysis validated the reductions in CD45 protein levels after CD45 knockdown (n = 3/group). Statistical significance was determined as described in (F). (I) The most potent siPTPRC sequence (#3) was cloned into

the pLKO-puro lentiviral vector to generate an shRNA plasmid (shPTPRC). The shPTPRC vector was transfected into the HCT116 cell line, and stable cells were generated by antibiotic selection. CD45 knockdown efficiency was confirmed using RT-qPCR and Western blot analyses (n = 3/group). (J) HCT116 and (K) DLD1 cells overexpressing (OE) CD45 were generated via lentiviral vector transfection (LV277909, abmGood, Vancouver, Canada). After antibiotic selection, CD45 overexpression was confirmed using RT-qPCR and Western blot analyses (n = 3/group). (L) Western blot analyses were performed immediately after or 24 h after radiation exposure using lysates from control, CD45-OE, and CD45-depleted HCT116 cells. DNA damage was analyzed by estimating the γ H2AX levels in cell lysates. (M) Cell proliferation was compared between control and CD45-depleted CRC cells. Cells were transfected with the control (siCTRL) or siPTPRC and incubated with 10% fetal bovine serum (FBS) or harsh serum-limited media (0.1% FBS). Numbers of viable cells were counted every 24 h for 4 days (n = 3/group). (N) FACS analyses show the Annexin V+ apoptotic cells among siCTRL- or siPTPRCtransfected CRC cells at 96 h after serum deprivation (n = 3/group). (O) CRC cells were transfected with siCTRL or siPTPRC and then cultured under ultralow attachment conditions for 5 days. Surviving cells proliferated and formed spheres. The relative cell viability was determined using the resazurin-based Cell Titer Blue assay (Promega, WI, USA, n = 5/group). (P and Q) Relative sensitivity to 5-FU and radiation was compared between in NQ-301-treaed and control (DMSO) CRC cells (0.5 µM, 48 h). (P) The IC₅₀ values of 5-FU were determined using an MTT assay as described in (A, n = 5/group). (Q) After DMSO or NQO-301 treatment (0.5 μ M, 48 h), radiation sensitivity was measured as described in (B, n = 3/group). (R-U) The percentage of apoptotic cells at 24 h after 5-FU or radiation treatment was visualized (R and S) by performing Annexin V staining (n = 3/group) or (T and U) by visualizing the level of cleaved

PARP with or without NQ-301 treatment (0.5 μ M, 24 h). Statistical analyses were performed using one-way ANOVA followed by Dunnett's multiple comparison tests for comparisons to the control group or Student's t-test for comparisons between two groups. ** and *** indicate p<0.01 and p<0.001, respectively.

(Determined during monitoring period)

D

			Frequency	of Tumor formation	on (P#6441493)				
Cell no. of	1×10 ⁵		5X10 ⁴		1X1	04	5X1	p-value	
inoculation	CD45 ^{high} cells	CD45 ^{low} cells							
Day 7	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	-
Day 14	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	-
Day 16	75.2 % (6 of 8)	50.0 % (4 of 8)	62.5 % (5 of 8)	25.0 % (2 of 8)	25.0 % (2 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	2.97X10 ⁻²
Day 18	87.5 % (7 of 8)	50.0 % (4 of 8)	87.5 % (7 of 8)	37.5 % (3 of 8)	37.5 % (3 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	1.51X10 ⁻³
Day 20	100 % (8 of 8)	75.0 % (6 of 8)	100 % (8 of 8)	37.5 % (3 of 8)	50.0 % (4 of 8)	12.5 % (1 of 8)	25.0 % (2 of 8)	0 % (0 of 8)	1.38X10 ⁻²
Day 22	100 % (8 of 8)	87.5 % (7 of 8)	100 % (8 of 8)	37.5 % (3 of 8)	62.5 % (5 of 8)	12.5 % (1 of 8)	37.5 % (3 of 8)	0 % (0 of 8)	2.95X10 ⁻⁵
Day 24	100 % (8 of 8)	100 % (8 of 8)	100 % (8 of 8)	37.5 % (3 of 8)	75.0 % (6 of 8)	25.0 % (2 of 8)	50.0 % (4 of 8)	12.5 % (1 of 8)	2.62X10 ⁻⁶
Day 26	100 % (8 of 8)	100 % (8 of 8)	100 % (8 of 8)	62.5 % (5 of 8)	75.0 % (6 of 8)	25.0 % (2 of 8)	50.0 % (4 of 8)	12.5 % (1 of 8)	5.37X10 ⁻⁵
Day 28	100 % (8 of 8)	100 % (8 of 8)	100 % (8 of 8)	75.0 % (6 of 8)	75.0 % (6 of 8)	37.5 % (3 of 8)	62.5 % (5 of 8)	12.5 % (1 of 8)	5.88X10 ⁻⁴

F	i	a		S	4
-		_	-	_	

_	
_	

			Frequency	of Tumor formation	n (HCT116)				
Cell no. of	1X10 ⁶		1X	1X10 ⁵		10 ⁴	1X1	<i>p</i> -value	
inoculation	CD45 ^{high} cells	CD45 ^{low} cells							
Day 7	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	-
Day 11	75.0 % (6 of 8)	50.0 % (4 of 8)	37.5 % (3 of 8)	25.0 % (2 of 8)	25.0 % (2 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	7.20X10 ⁻²
Day 14	100.0 % (8 of 8)	62.5 % (5 of 8)	62.5 % (5 of 8)	37.5 % (3 of 8)	50.0 % (4 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	1.10X10 ⁻⁵
Day 18	100.0 % (8 of 8)	75.0 % (6 of 8)	75.0 % (6 of 8)	50.0 % (4 of 8)	62.5 % (5 of 8)	25.0 % (2 of 8)	0 % (0 of 8)	0 % (0 of 8)	8.30X10 ⁻⁶
Day 21	100 % (8 of 8)	100 % (8 of 8)	100.0 % (8 of 8)	75.0 % (6 of 8)	75.0 % (6 of 8)	25.0 % (3 of 8)	0 % (0 of 8)	0 % (0 of 8)	2.06X10 ⁻³
Day 28	100 % (8 of 8)	100 % (8 of 8)	100.0 % (8 of 8)	87.5 % (7 of 8)	75.0 % (6 of 8)	37.5 % (3 of 8)	0 % (0 of 8)	0 % (0 of 8)	1.29X10 ⁻²

(Determined during monitoring period)

Scale bar : 50 µm

Scale bar : 50 µm

Figure S4 (related to Figure 4).

(A) RT-qPCR shows an increase in the expression of CSC surface markers (CD44v6, LGR5 and CD133) and stem cell-related transcription factors (POU5F1 and SOX2) and a decrease in the expression of differentiation markers (ANPEP, ALPI, and FABP1) in CRC spheres, suggesting global trends of CSC enrichment in spheres compared with whole monolayer bulk cells (n = 3/group). (B) Immunofluorescence staining for CD45 in CSC-enriched spheres and in bulk cancer cells. (C) FACS images show the colocalization of CD45 with a panel of stem cell or CSC markers (LGR5, CD133, CD44, and CD44v6) in CRC cells. CD45^{high} cells (%) among the indicated marker-positive or marker-negative populations are presented in Figure 4B. (D and E) The incidence of tumor-bearing mice was monitored for 28 days after the inoculation of (D) patient-derived CRC cells (P#6441493) or (E) HCT116 cells. The definitive tumor volume was determined by necropsy on day 28. Statistical significance of differences between two groups was determined using Student's t-test. *, ** and *** indicate p<0.05, p<0.01 and p<0.001, respectively. (F) Sphere-forming potentials were compared between CD45^{high} and CD45^{low} cells isolated from HCT116 spheres generated from CD45^{high} cells, as shown in Figure 4H. Cells were seeded at varying cell densities and incubated under sphere culture conditions for 14 days, and then the number and size of spheres were counted (n = 6/group). (G) FACS plots show the increase in the CD45^{high} population under sphere culture conditions from approximately 6% to 30%. HCT116 spheres were dissociated into single cells and divided into two groups according to the CD45 expression levels (CD45^{high} and CD45^{low} cells). These cells were seeded and incubated under sphere culture conditions for 14 days to generate spheres (the first-passage spheres). These first-passage spheres were dissociated into single cells and subjected to FACS to analyze CD45 expression levels and then proceeded to a second-passage sphere formation assay.

The first-passage spheres from the CD45^{high} population consisted of both CD45^{high} and CD45^{low} populations with a ratio similar to that of the initial CD45^{high} and CD45^{low} populations (approximately 30%), while the spheres generated from the CD45^{low} population consisted of only a CD45^{low} population. Consistently, in the second-passage spheres, the generation of CD45^{low} cells from a CD45^{high} population was confirmed with a ratio similar to that of the initial CD45^{high} and CD45^{low} cells. (H) Immunohistological staining of CD45 expression levels in HCT116 xenograft tissues generated from CD45^{high} and CD45^{low} populations (Figure 4E). In this experiment, carcinoembryonic antigen (CEA), a CRC marker, was used to identify CRC cells in tissues. EpCAM was used to validate their epithelial origin. (I) *In vitro* limiting dilution assays were performed to compare the sphere-forming potential between NQ-301-treated (0.5 μ M, 14 days) or control (DMSO) CRC cells (n = 12/group). Statistical analyses comparing differences between two groups were performed using Student's t-test. *, ** and *** indicate p-values <0.05, <0.01 and <0.001, respectively.

Secondary tumor incidence

			Frequency	of Tumor formation	n (HCT116)				
Cell no. of	5X	10 ⁵ 1X10 ⁵		10 ⁵	1X	10 ⁴	1X10	<i>p</i> -value	
inoculation	shCTRL	shPTPRC	shCTRL	shPTPRC	shCTRL	shPTPRC	shCTRL	shPTPRC	
Day 0	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	-
Day 14	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	2.30X10 ⁻¹
Day 28	25.0 % (2 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	5.27X10 ⁻¹
Day 42	50 % (4 of 8)	37.5 % (3 of 8)	25.0 % (2 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	2.85X10 ⁻¹
Day 56	62.5 % (5 of 8)	50.0 % (4 of 8)	37.5 % (3 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	0 % (0 of 8)	1.84X10 ⁻¹
Day 70	75.0 % (6 of 8)	50.0 % (4 of 8)	50.0 % (4 of 8)	25.0 % (2 of 8)	25.0 % (2 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	0 % (0 of 8)	8.09X10 ⁻²
Day 84	87.5 % (7 of 8)	62.5 % (5 of 8)	50.0 % (4 of 8)	25.0 % (2 of 8)	25.0 % (2 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	3.21X10 ⁻²
Day 98	87.5 % (7 of 8)	76.0 % (6 of 8)	62.5 % (5 of 8)	25.0 % (2 of 8)	37.5 % (3 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	2.65X10 ⁻²
Day 112	87.5 % (7 of 8)	75.0 % (6 of 8)	62.5 % (5 of 8)	25.0 % (2 of 8)	37.5 % (3 of 8)	12.5 % (1 of 8)	12.5 % (1 of 8)	0 % (0 of 8)	2.65X10 ⁻²

(Determined during monitoring period)

Secondary tumor growth

(Determined by necropsy)

Fig. S5

D

Е

Figure S5 (related to Figure 5).

(A) RT-qPCR analysis of gene expression in polypoid and normal intestines from APC^{Min/+} mice relative to that in normal intestines from wild-type mice (n = 9 for APC^{Min/+} mouse polypoid lesions, n = 8 for APC^{Min/+} mouse normal intestines, and n = 5 for wild-type mouse normal intestines). (B) Brightfield images of APC^{Min/+} mouse polyp-derived organoid cultures with or without NQ-301 treatment (0.5 µM). The viability of organoids was compared by performing a resazurin-based Cell Titer Blue assay on the 7th day of organoid culture (n = 8/group). (C) Primary tumor growth was monitored for 35 days after cell inoculation. On day 35, the mice were sacrificed, and the primary tumors were removed. Single tumor cells were isolated from the primary tumors by depleting mouse stromal cells with a mouse cell depletion kit (Miltenyl Biotec, Bergisch Gladbach, Germany), and then CRC cells were subjected to a limiting dilution assay to test their tumor-repopulating capability. The incidence of tumors in mice was monitored for 16 weeks and determined by definitive necropsy. The secondary tumor volume was compared between shCTRL and shPTPRC cells after necropsy. (D) Growth of CRC cells treated with NQ-301 and detected by MTT assays. Half maximal inhibitory concentrations (IC₅₀) of NQ-301 in patientderived CRC cells (P#6441493) and HCT116 cells were 1.561 and 1.109 μ M, respectively. (E) Transwell assays were performed to compare the migration (without matrigel coating) and invasion potentials (with matrigel coating) between NQ-301-treated (0.1 µM, 24 h) or control (DMSO) CRC cells (n = 3/group). Statistical analyses were performed using Student's t-test or the chi-square test. *, ** and *** indicate p-values <0.05, <0.01 and <0.001, respectively.

А

Upstream regulator	Z- score	<i>p</i> -value				
1 TGFB1	7.131	3.89E-64				
2 IL1B	6.457	2.78E-18				
3 TNF	6.082	9.03E-33				
4 TP53	5.871	1.55E-51				
5 IKBKB	5.849	3.81E-14				
6 IL6	5.476	8.91E-13				
7 CDKN2A	5.152	8.98E-19				
8 P38 MAPK	4.929	8.91E-16				
9 IFNG	4.796	4.93E-19				
10 TWIST1	4.176	5.9E-15				
11 SMARCA4	3.833	5.73E-21				
12 OSM	3.72	3.22E-17				
13 NFKBIA	3.719	2.04E-19				
14 AGT	3.626	5.45E-16				
15 CTNNB1	3.603	5.39E-13				
16 SP1	3.530	9.32E-24				
17 1APP	3.392	1.65E-19				
18 RABL6	-5.775	4.06E-22				
19 Estrogen receptor	-5.906	8.13E-17				
20 MYC	-6.278	4.56E-26				
21 Alpha catenin	-6.49	1.14E-15				

С

Е

Schematic diagram of CD45 molecules encoded by cDNA constructs

29

Figure S6 (related to Figure 6).

(A) Upstream regulators in residual tumors after CRT were predicted using IPA software based on the change in gene expression in tissues from patients with CRC after CRT (GSE15781) (cutoff: Z-score >3.3, Z-score <-3.3, and p-value <1E-12). (B) STRING, a protein interaction database, indicated a direct protein-protein interaction between β -catenin and CD45. (C) Effect of CD45 on the transcriptional activity of Wnt/β-catenin signaling in CD45-OE CRC cells. A TOP/FOP assay was performed in combination with Wnt activation (10 mM LiCl, 18 h, n =3/group). (D) The total protein levels and phosphorylation status of β -catenin were determined in CD45-OE CRC cells using Western blotting. Wnt target proteins (c-Myc and LEF1) were also analyzed. (E) Schematic diagram of CD45 wild-type and mutant sequences showing the mutated sites in tyrosine phosphatase domains I and II, which disrupt CD45 phosphatase activity. (F) The efficiency of three siRNA sequences against CTNNB1 was determined using RT-qPCR, and the most potent sequence (#2) was selected for further experiments (n = 3/group). (G) Relative sensitivities to 5-FU and radiation were compared between β -catenin-knockdown and control CRC cells. The relative sensitivities to 5-FU were compared by determining the half-maximal inhibitory concentration (IC₅₀) values based on reductions in cell viability (left panel, n =3/group). In addition, the sensitivity of the cells to radiation was measured using traditional methods; the survival potential of irradiated cells was estimated with clonogenic assays, and the radiation-related biological parameters and statistical significance were then analyzed using a linear-quadratic model (right panel, n = 3/group). Statistically significant differences between the two groups were calculated using GraphPad Prism software version 5. (H) An in vitro limiting dilution assay was performed to compare the sphere-forming potential between β -cateninknockdown and control CRC cells (n = 12/group). (I) A sphere-forming assay was conducted to

examine the effect of β -catenin knockdown on CD45-induced stemness. Wild-type or CD45-OE cells were seeded at varying cell densities after siCTRL or siCTNNB1 transfection and incubated under sphere culture conditions for 14 days. Then, the number and size of spheres were counted (n = 6/group). (J) A sphere-forming assay was conducted to confirm the involvement of β -catenin in CD45-induced stemness using ICG001, an inhibitor of β -catenin–mediated transcription. EV-transfected or CD45-OE cells were seeded at varying cell densities and incubated under sphere culture conditions with or without ICG001 (1 or 10 μ M) for 14 days. Then, the number and size of spheres were counted (n = 6/group). Statistical analyses comparing results with the control group were performed using one-way ANOVA followed by Dunnett's multiple comparison tests or Student's t-test for comparisons between two groups. *, ** and *** indicate p-values <0.05, <0.01 and <0.001, respectively.

Figure S7 (related to Discussion).

Protein-protein interaction of CD45 and β -catenin was simulated. The result showed that the phosphatase domain D1 of CD45 is more favorable for interaction of ARM domain of β -catenin. Structure are represented in solid ribbon. The domain D1 and D2 of CD45 are colored in green and orange. The β -catenin is in magenta. Molecular surfaces of CD45 are depicted in brown and blue with color intensity increasing with the module of positive and negative values of molecular hydrophobicity potential, respectively.

Table S1. DEG list for residual tissues after CRT and metastatic tissues from patients with

CRC

Attached at the end of this file.

Primary tumo	or cell	ls fro	m tissues obtained from	patients v	vith CRC			
				Surgical	P	athological o	diagnosis	
Patient ID	Sex	Age	Diagnosis	staging				
				(Stage)	K-ras	EGFR	p53	MS
P#31784993	Μ	67	Rectal cancer	T3N0M0	Wild-type	Mutation	Positive	MSS
			Perforated S colon	TANDA				
P#14005083	Μ	/ 45	cancer with liver and	14aNZD	Wild-type	Mutation	Positive	MSS
			lung metastasis					
P#6441493	М	58	Upper rectal cancer	T4N2M1	Mutation	Mutation	Negative	MSS
		50	with lung metastasis	1 11121111	Matation			11133
P#21257113	М	84	Proximal a-colon cancer	T3N1M1	Wild-type	Mutation	Positive	MSS
			with liver metastasis					
P#22611293	F	50	Sigmoid colon cancer	T3N2M0	Wild-type	Wild-type	Positive	MSS
P#31815783	F	75	Sigmoid colon cancer	T3N0M0	Wild-type	Wild-type	Positive	Low
			Rectal cancer with	T4-N2-				
P#31325173	Μ	57	multiple liver	14aNZa	Wild-type	Wild-type	Positive	Low
			metastases	ULIN				
			Rectal cancer with liver	T4aN2h				
P#31701313	F	43	metastasis and vaginal	1401120	Mutation	Wild-type	Negative	MSS
			invasion	IVI1				

Table S2. Clinical information for samples from patients with CRC used in this study

P#2742	3233	8 F	55	Rectal canc	er	T3N1aN 0	∕I Wild-1	type	Wild-ty	pe	Negat	tive	MSI
P#2005	51910) M	58	Right colon	cancer	T3N1M	0 Wild-1	type	Mutatio	on	Posit	ive	Low
P#2005	51914	M	68	Right colon	cancer	T2N0M	0 Wild-1	type	Mutatio	on	Negat	tive	MSS
P#2005	52910) F	64	Sigmoid col	on cancer	T4aN2 M0	b Muta	tion	Mutatio	on	Posit	ive	MSS
P#2005	52914	l F	49	Rectal canc	er	T1N0M	0 Muta	tion	Mutatio	on	Negat	tive	MSS
For imn	For immunohistological analysis												
Patient ID	Sex	Age	Tumor site	Histological diagnosis	Histologic al grade	Lympho- vascular invasion	Peri- neural invasion	Tumo buddi ng	r Resecti i on margin	pT stag e	pN stage	Positiv e LNs	Total LNs
P#1779 36	Μ	66	Sigmoio colon	d Adenocarci noma	Moderatel y diff.	Yes	Yes	Yes	No	pT3	pN1b	3	22
P#1773 18	F	72	Sigmoio colon	d Adenocarci noma	Moderatel y diff.	No	Yes	No	No	pT3	pN2a	4	15

MS, microsatellite; MSS, microsatellite stable; Low, low level of microsatellite instability; MSI, microsatellite instable; pT, pathological T stage; pN, pathological N stage; LN, lymph node metastasis; diff., differentiated

Table S3. Antibodies used for FACS, immunofluorescence staining, Western blotting, and immunoprecipitation (IP) analyses

Target	Туре	Type Conjugation Company		Cat #
For FACS analysis				
		Primary antibo	dies	
CD45	mMs	APC	BD Pharmingen TM	555485
CD45	mRat	APC	BD Pharmingen TM	561018
CD44	mRb	PE	Cell Signaling Technology	#2978
CD44	mRb	APC	Cell Signaling Technology	#2230
EpCAM	mMs	PE	BD Pharmingen TM	347198
EpCAM	mMs	Alexa488	Thermo Fisher Scientific	53-8326-41
EpCAM	mRat	PE	Thermo Fisher Scientific	12-5791-82
CD133	mMs	PE	MACS	130-080-801
LGR5	mMs	APC	R&D SYSTEMS	FAB8078A
CD44v6	mMs	PE	R&D SYSTEMS	FAB3660P
CD25	mMs	FITC	BD Pharmingen TM	555431
CD3	mMs	FITC	BD Pharmingen TM	555339
CD3	mMs	FITC	eBioscience TM	11-0037-42
CD4	mMs	FITC	BD Pharmingen TM	555346
CD4	mMs	Alexa488	BD Pharmingen TM	557667
CD8	mMs	FITC	BD Pharmingen TM	561947
CD8	mMs	FITC	BD Pharmingen TM	553031
CD56	mMs	Alexa488	BD Pharmingen TM	557699
CD16	mMs	FITC	BD Pharmingen TM	555406

For immunofluorescence

		Primary antibo	odies	
EpCAM	mRb	-	Cell Signaling Technology	#93790
CD45	mMs	-	Abcam	ab8216

CD45	pRb	-	Abcam	ab10558			
CD45	mRat	-	Abcam	ab25386			
Vimentin	mMs	-	BD Pharmingen [™]	550513			
CK7	mMs	-	DAKO	M7018			
OLFM4	mRb	-	Cell Signaling Technology	#39141			
LYZ1	mRb	-	Abcam	ab108508			
DCLK1	pRb	-	Abcam	Ab31704			
DCLK1	mMs	-	Santa Cruz Biotechnology	SC514584			
CEA	mMs	-	Dako	GA62261-2			
		Secondary ant	ibodies				
Alexa Fluor TM 40	05 goat anti-rabbit I	Invitrogen	A31556				
Alexa Fluor [™] 48	38 goat anti-mouse I	lgG (H+L)	Invitrogen	A11001			
Alexa Fluor TM 48	88 goat anti-rabbit I	gG (H+L)	Invitrogen	A11008			
Alexa Fluor TM	555 goat anti-rat Ig	G (H+L)	Invitrogen	A21434			
Alexa Fluor [™] 555	donkey anti-mouse	e IgG (H+L)	Invitrogen	A31570			
Alexa Fluor [™] 555	5 donkey anti-rabbit	IgG (H+L)	Invitrogen A31572				
	For	Western blotting	& IP analysis				
		Primary antil	podies				
CD45	pRb	-	Abcam	ab10558			
Cyclin D1	mRb	-	Cell Signaling Technology	#2978			
LEF1	mRb	-	Cell Signaling Technology	#2230			
c-MYC	mRb	-	Abcam	ab32072			
β-catenin (total)	pRb	-	Cell Signaling Technology	#9562			
β-catenin (active)	mRb	-	Cell Signaling Technology	#8814			
Phospho-β-catenin	nDh		Call Signaling Technology	#0561			
pRb - (Ser33/37/Thr41)		Cell Signaling Technology	#9301				

-

_

-

Cell Signaling Technology

Sigma-Aldrich

Santa Cruz

Cell Signaling Technology

#9411

A5316

sc-80017

#9532

Phospho-tyrosine

 β -actin

Ub

PARP

mMs

mMs

mMs

mRb

Caspase 3	e 3 pRb - Cell		ell Signaling Technology	#9662
Cleaved-caspase	-caspase 3 pRb - C		ell Signaling Technology	#9661
γH2AX	pRb	-	Abcam	ab11174
		Secondary antibodies	<u>i</u>	
	HRP goat anti-mouse IgG		BD Pharmingen [™]	554002
	HRP goat anti-rabbit IgG		BD Pharmingen [™]	554021

m, monoclonal; p, polyclonal; Ms, mouse; Rb, rabbit

	Sense	Antisense
Human PTP	RC	
#1	GUCAAGCUAAGGCGACAGA(dTdT)	UCUGUCGCCUUAGCUUGAC(dTdT)
#2	GUGUUGAACUCUCUGAGAU(dTdT)	AUCUCAGAGAGUUCAACAC(dTdT)
#3	GAGAAAGGACGCAUGCUGU(dTdT)	ACAGCAUGCGUCCUUUCUC(dTdT)
#4	CUCUGAUGAUGACAGUGAU(dTdT)	AUCACUGUCAUCAUCAGAG(dTdT)
Mouse <i>Ptprc</i>		
#1	CUAUGAUCUGCGCAAGAAA(dTdT)	UUUCUUGCGCAGAUCAUAG(dTdT)
#2	GUUGAAAGGGAUGAUGAAA(dTdT)	UUUCAUCAUCCCUUUCAAC(dTdT)
#3	GUCACAGGGCAAACACCUA(dTdT)	UAGGUGUUUGCCCUGUGAC(dTdT)
Human <i>CTN</i>	INB1	
#1	CCUGGUGAAAAUGCUUGGU(dTdT)	ACCAAGCAUUUUCACCAGG(dTdT)
#2	CGUUCUCCUCAGAUGGUGU(dTdT)	ACACCAUCUGAGGAGAACG(dTdT)
#3	ACGACUAGUUCAGUUGCUU(dTdT)	AAGCAACUGAACUAGUCGU(dTdT)

Table S4. Short interfering RNA (siRNA) sequences

*Bold sequences were used to generate shRNA plasmids.

Human	Forward	Reverse
ALDH1A1	CAAATAGTGCACTGTCTCCAGG	ACGACACTACTTATTTGTAACACCT
ALPI	CCAGGACATCGCCACTCAG	TCAGTGCGGTTCCACACATA
ANPEP	CCACCTTGGACCAAAGTAAAGC	TCTCAGCGTCACCCGGTAGGA
BIRC5	CAAGGACCACCGCATCTCTAC	AGTCTGGCTCGTTCTCAGTGG
CCND1	TGTCGGTGTAGATGCACAGC	TGCATGTTCGTGGCCTCTAA
CD133	CAGAGTACAACGCCAAACCA	AAATCACGATGAGGGTCAGC
CD44	GGAGCAGCACTTCAGGAGGTTAC	GGAATGTGTCTTGGTCTCTGGTAGC
CD44v6	GGCAACTCCTAGTAGTACAACG	GTCTTCTTTGGGTGTTTGGC
CTNNB1	GAGCCTGCCATCTGTGCTCT	ACGCAAAGGTGCATGATTTG
DCLK1	TAGCCAGCGCCATCAAATAC	ACCCAGCTTCAGTGATTTGC
FABP1	TCACCTTCCAACTGAACCAC	GGAAGGATATCAAGGGGGTG
HOXD11	TCTCCGAGTCCTCGTGGGGA	GCAAAACACCAGCGCCTTCTA
KLF4	TTCTGGCAGTGTGGGTCATA	GAACTGACCAGGCACTACCG
KLF5	GGATGGAGGTGGGGTTAAAT	CCCTTGCACATACACAATGC
LEF1	AGCCTTCTTTTTCTGAGACAGC	GAACACCTTACAAGGGCGGA
LGR5	CTCAGCGTCTTCACCTCCTAC	TCTGCAGCATAAGAACTTTAAGAC
MCM3	CCAGTGTTCGGGCTGTAACT	GGCCACCTACATTGCAGAAG
MYC	CAAGTATACGTGGCAATGCGT	TCAAGAGTCCCAGGGAGAGT
NANOG	TGGGATTTACAGGCGTGAGC	AAGCAAAGCCTCCCAATCCC
POU5F1	GGGCTCTCCCATGCATTCAA	CACCTTCCCTCCAACCAGTT
PPIA	TGCCATCGCCAAGGAGTAG	TGCACAGACGGTCACTCAAA

Table S5. List of primers used for RT-qPCR

PTPRC	TTCAGCCTGTTCCTTTGCTT	AGCACCTACCCTGCTCAGAA
SOX2	TCGGCAGACTGATTCAAATAATAC AG	CCATGCAGGTTGACACCGTTG
SOX4	GAGAAACTGTGTGTGAGGGGA	AAAAAGCCTGCATGCAACAGA
SOX9	CATGAGCGAGGTGCACTCC	TCGCTTCAGGTCAGCCTTG
WSB1	GATCGTGGTTAGTTTGGG	TGGGTCACCAACTTGAG
Mouse	Forward	Reverse
Mouse Ptprc	Forward ATGGTCCTCTGAATAAAGCCCA	Reverse TCAGCACTATTGGTAGGCTCC
Mouse Ptprc Olfm4	Forward ATGGTCCTCTGAATAAAGCCCA CTGCTCCTGGAAGCTGTAGT	Reverse TCAGCACTATTGGTAGGCTCC ACCTCCTTGGCCATAGCGAA
Mouse Ptprc Olfm4 Lyz1	Forward ATGGTCCTCTGAATAAAGCCCA CTGCTCCTGGAAGCTGTAGT GAGACCGAAGCACCGACTATC	Reverse TCAGCACTATTGGTAGGCTCC ACCTCCTTGGCCATAGCGAA CGGTTTTGACATTGTGTTCGC
Mouse Ptprc Olfm4 Lyz1 Dclk1	Forward ATGGTCCTCTGAATAAAGCCCA CTGCTCCTGGAAGCTGTAGT GAGACCGAAGCACCGACTATC AGCGGAGAACCGCATTTCAA	Reverse TCAGCACTATTGGTAGGCTCC ACCTCCTTGGCCATAGCGAA CGGTTTTGACATTGTGTTCGC ATCTCTGCCGAACGACATGG

Supplementary materials and methods

Chemicals

Radioimmunoprecipitation assay (RIPA) buffer was prepared in our laboratory as previously reported [1]. The 10X cell lysis buffer (#9803), 3X SDS sample buffer (#7722), and Protein A agarose beads (#9863) were purchased from Cell Signaling Technology (Beverly, MA, USA). FACS LysingTM Solution was purchased from BD Biosciences (San Diego, CA, USA). TRIzol reagent was purchased from Ambion (Austin, TX, USA). NQ-301 used in this study was kindly provided by Korea Chemical Bank (www.chembank.org) of Korea Research Institute of Chemical Technology.

Visualization of scRNA-seq data

The scRNA-seq data from CRC tumors were obtained from the GEO web server (GSE81861). Gene expression files quantified as fragments per kilobase per million reads (FPKM) were downloaded from GEO with the cell type identification file and applied to GraphPad Prism software version 9 to visualize the mRNA expression patterns of epithelial and leukocyte markers. In the cell type identification file, seven distinct cell clusters were determined by performing reference component analysis (RCA) using the global panel. The Seurat algorithm was used to generate a 2D plot of cell type clusters.

FACS analysis

FACS analysis was performed using a BD AccuriTM flow cytometer (BD Biosciences). FACS data were analyzed using FlowJo software (TreeStar, San Carlos, CA, USA) as described in our previous report [1]. Cells were stained with specific antibodies according to the manufacturers' instructions. After a 1 h incubation at 4 °C, cells were washed with phosphatebuffered saline (PBS) and analyzed using a BD FACSCalibur system (BD Biosciences). The detailed antibody list is provided in Table S3.

Isolation of primary cells from normal intestines of wild-type mice and from adenomatous polyps of APC^{Min/+} mice

Normal intestines and adenomatous intestinal polyps were surgically removed from wildtype and APC^{Min/+} mice, respectively. We detached intestinal epithelial cells from the basement membrane using a previously reported EDTA/DTT protocol with slight modifications [2]. Briefly, intestinal tissues were incubated in dissociation buffer #1 (47 mL of DPBS, 3 mL of 0.5 M EDTA, and 75 μ L of 1 M DTT) for 20 minutes on ice. The tissues were removed from dissociation buffer #1 and placed in dissociation buffer #2 (47 mL of DPBS and 3 mL of 0.5 M EDTA) and incubated for 10 minutes at 37 °C. After shaking, the intestinal epithelian was released from the basement membrane. Remnant tissues were removed, and epithelial cells were pelleted by centrifugation (1,000 × g for 5 min at 4 °C). Then, these epithelial clumps were incubated with collagenase III and dissociated into single cells using 100 µm nylon mesh. These single epithelial cells were subjected to FACS analyses. Live cells were gated based on Annexin V staining.

Comparison of relative sensitivity to 5-FU or radiation

Relative sensitivities to 5-FU were compared by determining the half-maximal inhibitory concentration (IC₅₀) values based on reductions in cell viability. Briefly, cells were seeded in 96-

well plates (5,000 cells/well) and incubated for 24 hours for attachment. Then, the cells were treated with 5-FU at various concentrations and incubated for 48 hours. Cell viability was measured by staining with thiazolyl blue tetrazolium bromide (MTT, Sigma-Aldrich, St. Louis, MO, USA), and the absorbance was measured using a microplate spectrophotometer (Bio-Tek Instruments Inc., Winooski, VT, USA). In addition, the sensitivity of the cells to radiation was measured using traditional methods [3]. Briefly, the survival potential of irradiated cells was estimated with clonogenic assays, and the radiation-related biological parameters and statistical significance were then analyzed using a linear-quadratic model (GraphPad Prism version 5, GraphPad Software, San Diego, CA, USA). Cell proliferation was measured using a fluorescence-based BrdU labeling and detection kit (Thermo Fisher Scientific) based on a 2-hour incorporation of BrdU.

Retrospective study population of rectal cancer for determining the correlation between marker expression and therapeutic response to preoperative chemoradiotherapy.

The clinical validation study set consisted of 44 pretreatment paraffin-embedded tissue samples obtained from patients with locally advanced distal rectal cancer (cT3-T4, N+) who had been treated at Chungnam National University Hospital. Clinicopathological characteristics are summarized in Supplementary Figure S2B. The cases had been previously reported [4]. Among the previously reported 93 cases, 53 cases with sufficient amount of cancer tissue were arranged in one tissue microarray block containing one representative tissue core of 2mm in diameter from each case. Out of the 53 cases, 9 cases were excluded from the analysis, since 5 cases were not available for tissue within the core, 2 cases showed no more cancer gland within the core, and the other two were poor quality of tissue with artifact. All cases were histologically proven low-

grade (well to moderately differentiated) adenocarcinomas and the patients had received preoperative chemoradiotherapy (CRT) consisting of 50.4 Gy of pelvic irradiation in 28 fractions, combined with 2 cycles of 5-fluorouracil (5-FU) (400 mg/m² per day) or capecitabine (1650 mg/m² per day) and leucovorin (20 mg/m² per day), followed by curative surgery average 6 weeks after completion of CRT. The surgically resected cases were pathologically diagnosed according to WHO classification [5], and were classified according to AJCC TNM system [6]. Therapeutic responses to preoperative CRT were estimated by two pathologists (J.M.K and H.J.C) according to AJCC tumor regression grade (TRG): complete response (TRG0); no viable cancer cells, near-complete response (TRG1); single cells or rare small groups of cancer cells, partial response (TRG2); residual cancer with evident tumor regression (partial response), poor response (TRG3); extensive residual cancer [7]. The patients were followed up for local recurrence or distant metastasis every 3 months for the first two postoperative years, and every 6–12 months thereafter. Mean follow-up duration was 100 months (range 5-237 months). Physical examination, serum carcinoembryonic antigen (CEA) assay, chest X-ray and abdominal ultrasound or CT scan were performed in every 6 months. Informed consent was obtained from each patient before they received preoperative CRT, and this retrospective study was approved by the Institutional Review Board of GIST.

CD45 expression levels in epithelial cells (EpCAM+) were visualized in pretreatment cancer tissues by immunofluorescence assays. Anti-EpCAM antibodies (cat# 93790, Cell Signaling Technology) were used at 1:200 dilution, and anti-CD45 antibodies (cat# ab8216, Abcam) were used at1:500 dilution. Alexa-555-anti-mouse IgG antibodies or Alexa488-anti-rabbit IgG antibodies were applied as 1:1000 dilution. $3 \sim 5$ spots per each samples were randomly selected and applied to microscopic evaluation at total X 200 magnification. DAPI was counterstained to visualize nuclei. The existence of CD45+ epithelial cells in primary tumors were scored based on the ratio of co-localized area (EpCAM+CD45+) within the epithelial cells (EpCAM+) using an image analysis software (Image Pro Premier 9.0, Media Cybermetics, MD, USA). H&E counterstaining was used for distinguishing normal and tumor region. Patients were divided in two groups by the mean value of CD45 expression levels in epithelial cells (mean ratio 0.16096 \pm 0.24376; high: n = 16, low: n = 28). The immunofluoresent analysis was performed blindly without any information for therapeutic outcome.

The χ 2-test and t-test or ANOVA test were performed to determine the correlation between marker expression and tumor regression grade, ypT, ypN or yStage, and survival curves were plotted using Kaplan-Meier method and compared using the log-rank test. Disease-specific survival (DSS) was defined as the time from the diagnosis date to rectal cancer related death. Recurrence free survival (RFS) was defined as the time from the operation date to any type of recurrence proven by CT, MRI or histology. Multivariate analyses with a Cox proportional hazard model using a forward conditional variable selection method was also performed with yStage (0-II vs. III-IV), TRG (0-1 vs. 2-3), CD45 expression level (low vs. high) as covariates. All results were considered statistically significant when *P* values were <0.05, and all analysis was performed using IBM SPSS 20 software for windows (IBM corp, Somers, New York, USA).

Gene expression modification by knockdown or overexpression

Cells were transfected with siRNAs targeting specific genes or a nonspecific negative control siRNA (Bioneer, Daejeon, Republic of Korea) in media (serum-, phenol-, antibiotic-free) with LipofectamineTM 2000 (Invitrogen) according to the manufacturer's instructions. Knockdown efficiency was confirmed by measuring mRNA expression using reverse

transcription PCR and RT-qPCR. The sequences of the siRNAs are listed in Table S4. After the most effective sequence was validated by RT-qPCR, that particular sequence was synthesized as short hairpin (sh) RNA and inserted into the pLKO.1 puro vector. The shRNA vectors were transformed into DH5 α *E. coli* (Real Biotech Corporation, Banqiao City, Taipei, Taiwan). Then, the transformed cDNA was purified using the QIAGEN plasmid Maxi kit (QIAGEN, Hilden, Germany), transfected into 293FT cells (Invitrogen) using Lipofectamine 2000 as described above, and viral packaging mix (Sigma-Aldrich) was added. Viral supernatants were used for transfection. Cells were transfected with *PTPRC*-lentiviral vector (pLenti-GIII-CMV) (ABMgood, Richmond, CA, USA) using viral supernatants to establish CD45-OE cells. Empty vector-transfected cells were used as controls.

Immunofluorescence staining of cells

Proteins were visualized using the specific antibodies described in Table S3. Nuclei were counterstained with DAPI (Sigma-Aldrich). Secondary antibodies conjugated with fluorescent dyes were used to visualize target proteins. Alexa Fluor 555-conjugated anti-rabbit (Invitrogen) and Alexa Fluor 488-conjugated anti-mouse antibodies (Life Technologies, Carlsbad, CA, USA) were used. Fluorescence was visualized using Axio Imager 2 (Carl Zeiss, Oberkochen, Germany) (total magnification: 200X or 400X).

RNA isolation, reverse transcription PCR, and RT-qPCR

Total RNA was isolated from mouse tissues or cells using TRIzol reagent (Invitrogen). The purity of RNA was verified by measuring the 260/280 and 260/230 absorbance ratios. The cDNA templates were synthesized from 2 μ g of total RNA using the PrimeScriptTM 1st strand

cDNA Synthesis Kit (Takara Biomedicals, Kusatsu, Japan) with random primers. Then, Power SYBR Green PCR Master Mix and Step-One Real-time PCR systems (Applied Biosystems, Foster City, CA, USA) were used for the PCR amplification of cDNAs. The primers are listed in Table S5.

Protein isolation and western blot analysis

Tissues or cells were homogenized in RIPA buffer for 20 min on ice. Protein concentrations were determined based on bicinchoninic acid (BCA) assay using the BCA Protein Assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Proteins were denatured with sodium dodecyl sulfate (SDS) (Sigma-Aldrich) by boiling at 95 °C for 5 min. Equal amounts of total protein (4-15 µg) were electrophoresed on 8% or 10% acrylamide gels, and separated proteins were transferred to a polyvinylidene difluoride membrane (Millipore, Billerica, MA, USA). The membrane was blocked with 5% bovine serum albumin (Sigma-Aldrich) and incubated overnight at 4 °C with the indicated primary antibodies. The membrane was then incubated with horseradish peroxidase-conjugated secondary antibodies. Chemiluminescence of horseradish peroxidase was developed with ECL reagent (Atto, Tokyo, Japan) and detected with a digital imaging system (ProteinSimple, San Jose, CA). Antibodies used for Western blot analyses are listed in Table S3.

Apoptosis assay (Annexin V+)

The rate of cell apoptosis was quantitatively analyzed by performing apoptosis assays using an Annexin V-Fluorescein Isothiocyanate (FITC) Apoptosis Detection Kit I (BD Biosciences). Cell suspensions (1 x 10⁶/mL) were prepared by washing cells twice with cold

PBS. Then, 100 μ L of the suspension were transferred to a tube to which 5 μ L of FITC, Annexin V, and propidium iodide (PI) were added. The mixture was incubated at room temperature for 15 min in the dark after gentle vortexing. After incubation, 400 μ L of 1X binding buffer were added before analysis using flow cytometry.

Immunofluorescence staining of paraffin-embedded tissues

Formalin-fixed and paraffin-embedded sections of primary tumors were dewaxed and hydrated in an OTTIX bath (Diapath, Martinengo, Italy). The dewaxed slides were incubated with specific primary antibodies at 4 °C overnight. After washes with Tris-buffered saline containing 0.5% Tween-20 (TBST), slides were incubated with secondary antibodies at room temperature for 20 min. Alexa Fluor 488-conjugated anti-mouse antibodies (Cell Signaling) and Alexa Fluor 555-conjugated anti-rabbit antibodies (Cell Signaling) were used to visualize target proteins. Then, slides were washed with TBST, and the nuclei were counterstained with DAPI for 10 s. Slides were dehydrated using an OTTIX bath (Diapath) and mounted with mounting solution (Vector Laboratories, Burlingame, CA, USA). Fluorescence was visualized and analyzed using an LSM 510 META laser confocal microscopy system (Carl Zeiss). The dewaxed slides were stained with hematoxylin (Sigma-Aldrich) and cosin (Diapath) to histologically observe the morphology of tissues. Images were captured with a phase-contrast microscope (Carl Zeiss). Detailed information about the antibodies is provided in Table S3.

Luciferase reporter assays

A TOP-FOP luciferase assay was performed as described in our previous report to analyze the transcriptional activity of Wnt signaling [1]. CRC cells were seeded into 12-well plates. The mixture of DNA (TOP or FOP), β -galactosidase, and Lipofectamine was prepared in the proportions of 1 µg:1 µg:2 µL in 50 µL of serum-free medium/well. Twenty-four hours after the mixed solution was applied to the seeded cells, cells were treated with LiCl, a Wnt-activating chemical. Cell lysis buffer was added after 17 h of LiCl treatment. Luciferase reagent was added to detect luciferase activity and detected using a luminometer (Promega, Madison, WI, USA, G3250) according to the manufacturer's recommendations. The relative Wnt transcriptional activity was determined by measuring luciferase activity and normalizing the raw results of TOP/FOP expression to β -galactosidase expression.

IP

IP was performed specifically for β -catenin to detect its ubiquitination. Cells were harvested by adding complete RIPA buffer to the plate. The supernatant of the sample was considered the cell lysate. The concentration of the cell lysate was adjusted to 1 µg/µL and then reacted with a β -catenin antibody (Cell Signaling) or normal rabbit IgG (Cell Signaling). Protein A agarose beads were added to each β -catenin antibody, normal rabbit IgG, and control sample (input) and bound by rotating at 4 °C. After the bead binding step, lysates bound to antibodies were centrifuged, and their pellets were resuspended and prepared for Western blotting. Mouse anti-rabbit IgG (light-chain specific) was used as the secondary antibody to detect β -catenin.

In vivo limiting dilution assay (LDA)

For the comparison of the tumor-initiating potential between CD45^{high} and CD45^{low} cells, patient-derived primary CRC cells or HCT116 cells were sorted into two groups according to the CD45 expression level by FACS (CD45^{high} and CD45^{low}), and the cells were then subcutaneously

inoculated into NSG mice (NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl}/SzJ, #005557, Jackson Laboratory, Bar Harbor, ME, USA) at various cell densities. After 28 days of observation, the frequency of tumor formation was monitored for 28 days and definitely determined by necropsy (n = 8 animals/group).

For the comparison of tumor-initiating potential between PTPRC knockdown and control HCT116 cells, cells were subcutaneously inoculated into NSG mice. On day 35, the mice were sacrificed, and the primary tumors were removed. Single tumor cells were isolated from the primary tumors by depleting mouse stromal cells with a mouse cell depletion kit (Miltenyl Biotec, Bergisch Gladbach, Germany), and then CRC cells were subjected to a limiting dilution assay to test their tumor-repopulating capability. The incidence of tumors in mice was monitored for 16 weeks and determined by definitive necropsy. LDA graphs were generated and statistical values were calculated using online software provided by Walter+Eliza Hall Bioinformatcis (http://bioinf.wehi.edu.au/software/elda/) as described in a previous report [8].

In vitro LDA and sphere-forming assays

For the *in vitro* sphere-forming assay, cells were seeded at varying cell densities and incubated under sphere culture conditions (poly-HEMA-coated 96-well plates; poly 2-hydroxyethyl methacrylate, Sigma Cat # P3932) for 14 days, and then the number of wells without spheres was counted (n = 12/group). The generation of LDA graphs and statistical calculations were performed using online software provided by Walter+Eliza Hall Bioinformatcis (http://bioinf.wehi.edu.au/software/elda/) as described in a previous report [8]. For the sphere formation assay, cells were seeded at varying cell densities and incubated under sphere culture conditions (poly-HEMA-coated 6-well plates) for 14 days, and then the number

and size of spheres were counted (n = 6/group).

Splenic injection mouse model

A splenic injection experiment was performed to estimate the step governing metastasis and distant organ colonization [9]. In this model, shCTRL- or shPTPRC-transfected HCT116-luc cells ($1X10^6$ cells/mouse) were inoculated into the spleen followed by splenectomy, and the surviving cells that grew in distant organs then contributed to the formation of liver metastases. We routinely monitored liver metastasis weekly by visualizing luciferase activity for 28 days (n = 9 for shCTRL, n = 8 for shPTPRC). After sacrifice, the livers were removed to determine liver metastasis.

APC^{Min/+} mouse polyp-derived organoid culture

Single cells were isolated from the intestinal polyps of 20-week-old APC^{Min/+} mice and cultured as described in a previous report with slight modifications [10]. Briefly, mouse intestines containing polyps were incubated with EDTA chelation buffer [10] for 60 min on ice. After chelation, the detached normal intestinal epithelial cells were removed by centrifugation, while tumor cells remained attached to the mesenchyme. Then, the intestinal fragments with tumor cells were dissociated with collagenase as described in a previous report [10]. The isolated tumor cells were counted and pelleted, and a total of 20,000 cells or 100 cells were then mixed with 50 µL or 10 µL of Matrigel (Corning® Matrigel® Growth Factor Reduced (GFR) Basement Membrane Matrix, #356231, Corning NY) and plated in 24-well plates or 96-well plates, respectively. After the polymerization of Matrigel, 500 mL of IntestiCult™ Organoid Growth Medium (Mouse, #06005, STEMCELL Technology) were added. Beginning on the day of

seeding, the growth and morphology of organoids were observed daily, and the viability of organoids was compared by performing a resazurin-based Cell Titer Blue assay (Promega, Leiden, The Netherlands) on the 7th day of organoid culture. For generation of the CD45 knockdown organoids, the isolated tumor cells were transfected with a small interfering RNA against the *PTPRC* gene using an NEPA21 superelectroporator (NEPAGENE, Chiba, Japan). Then, the transfected cells were cultured and monitored as described above. To test the effect of CD45 pharmacological inhibition on organoid growth, NQ-301 (0.5 µM) was treated on the 1st day after seeding, and measured the organoid viability on the 7th day of organoid culture as described above.

Migration and invasion assay

The Transwell system (8 μ m pore size, Corning) was employed for migration and invasion assays. For migration assay, 3 x 10⁵ cells were seeded on the upper chambers in serum-free medium with or without NQ-301 treatment (0.1 μ M). And for invasion assay, 3 x 10⁵ cells were seeded on the upper chamber of matrigel-coated Transwell system (8 μ m pore size, Corning) in serum-free medium with or without NQ-301 treatment (0.1 μ M). Then bottom chamber was filled with medium supplemented with 20% FBS. After incubation for 24 hours at 37 °C, the cells migrated or invaded through to the bottom of the insert membrane were fixed, stained with crystal violet and counted under observation with a phase-contrast microscope (Carl Zeiss, biological triplicates).

Protein-protein interaction docking simulation

The possible molecular interaction between the CD45 (PDB code: 1YGR) and β -catenin (PDB

code: 1G3J) was analyzed. Protein structure was prepared by adding missing residues, neutralization and energy minimization using Protein Preparation Wizard of Schrödinger program (Schrödinger, Inc., New York, NY). A protein-protein docking simulation was carried out using ZDOCK and ZRANK algorithms in Discovery Studio program (Accelrys, San Diego, CA). The 2000 interaction poses of CD45 and β -catenin based on electrostatic and shape complementarity were generated using ZDOCK and they were reranked by ZRNAK. The bestranked pose in top cluster was chosen and was analyzed for protein-protein interactions of CD45 and β -catenin. The visualization of possible protein-protein interactions was performed by using Discovery Studio.

Supplementary references

- Park SY, Kim JY, Choi JH, Kim JH, Lee CJ, Singh P, *et al.* Inhibition of LEF1-mediated DCLK1 by niclosamide attenuates colorectal cancer stemness. *Clin Cancer Res* 25, 1415-1429 (2019)
- 2. Gracz AD, Puthoff BJ, Magness ST. Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. *Methods Mol Biol* **879**, 89-107 (2012)
- 3. Fertil B, Malaise EP. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. *Int J Radiat Oncol Biol Phys* **11**, 1699-1707 (1985)
- Kim JS, Kim JM, Liang ZL, Jang JY, Kim S, Huh GJ, *et al.* Prognostic Significance of Human Apurinic/Apyrimidinic Endonuclease (APE/Ref-1) Expression in Rectal Cancer Treated With Preoperative Radiochemotherapy. *Int J Radioation Oncology Biology Physics* 82, 130-137 (2012)
- Bosman FT, World Health Organization., International Agency for Research on Cancer.:
 WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press, 2010.
- Greene FL, American Joint Committee on Cancer., American Cancer Society.: AJCC cancer staging manual. 6th ed. New York: Springer, 2002
- Amin MB, American Joint Committee on Cancer., American Cancer Society.: AJCC cancer staging manual. 8th ed. New York: Springer, 2017
- 8. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. *J Immunol Methods* **347**, 70-78 (2009)
- 9. Bouvet M, Tsuji K, Yang M, Jiang P, Moossa AR, Hoffman RM. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver

metastases. Cancer Res 66, 11293-11297 (2006)

10. Xue X, Shah YM. In vitro organoid culture of primary mouse colon tumors. *J Vis Exp*, e50210 (2013).

Supplementary Table S1.

Up-regulated genes in metastatic colorectal cancer v tumor (GSE68468, total 311 genes, P<0.0005, FC≥1.		versus primary	Up-regula	ated genes in res	idual colorec	tal tumors after	after CRT versus pre- 0.005, FC≥2) © 2000-			
		ll rights ross	P<0.0005, FC≥1	1.5) © 2000-2017			rights reconn	genes, P<0.005	5, FC≥2) © 2000-	
#	ID	Symbol	Expr Fold Change	Expr p-value	#	ID	Symbol	Expr Fold	Expr p-value	
	1 206155 at	ABCC2	1 618	0 000436	1	11748016 a at	ACTG2	2 49254077	2 52E-03	
	2 200045 at	ABCE1	3 159	0.0000719	2	11715793 a at	ACTG2	2 14677077	1.31E-03	
	3 207268 x at	ABI2	2 667	4 55E-08	- 3	11715794 x at	ACTG2	2 05645667	8.63E-04	
	1 213102 at	ACTR3	1 502	0.0000176	4	11750687 a at		1 19091342	2 53E-03	
	5 222147 s at	ACTR5	1.802	0.0000106	5	11722994 s at		1 26906171	2.00E 00	
	6 206833 s at	ACYP2	2 013	0.0000100	6	11747167 x at		1 20476214	4 58E-04	
	7 217/10 v at		1 706	0.00000000	7	11730/57 a at		1 3/160333	2.50E-04	
	217419_X_at		2.014	1.545 11	7	11730457_a_at		1.04100333	2.392-03	
	220041_S_at		2.914	0.0000160	0	11720013_a_at		1.00701231	1.07 E-03	
1	204004_al		1.072	0.0000169	9	11740520_a_al	ATF2D4	1.49300043	4.35E-05	
1	1 200702 at		1.543	0.0000765	10	11755025_5_at	DIGI	1.00001240	9.09E-03	
1	1 200782_at	ANXA5	20.576	3.28E-09	11	11757933_s_at	BIG2	1.0392412	3.15E-03	
1.	2 214341_at	AP1G2	1.705	0.0000774	12	11715614_at	BIG2	1.01674103	1.63E-03	
1	3 214959_s_at	API5	1.928	0.00000182	13	11/1/9/8_at	07	1.42891282	2.35E-04	
1.	4 213892_s_at	APRI	1.598	0.000378	14	11/1/980_x_at	C7	1.32794803	3.05E-03	
1	5 215927_at	ARFGEF2	1.558	0.0000339	15	11749537_a_at	C7	1.24053385	3.13E-03	
1	6 202207_at	ARL4C	1.621	6.64E-08	16	11746954_s_at	CCL4 /// CC	1.29758462	2.48E-03	
1	7 49111_at	ARRB1	1.59	0.000136	17	11718982_s_at	CCL4 /// CC	1.05182316	3.90E-03	
1	3 205894_at	ARSE	1.968	0.000000448	18	11732275_at	CCL5	1.66635889	9.36E-05	
1	9 207284_s_at	ASPH	2.121	0.0000994	19	11732276_x_at	CCL5	1.53792556	5.66E-05	
2	0 203168_at	ATF6B	1.538	0.000355	20	11753810_a_at	CCL5	1.02712316	9.52E-04	
2	1 220237_at	ATG3	1.501	0.00000123	21	11728679_a_at	CD163	1.53872197	1.42E-06	
2	2 212280_x_at	ATG4B	1.727	2.55E-11	22	11716842_a_at	CD53	1.29937598	2.41E-04	
2	3 210205_at	B3GALT4	2.93	0.0000339	23	11753555_a_at	CD53	1.12365077	3.05E-03	
2	4 210535_at	B9D1	1.903	3.74E-08	24	11764029_at	CEBPD	1.14346692	8.99E-05	
2	5 205294 at	BAIAP2	1.662	0.00000122	25	11752869 s at	CEBPD	1.11158017	1.07E-04	
2	6 208368 s at	BRCA2	1.616	0.00029	26	11764030 x at	CEBPD	1.07524829	1.29E-04	
2	7 215010 s at	BRSK2	2.03	9.51E-11	27	11747163 a at	CEP85L	1.18891282	6.13E-05	
2	3 214117 s at	BTD	1.528	0.00000313	28	11756547 a at	CLU	1.37485308	1.38E-03	
2	9 220152 at	C10orf95	6 246	1 99E-20	29	11747737 x at	CNN1	1 28600256	6 10E-04	
3	220102_at	C16orf70	2 925	0.00000903	30	11747736 s at	CNN1	1 16851051	1.52E-03	
3	1 218123 at	C21orf59	2.646	0.00000000	31	11734310 a at	CNN1	1 1108588	1.81E-03	
3	2 20/068 at	C6orf47	1.66	0.000333	32	11757021 e at		1 6108306	3 10E-03	
3	2 204300_at	C0	1.00	0.000410	33	117/0658 a at		1 17053032	2 26E-03	
2	1 212712 of		1.505	4 17E 11	34	117430300_a_at		1.251/6209	5 49E 07	
	= 212112_at		2 502	4.17E-11	25	11702320_at	CKISFLDZ	1.20140300	1.48E-07	
	221107_5_at		2.090	1 495 15		11733237_a_at	CXCL12	1.20007052	2.245.04	
0	200407_S_at	CCL13	3.309	1.40E-10	30	11720010_a_at	CACE 12	1.20073536	2.24E-04	
3	219025_at	CD246	1.522	0.0000125	37	11720109_a_al		2.30070321	2.52E-05	
3	3 205692_s_at	CD38	1.657	4.46E-08	38	11728191_x_at	CXCR4	1.9884006	8.15E-06	
3	9 206680_at	CD5L	1.92	0.0000228	39	11739094_a_at	CXCR4	1.92277316	1.43E-05	
4	J 207729_at	CDH9	1.703	0.000129	40	11728190_s_at	CXCR4	1.78604983	1.50E-04	
4	1 207647_at	CDY1 (Incl	1.615	0.0000716	41	11749905_a_at	CYR61	1.64176333	4.30E-04	
4	2 204739_at	CENPC	1.512	0.000297	42	11734690_a_at	CYTIP	1.16248162	2.84E-03	
4	3 209667_at	CES2	1.757	0.0000611	43	11717048_a_at	DES	1.8944353	2.14E-04	
4	4 220308_at	CFAP45	1.646	0.000443	44	11717049_s_at	DES /// SUI	1.89515726	4.81E-05	
4	5 200021_at	CFL1	1.588	0.00000169	45	11715766_a_at	DUSP1	2.11246043	3.40E-04	
4	6 217654_at	CFLAR	1.942	0.000389	46	11752993_a_at	DUSP1	1.52321427	2.91E-03	
4	7 207024_at	CHRND	1.538	0.000315	47	11747508_a_at	EPB41L3	1.31533932	5.81E-06	
4	3 203921_at	CHST2	1.739	0.0000935	48	11727142_a_at	EPB41L3	1.05406017	6.76E-06	
4	9 221065_s_at	CHST8	1.573	0.0000878	49	11727143_x_at	EPB41L3	1.04016376	6.48E-05	
5	0 205101_at	CIITA	3.727	5.88E-10	50	11755895_a_at	FAM129A	1.07709718	4.84E-04	
5	1 219947_at	CLEC4A	2.309	0.0000044	51	11739340_at	FAM46C	1.07758915	2.43E-03	
5	2 205944 s at	CLTCL1	1.762	2.76E-11	52	11719394 a at	FBXO32	1.35684085	7.64E-04	
5	3 210571 s at	CMAHP	2.457	0.000059	53	11734947 a at	FGF7	1.10963026	3.73E-03	
5	4 217404 s at	COL2A1	1 706	0.00000539	54	11733818 x at	FHL1	2.05290342	5 49F-04	
5	5 211473 s at	COL4A6	2 442	0.00000065	55	11745722 x at	FHL1	2.01684761	6.96F-04	
5	6 213428 s at	COL6A1	1 616	0.00000505	56	11733817 s at	FHL1	1.94588197	8 79E-05	
5	7 208684 at	COPA	1 889	0.00000119	57	11753010 x at	FHI 1	1 57893573	9 96F-05	
5	3 221550 at	COX15	1.535	0.00000472	58	11748655 x at	FHI 1	1 56850085	6 46F-04	
5	205615 at	CPA1	1 583	1 28F-10	50	11753500 x of	FHL1	1 50902991	2 22E-05	
6	200010_at	CREB7E	3 /72	7 / 4-11	59	11753338 v ot		1 45812127	2.22C-05	
0	J LULUII S dl	UNEDZE	3.412	1.46-11	00	1170000_A_dl		1.40012101	4.000-00	

61	205/7/ at	CPI E3	1 550	0.0000192	61	11753508 a at	EHI 1	1 3068735	7 98E-05
01	2004/4_ai	ORLF3	1.009	0.00000192	01	11755590_a_at		1.3900733	7.902-03
62	200838_at	CISB	1.53	0.00000176	62	11747328_a_at	FHL1	1.35841419	3.74E-03
63	211122_s_at	CXCL11	1.743	0.000499	63	11747329_x_at	FHL1	1.23825316	9.28E-04
64	215101 s at	CXCL5	2 351	0.000133	64	11743917 a at	FKBP5	1 90982051	3 56E-07
CE.	202022 o ot	CVPP	2.001	2.01E.09	CF.	11720566 o. ot		1 66716042	5.50E 01
60	203922_S_at	CIDD	2.031	2.01E-00	60	11739300_a_al	FRDFD	1.567 15045	5.51E-06
66	200046_at	DAD1	1.562	0.0000467	66	11739567_s_at	FKBP5	1.56700675	1.21E-05
67	/ 1007_s_at	DDR1	1.574	0.0000281	67	11746275_a_at	FKBP5	1.32384667	1.49E-06
68	31807 at		1 629	0.000303	68	11739565 a at	FKBP5	1 29194265	5 80E-06
00	207050 a at	DNALIO	1.020	0.0000004.0	60	11700000_a_at		1.20101200	4.000 00
69	207959_s_at	DINAH9	1.802	0.00000216	69	11/2/111_a_at	FINBPT	1.05590436	1.22E-03
70	209015_s_at	DNAJB6	3.962	0.000000707	70	11719447_s_at	GBP2	1.22408795	1.33E-03
71	207192 at	DNASE1L:	2.564	0.0000001	71	11720558 a at	GEM	1.12160607	8.99E-05
72	212538 at	DOCKO	1 713	0.00000234	72	11721625 s at	GLUI	1 51120615	1 18E-04
72	004404	EDNDA	1.110	0.000000201	72	11721020_0_ut	OLUL	1.01120010	0.055.05
13	204464_S_at	EDINKA	1.822	0.0000005	73	11725521_X_at	GLUL	1.42191889	0.000-000
74	220006_at	EFCC1	4.664	2.81E-11	74	11744337_a_at	GLUL	1.33984906	2.21E-04
75	205222 at	EHHADH	1.634	0.0000209	75	11758555 s at	GPR183	1.12888855	2.56E-04
76	200023 s at	EIE3E	1 744	0 00000432	76	11720496 at	GZMA	1 15665692	7 90F-04
77	200020_0_at		2,226	0.000000102	73	11715514 o. ot		1.17457659	1.000 01
	220024_5_ai	ELFS	3.220	0.0000079		11715514_a_at	TIERFUDT	1.17457050	1.052-03
78	214445_at	ELL2	1.823	0.000000127	78	11749257_a_at	HERPUD1	1.04771376	4.30E-03
79	206605_at	ENDOU	1.94	0.0000665	79	11741510_a_at	HERPUD1	1.04609966	1.12E-03
80	206191 at	ENTPD3	3 147	1 15E-12	80	11738103 at	HIST1H4F	1 08531829	4 71E-03
01	220077 x of	EDR/115	1 972	0.00000522	91	11716554 a ot		1.07762962	1 0/E 02
01	220977_X_at	EPD41L3	1.0/3	0.000000552	01	11710554_a_al	HLA-DIVIA	1.07702003	1.94E-03
82	212087_s_at	ERAL1	1.765	0.000000183	82	11746961_a_at	HLA-DMB	1.41276821	3.02E-03
83	203719_at	ERCC1	2.169	0.00000667	83	11758231_x_at	HLA-DPA1	1.88436573	1.44E-03
84	210158 at	FRCC4	2 414	0.0000302	84	11758417 s at	HI A-DPA1	1 29664615	3 64E-03
01	202240 of		1 500	0.00000246	95	11715592 o. ot		1.20001010	4 205 02
80	203249_at		1.525	0.0000240	85	11715565_5_at	TILA-DEAT	1.23343029	4.20E-03
86	205756_s_at	F8	3.433	0.000000411	86	11/5/511_x_at	HLA-DPA1	1.06871829	3.16E-03
87	203980_at	FABP4	2.969	3.03E-08	87	11758369_x_at	HLA-DPB1	2.91386444	1.26E-03
88	202916 s at	FAM20B	5.824	3.33E-18	88	11757801 x at	HLA-DPB1	2.37598179	4.14E-05
80	201880 at	FAM3C	1 969	0.00000411	80	11756073 x ot		1 8587/06	2 75E-03
03	201003_at	T ANIJO	1.303	0.00000411	09	11750075_X_at		1.0007400	2.750-00
90	216897_s_at	FAM/6A	2.11	0.000104	90	11759666_x_at	HLA-DPB1	1.13528504	2.70E-03
91	211333_s_at	FASLG	1.778	3.27E-09	91	11758772_x_at	HLA-DPB1	1.00083051	2.16E-03
92	210889 s at	FCGR2B	1.501	0.00000496	92	11753898 x at	HLA-DQA1	1.66624521	2.70E-04
03	206412 at	FER	1 033	6 15E-09	93	11758340 x at		1 18003316	1 29E-03
00	200412_at		1.500	0.102 00	55	11700040_X_at		1.100000010	0.505.00
94	205973_at	FEZI	1.008	0.0000042	94	11723194_x_at	HLA-DRB I	1.33985256	2.50E-03
95	215000_s_at	FEZ2	4.935	0.0000117	95	11740359_a_at	HOXD10 ///	1.41870709	6.13E-04
96	210655_s_at	FOXO3B	2.958	0.0000348	96	11746088_a_at	IFI44	1.11385803	2.45E-03
97	209990 s at	GABBR2	1 525	0.00000682	97	11745244 x at	IGHG1 /// IC	1 75767239	2 67E-03
00	206670 o ot		2 227	1 07E 10	09	11754022 x ot		1 70609074	4.07E.02
90	200070_5_at	GADI	2.321	1.07 E-10	90	11704032_X_at		1.70000974	4.07 E-03
99	209729_at	GAS2L1	1.526	0.00000142	99	11760929_x_at	IGHG1 /// IC	2.24258632	1.91E-03
100	210358_x_at	GATA2	1.535	0.0000545	100	11759852_x_at	IGHG1 /// IC	1.84556137	2.78E-03
101	202832 at	GCC2	1.982	0.00028	101	11750231 x at	IGHG1 /// IC	1.81942453	2.40E-03
102	205505_at	GCNT1	3 676	6 72E-12	102	11760819 v at		2 0115006	2 34E-03
102	200000_at		11 500	0.0000404	102	11761467 v -+		1 04407407	1 24E 00
103	200009_at	GDIZ	11.592	0.0000491	103	11/0140/_X_at	10103	1.94497137	1.34E-03
104	205527_s_at	GEMIN4	1.639	0.00000132	104	11753878_s_at	IL6ST	1.17053051	1.66E-03
105	208913_at	GGA2	1.969	2.49E-08	105	11753886_a_at	IL6ST	1.12498026	2.22E-04
106	206195 x at	GH2	2.667	3.9E-13	106	11753579 a at	IL6ST	1.01715915	2.83E-03
107	207800 at	GIP	1 602	0.0000159	107	11753667 s of	ITM2C	1 15708242	1 20E 02
107	201033_al		1.023	0.0000130	107	11755007_5_dl		1.10/30042	1.200-03
108	∠04763_s_at	GNAU1	2.737	5.89E-10	108	11/55661_a_at	KUNIVIA1	1.63/18949	2.16E-04
109	214605_x_at	GPR1	1.862	0.0000621	109	11744702_a_at	KCNMA1	1.15441684	3.92E-06
110	206190_at	GPR17	6.973	7.01E-10	110	11759671_s at	KCNMA1	1.13692974	2.33E-06
111	214864 s at	GRHPR	1 569	1 25E-09	111	11753220 a at	KCNMB1	1 34971615	4 19E-03
440	207454 -+	CRIKO	4 700	4.475.00	440	11717207 at	KI EO	1.02424752	
112	201454_at	GRINJ	1.709	1.17E-08	112	11/1/32/_at	NLF9	1.03434752	9.998-04
113	207036_x_at	GRIN2D	6.202	5.13E-15	113	11727695_a_at	KLRC4-KLF	1.16875607	2.84E-03
114	208465_at	GRM2	1.711	0.0000529	114	11716771_s_at	LOC102724	1.16659573	4.68E-04
115	210234 at	GRM4	1,746	0.0000577	115	11757798 s at	MAFB	1.09403829	2.41E-04
110	221540 of		1 520	0.00000663	110	117/5724 of	MALAT1	1 1712252	1 0/E 02
110	221049_dl	OTTO	1.539	0.000000003	110	11/40/24_dl		1.1/13233	1.040-03
117	210892_s_at	GTF2I	1.745	0.0000248	117	11/41548_a_at	MBNL1	1.20734077	5.51E-05
118	220142_at	HAPLN2	1.563	1.47E-10	118	11715484_a_at	MCL1	1.19341812	3.80E-03
119	207642 at	HCRT	1.632	0.0000706	119	11716846 a at	MS4A6A	1.38035675	1.45E-03
120	209558 s at	HIP1R	2 214	1 38F-10	120	11728397 at	MT1M	1,12490479	2 33E-05
120	a		2.214	1.000 10	120	<u>_</u> u		1.127007/3	2.000 00

121 214290 s at	HIST2H2A	1 898	0.000111	121	11757581 v at	MT1X	1 42126521	3 33E-06
122 21 1200_0_d		7.000	0.000111	121	11707001_x_at	MTAX	1.0040444	0.00E 00
122 214004_at	HUADIT	7.303	2.03E-11	122	11720305_a_al		1.2310441	0.09E-00
123 205580_s_at	HKH1	19.645	9.84E-15	123	11753900_x_at	MT2A	2.04/1/88	5.66E-04
124 206294_at	HSD3B2	4.462	4.52E-09	124	11732179_x_at	MYH11	2.02698393	1.16E-03
125 117_at	HSPA6	1.606	0.0000084	125	11732178_a_at	MYH11	1.89372325	1.14E-03
126 206855 s at	HYAL2	1.584	0.00000423	126	11732177 s at	MYH11	1,60839085	1.19E-03
127 200575 at	II 10PB	1 557	0.00000581	127	11727361 a at	MVIK	2 18303846	3.45E-03
127 20937 5_at		0.455	4.045.44	127	11727301_a_at		2.10303040	0.40E-00
128 206890_at	IL12KB1	2.400	4.81E-11	128	11725110_a_at	NDE I	1.39450863	1.00E-03
129 206295_at	IL18	3.65	1.44E-11	129	11756077_a_at	NDE1	1.20746145	1.75E-03
130 220322_at	IL36G	2.761	0.000123	130	11717994_a_at	NR4A1	1.23065009	2.33E-04
131 205798 at	IL7R	1.929	0.00000119	131	11717995 x at	NR4A1	1.00709846	9.00E-05
132 205376 at	INPP4B	1 749	0 0000878	132	11743830 a at	PAM	1 01407752	5 51E-04
122 2067.6_ at		1 729	2 055 09	122	117/2254 a of		1 1001/269	1 605 04
133 200700_at	ITCD 4	1.720	3.95E-00	100	11745554_a_al		1.19914300	1.092-04
134 204990_S_at	IIGB4	2.871	0.000146	134	11716975_a_at	PDK4	1.23896496	2.13E-05
135 205842_s_at	JAK2	2.754	0.000000148	135	11717168_a_at	PER1	1.42894769	1.44E-06
136 203845_at	KAT2B	1.67	0.000105	136	11756898_a_at	PGM5	1.30434564	3.88E-03
137 215138_s_at	KAZN	1.523	0.0000312	137	11739541_a_at	PIK3R1	1.01778154	2.87E-03
138 205903 s at	KCNN3	2 262	0 00000925	138	11754033 a at	PLA2G2A	2 06029949	4 23E-04
130 211/86 s at	KCNO2	1 722	0.0000206	130	11731550 a at	PLSCR4	1 051/0752	2 17E-04
109 211400_3_4		0.070	7.505.40	100	11731330_a_at		1.00140702	2.17 -04
140 206017_at	KIAA0319	3.378	7.59E-10	140	11749039_x_at	PNRC1	1.42600701	1.09E-03
141 206551_x_at	KLHL24	1.581	3.45E-10	141	11752095_a_at	PTPRC	1.52148709	1.54E-03
142 220646_s_at	KLRF1	1.677	0.0000155	142	11748907_a_at	RARRES3	1.09580795	3.87E-03
143 200650 s at	LDHA	1.615	9.28E-08	143	11743171 a at	RCSD1	1.02309077	6.45E-05
144 217173 s at		1 575	0.0000135	144	11742765 at	RGS1	1 74008017	2 00E-04
145 207400 ot	LECT2	1.670	0.0000100	145	11715757 a of	PCS2	1 69204022	2.002.01
145 207409_at	LECIZ	1.509	0.000239	140	11715757_a_al	NG32	1.00204932	2.302-04
146 210731_s_at	LGALS8	1.537	0.00000212	146	11/5/1//_s_at	RNF149 ///	1.56097385	1.36E-03
147 215929_at	LINC00837	2.076	5.69E-08	147	11763955_at	SCARNA10	1.3486253	1.15E-03
148 208186_s_at	LIPE	1.576	0.000262	148	11757260_at	SCARNA10	1.29938282	3.67E-03
149 219181 at	LIPG	1.518	0.0000336	149	11731433 a at	SEPP1	1.70707504	2.02E-03
150 220764 at	10010537	1 519	0.000127	150	11741874 x at	SEPP1	1 6216541	3.68E-04
151 207762 ot		1.571	0.000125	151	11720606 a at	SEDD2	1 09947004	2 00E 02
151 207762_at		1.5/1	0.000175	151	11720000_a_at	SFRFZ	1.90047094	2.00E-03
152 209840_s_at	LRRN3	1.545	0.000108	152	11745903_a_at	SLAMF7	1.1774388	2.01E-03
153 214460_at	LSAMP	2.02	0.000205	153	11742188_a_at	SLC4A4	1.21436581	4.28E-03
154 203534_at	LSM1	3.983	2.25E-09	154	11747948_a_at	SMAP2	1.53630573	6.75E-06
155 206609 at	MAGEC1	2.012	0.0000456	155	11719845 a at	SMAP2	1.21037222	2.57E-07
156 209014 at	MAGED1	12 511	3 3E-17	156	11757163 at	SNORA54	1 29341769	2.66E-03
157 206296 x at	MAD4K1	2 5/10	4 23E-15	157	1175/272 x at	SNRPN ///	1.05152880	3 14E-04
157 200290_X_at	IVIAF 4K I	2.049	4.232-13	157	11704272_X_dl		1.00102009	3.14E-04
158 206040_s_at	MAPK11	1.671	5.47E-09	158	11732913_a_at	SP140	1.3111065	3.05E-04
159 221047_s_at	MARK1	1.683	0.0000285	159	11752251_a_at	SPARCL1	1.87432684	2.88E-04
160 210958_s_at	MAST4	1.907	0.000123	160	11725023_a_at	SPARCL1	1.79961726	1.30E-04
161 216567_at	MBP	1.611	5.24E-08	161	11730298_a_at	SPARCL1	1.65258726	5.26E-04
162 205386 s at	MDM2	3 215	1 45E-15	162	11742710 a at	SRGN	1 90330077	5 20E-05
163 214778 at	MEGE8	1 875	0 00000694	162	11760894 s of	SRSE5	1 09644838	4 13E-03
164 214072 of	MCEAF	1.075	0.0000000000000000000000000000000000000	103	11710264 o -+	STECALNA	1 46654500	-+. 13L-03
104 214972_at	IVIGEAD	1.505	0.000285	164	11710304_a_at	STOGALINA	1.40001038	2.07E-03
165 221177_at	MIA2	1.604	0.000122	165	11726689_a_at	STAT1	1.07236897	3.27E-03
166 221365_at	MLNR	2.389	0.000257	166	11728497_s_at	SVIL	1.0341706	4.54E-03
167 220688_s_at	MRTO4	2.04	7.95E-08	167	11755757_a_at	SYNM	1.9106941	3.43E-03
168 207496 at	MS4A2	2.302	0.00000468	168	11740786 a at	SYNM	1,17753855	4.83E-04
169 210533 at	MSH4	1 945	1 36E-08	169	11731557 at	SYNPO2	1 40553675	3.08E-03
170 204056 of	MTAD	1.340	2 47E 10	109	11721001 c ct		1 16252209	1 04E 02
170 204930_at	MARA	4.372	2.4/E-10	170	11721091_a_at		1.10203308	4.04⊑-03
1/1 216095_x_at	MIMR1	1.822	0.000468	171	11763675_at	THEMIS2	1.14058077	2.61E-04
172 216671_x_at	MUC8	1.687	0.000125	172	11752610_a_at	THEMIS2	1.09772573	2.03E-04
173 206717_at	MYH8	1.967	1.83E-10	173	11721615_a_at	THEMIS2	1.06982214	1.40E-04
174 219728 at	MYOT	1.531	0.0000224	174	11718611 at	TP53INP1	1.43723214	2.49E-04
175 220656 at	NAA16	1 88	0 000294	175	11722369 x at	TRIM22	1 15435786	3 09E-04
176 207270 c ct	NEDI	1 546	2 7/E 11	175	11750170 c ct	TDIM22	1.02612624	2 62E 04
170 207279_S_AT	NEDL	1.516	3.74E-11	176	11750170_a_at		1.02012024	3.03E-04
177 215005_at	NECAB2	2.151	1.77E-09	177	11/1/830_a_at	1SC22D3	2.15434735	1.44E-05
178 210162_s_at	NFATC1	3.308	5.37E-08	178	11717829_s_at	TSC22D3	1.92113641	9.49E-05
179 210268_at	NFX1	1.562	0.000154	179	11751415_a_at	TSC22D3	1.75332462	1.92E-06
180 219594_at	NINJ2	1.794	0.00000136	180	11719030_a_at	TSPYL2	1.33232171	5.34E-04

	181 207075_at	NLRP3	1.821	0.0000317	181	11752765_s_at	TXNIP	1.76426085	5.38E-05
L	182 205581_s_at	NOS3	10.186	1.3E-15	182	11748543_a_at	TXNIP	1.7370294	2.41E-05
Γ	183 205460_at	NPAS2	1.545	0.00000431	183	11717190_s_at	TXNIP	1.72707991	1.41E-05
	184 216344 at	NPHP4	1.677	0.0000442	184	11748544 s at	TXNIP	1.4782812	3.21E-06
	185 205259 at	NR3C2	1.749	0.0000442	185	11756431 s at	TXNIP	1.46024573	5.76E-05
	186 204621 s at	NR4A2	1 963	0.000217	186	11746454 a at	USP15	1 01510179	6.43E-04
F	187 214632 at	NRP2	1 931	0.0000209	187	11746616 a at	WSB1	1 10798479	6 77E-04
F	188 201173 x at		1.551	0.00000203	188	11720371 a at	7BTB16	1.10730473	2.02E-04
F	100 201175_A_at	ODCM	1.011	2.265.00	100	1172501_a_at		1.01010032	2.02L-04
\vdash	109 200215_at	OPCIVIL	1.900	2.30E-09	109	11715091_5_at	26630	1.1520/5/5	3.212-03
⊢	190 221327_S_at	OPINTIVIVV DODI/O	1.94	0.0000654					
	191 206880_at	P2RX6	1.713	0.0000174					
	192 220005_at	P2RY13	3.391	5.52E-10					
	193 210160_at	PAFAH1B	2.373	0.00000206					
	194 208051_s_at	PAIP1	1.694	3.39E-10					
	195 218886_at	PAK1IP1	1.541	0.000112					
	196 205962_at	PAK2	2.111	0.0000115					
	197 206594_at	PASK	4.429	2.47E-10					
	198 205253_at	PBX1	1.67	7.67E-09					
	199 208366_at	PCDH11X	1.517	0.000217					
	200 211877_s_at	PCDHGA1	2.242	0.000292					
	201 214826_at	PDE12	2.176	0.0000236					
	202 210937 s at	PDX1	2.017	0.000128					
	203 200886 s at	PGAM1	2.811	1.24E-17					
	204 204049 s at	PHACTR2	1.54	0 00000174					
	205 207081 s at	PI4KA	1 765	0.0000175					
F	206 204691 x at	PLA2G6	1.700	0.0000561					
\vdash	200 204001_A_at		1.000	0.0000000128					
F	207 203470_3_at		1.000	1 0/E 09					
\vdash	200 204019_5_dt		1.001	0.000161					
\vdash	209 212235_at	PLANDI DMC2D5/5	1.705	0.000161					
\vdash	210 213893_x_at	PMS2P5/F	1.522	0.00000489					
	211 210830_s_at	PON2	1.55	0.000175					
	212 203338_at	PPP2R5E	1.656	6.12E-09					
	213 209766_at	PRDX3	1.537	0.0000116					
	214 216051_x_at	PRINS	1.695	0.000333					
	215 207957_s_at	PRKCB	2.035	0.00000016					
	216 209334_s_at	PSMD9	1.942	0.000159					
	217 209852_x_at	PSME3	1.867	0.0000111					
	218 206361_at	PTGDR2	5.384	2.81E-11					
	219 207238_s_at	PTPRC	10.284	3.43E-21					
	220 205924 at	RAB3B	1.772	2.76E-11					
	221 208640 at	RAC1	1.581	1.43E-08					
	222 205326 at	RAMP3	1 523	0.0000676					
	223 213852 at	RBM84	1 556	2 4QF_08					
\vdash	224 205091 v st	RECOL	2 478	0 0000136					
\vdash	224 200001_X_dl	RECO	1 7/1	0.00000130					
\vdash	220 1000_at	DCD1	1.741	0.000032					
⊢	220 203 109_at		1.783	0.0000148					
L	227 211872_s_at	KG211	11.528	2.82E-12					
L	228 202976_s_at	KHOB IB3	3.369	5.04E-13					
L	229 206154_at	RLBP1	2.866	0.0000545					
	230 220329_s_at	RMND1	1.744	0.00000103					
L	231 206845_s_at	RNF40	2.47	8.58E-09					
L	232 207939_x_at	RNPS1	1.507	0.000187					
Ĺ	233 206608_s_at	RPGRIP1	1.814	0.0000333					
	234 213959_s_at	RPGRIP1L	2	0.0000159					
	235 200010_at	RPL11	3.48	0.000163					
	236 200022 at	RPL18	1.7	0.0000184					
F	237 200029 at	RPL19	1.529	1.59E-08					
F	238 207283 at	RPL23AP	1 558	0.0000649					
F	239 200026 at	RPI 34	1 563	7 73F-10					
\vdash	200 200020_at	RPS13	2 800	0.00000262					
L.,	240 2000 10_ai	14 010	2.090	0.00000202					

									1
241 2	200017_at	RPS27A	4.005	0.00000214					
242 2	200024_at	RPS5	1.51	0.00000322					
243 2	200858_s_at	RPS8	1.869	2.52E-08					
244	218166 s at	RSF1	2,962	0.000000476					
245	200042 at	PTCB	3 203	0.000/3					
245 2	200042_at	DTNA	5.205	1 72E 09		 			
240 2	211509_5_at	R IIN4	5.452	1.73E-00					
247 2	205528_s_at	RUNX111	14.916	8.85E-14		 			
248 2	216162_at	SBNO1	1.596	0.000266					
249 2	206799_at	SCGB1D2	4.654	2.57E-11					
250 2	207295 at	SCNN1G	2.061	0.000000183					
251 2	206832 s at	SEMA3E	1 536	0 000194					
252	205405 at	SEMA5A	1 723	0.000016					
252 2	200400_at	SEDT11	1.725	0.000310		 			
253 4	214293_at	SEPTIT	1.035	0.000184					
254 2	208313_s_at	SF1	2.489	0.0000111					
255 2	214781_at	SHANK1	1.507	0.0000398					
256 2	214095_at	SHMT2	2.51	7.95E-12					
257 2	217278_x_at	SHOX2	1.939	0.00000746					
258 2	206510 at	SIX2	3.943	2.13E-11					
259	210423 s at	SI C11A1	2 605	7 82E-08					
200 /	205244 c of	SI C12A2	2.000	0.000262					
200 2	200244_5_al	SLC13A3	2.203	0.000202		 			
261 4	205074_at	SLC22A5	5.112	1.13E-12		 			
262 2	201802_at	SLC29A1	1.974	3.02E-08					
263 2	220413_at	SLC39A2	3.303	2.23E-14					
264 2	217859_s_at	SLC39A9	1.924	0.00000856					
265	205920 at	SLC6A6	1.539	0.000017					
266 2	215469 at	SI ITRK5	1 741	7 35E-08					
267	206565 x at	SMA4	1 5/6	3 03E-08					
207 2	200000_x_al	SMA	1.040	0.000457					
268 2		SIVIPDZ	1.904	0.000457					
269 2	206360_s_at	SOCS3	2.154	0.00000274					
270 2	210536_s_at	SPAM1	2.814	0.0000835					
271 2	215383_x_at	SPG21	2.672	0.000000424					
272 2	209857 s at	SPHK2	1.677	0.0000271					
273	200044 at	SRSE9	13 747	0 000187					
274	215710 at	ST3GAL4	1 710	0.000134		 			
274 2	213710_at	0130AL4	1.713	0.0000404					
2/5 4	207524_at	517	1.608	0.00000707					
276 2	211078_s_at	STK3	1.678	4.48E-09		 			
277 2	200783_s_at	STMN1	1.556	3.74E-11					
278 2	210247_at	SYN2	1.637	5.36E-08					
279 2	206161_s_at	SYT5	1.868	0.0000196					
280 2	221393 at	TAAR3P	1.516	0.0000605					
281	204877 s at	TAOK2	1 534	0.00000156					
282	20/031_ot	TCE21	1 580	0.000000100					
202 2	204931_al	TOF21	1.009	9.902-00		 			
283 4	210776_x_at	ICF3	2.248	0.000102					
284 2	205254_x_at	ICF7	1.883	0.00000201		 			
285 4	41037_at	TEAD4	1.597	0.00000121					
286 2	214476_at	TFF2	1.577	8.42E-08					
287 2	207334_s_at	TGFBR2	1.512	0.00000688					
288 2	206260 at	TGM4	2.96	0.00000162					
280	208700 s at	ТКТ	1 907	0.0000063		1	1	1	
200 2	216100_c_at		1.001	0.00000000		 			
230 4	210100_3_al		1.3/4	0.0000237		 			
291 2	20011/_at		2.45	0.0000111					
292 2	203375_s_at	IPP2	3.139	2.21E-08					
293 2	210733_at	TRAM1	1.604	0.0000226					
294 2	210159_s_at	TRIM31	4.325	9.88E-08					
295 2	200668_s_at	UBE2D3	1.897	2.08E-10					
296 2	217825_s at	UBE2J1	1.569	0.000032					
297 2	220083 x at	UCHL5	1,797	0.000043					
298	215737 x at	USF2	1 541	0 0000408					
200 /	203940 e at	VASH1	2 206	2 /5E-11					
299 4	2000+0_5_dl	VDCCC	2.200	2.40E-11		 			
300 2	207045_at	VP550	8.059	0.00000151		 			
301 2	211992_at	WNK1	3.229	2.47E-10		 			
302 2	205648_at	WNT2	2.101	6.86E-14					
303 2	210561_s_at	WSB1	1.815	0.000119					
304 2	217065_at	YME1L1	1.504	0.00000134					
305	212455 at	YTHDC1	1.565	0.000395					
306	200047 s at	YY1	3 462	0 000173					
207	214482 of	7BTB25	1 517	0.0000/17					
307 4	206744 = -	201020	1.017	0.00000417		 			
308 2	∠∪0/44_S_at		2.136	0.0000305		 			
309 2	207296_at	∠NF343	1.733	0.000162					
310 2	216780_at	ZNF443	3.139	3.9E-09					
311 2	205494_at	ZNF821	2.68	0.0000208					

Down-re	egulated ger	nes in meta	static colore	ectal cancer versus	Down-regu	Down-regulated genes in residual colorectal tumors after CRT versus pre-					
primary tumor (GSE68468, total 222 genes, P<0.0005, FC≤1.5)					treatn	treatment tumors (GSE93375, total 64 genes, P<0.005, FC≤2)					
© 2000-20	17 QIAGEN	All rights	reserved.		© 2000-20 ⁴	© 2000-2017 QIAGEN. All rights reserved.					
#	ID	Symbol	Expr Fold Change	Expr p-value	#	ID	Symbol	Expr Fold Change	Expr p-value		
1	202502 at	ACADM	-1.886	0.000114	1	11737746 a a	ADGRG1	-1.4489671	7.45E-04		
2	205213 at	ACAP1	-3.236	0.0000106	2	11732450 s a	AGRN	-1.214762	1.48E-03		
3	206811 at	ADCY8	-1.533	0.000397	3	11751629 a a	ASF1B	-1.0696494	8.92E-04		
4	209614 at	ADH1B	-1.813	0.0000293	4	11732853 at	ATP1B4	-1 2429976	2 27E-03		
5	203014_a		-1 687	0.00000233	5	11754109 s a	BIRC5	-1 6215812	3.81E-03		
6	200021_3_		-1 997	0.00000221	6	11747653 x a	CDC25B	-1 0178781	3.00E-03		
7	222100_at		-3.46	0.000201	7	11747652 a a	CDC25B	-1 0207/03	4 93E-03		
	220505_at		1 621	0.0000107	0	11759479 c o		1 2552096	4.35E-05		
	214492 c		-1.031	0.0000172	0	11756060 x a	CDCA7	1 202222	3.00L-03		
10	214403_S_		-1.015	0.000113	9	11736009_X_a		-1.202233	4.43E-03		
11	201070_at		-1.901	0.00000574	10	11720700_a_a		-1.0604103	7.00E-04		
11	217002_8_	ARLOD	-1.90	0.0000004	11	11720235_d_d		-1.3013933	2.50E-03		
12	213700_5_	AJOAD	-1.001	0.00000190	12	11724072_d_d		-1.0400924	4.40E-03		
13	204903_X_	ATG4B	-1.648	0.0000207	13	11715290_s_a	CLDIN3	-1.0663775	3.90E-03		
14	204516_at	ATXN/	-2.477	0.0000659	14	11762083_at	CSNK2A1	-1.0059327	1.69E-03		
15	219688_at	BBS7	-1.885	1.04E-08	15	11/54114_a_a	CXCL1	-1.0020461	9.58E-04		
16	203755_at	BUB1B	-1.583	0.000000444	16	11733296_s_a	CYP4F2 /// (-1.096088	3.18E-03		
17	219009_at	C14orf93	-3.694	1.19E-12	17	11729446_a_a	DCT	-1.0069681	3.15E-03		
18	3 218130_at	C17orf62	-2.558	4.36E-10	18	11763218_at	DEFB121	-1.0514658	4.89E-03		
19	219010_at	C1orf106	-2.809	8.53E-11	19	11758393_s_a	DNAJC30	-1.1027143	2.00E-03		
20	219288_at	C3orf14	-1.717	0.0000187	20	11723166_a_a	EPHB2	-1.3215353	1.58E-03		
21	204508_s_	CA12	-1.511	0.00000557	21	11747996_a_a	ETV4	-1.1656323	1.18E-03		
22	214880_x_	CALD1	-1.61	0.00000907	22	11762530_x_a	FERMT1	-1.4045838	9.95E-05		
23	212252_at	CAMKK2	-1.877	0.000198	23	11755613_a_a	FERMT1	-2.3591342	1.19E-04		
24	211208_s	CASK	-1.979	0.000011	24	11758028_s_a	FOXQ1	-1.0496865	3.48E-03		
25	202763 at	CASP3	-2.549	5.88E-10	25	11749970 a a	GINS1	-1.035843	2.02E-04		
26	220018 at	CBLL1	-1.533	0.000042	26	11755276 a a	GPX2	-1.7622165	4.95E-03		
27	204609 at	CCDC85B	-1 522	0.0000521	27	11754183 s a	HMGB3	-1 1179417	3 13E-03		
28	209953 s	CDC37	-1 955	0.0000117	28	11730058 at	HNF4A	-1 5551777	3.31E-03		
20	214464 at	CDC42BP	-1 674	0.000136	20	11737053 s a		-1 071725	3 31E-03		
30	207172 s	CDH11	-1 763	0.000143	30	11753017 s a		-1 4465407	9.12E-04		
31	222063 s	CDS1	-2 305	0.00000110	31	11717096 a a	HSPH1	-1 2336645	1.54E-03		
22	219542 of	CED55	4 357	2 96E 09	22	11752661 a a		1 4910605	1.040 00		
22	202526 c		6.044		32	11756752 a a		1 2465217	5 29E 04		
	203330_5		1 522	0.000000114	33	11730735_a_a	IQGAF 3	1 500645	0.05E.06		
25	210710_5		1.525	0.0000307	34	11723090_a_a		1 179724	9.03L-00		
	220739_S_		-1.520	1.000012	30	11754705_5_a	KFINA2 /// LC	-1.170724	1.49E-04		
30	210867_at	CNUT4	-3.012	1.3/E-20	30	11752331_S_a	LOC 1053692	-1.0071931	5.10E-04		
3/	220095_at	CNILN	-1.77	0.000164	3/	11751835_a_a		-1.14/656/	3.94E-03		
38	203073_at	COG2	-2.591	0.0000325	38	11743722_x_a	MARCKSL1	-1.0350974	1.79E-05		
39	212937_s_	COL6A1	-3.201	0.0000153	39	11742996_a_a	MCM3	-1.0068156	5.18E-05		
40	218358_at	CRELD2	-3.953	0.0000348	40	11/21142_a_a	MKI67	-1.1934876	2.57E-04		
41	214334_x_	DAZAP2	-1.579	0.000245	41	11721143_a_a	MKI67	-1.3629497	6.51E-05		
42	2 201571_s_	DCTD	-1.824	0.000259	42	11746135_x_a	NOP56	-1.0688361	4.24E-04		
43	212384_at	DDX39B	-1.726	0.000099	43	11755342_x_a	NOP56	-1.1078862	8.20E-05		
44	209190_s_	DIAPH1	-1.529	0.000163	44	11758679_s_a	NOP56	-1.1889887	3.52E-04		
45	213546_at	DKFZP586	-1.922	3.02E-08	45	11746134_s_a	NOP56	-1.2223153	3.48E-04		
46	215266_at	DNAH3	-2.064	7.19E-11	46	11718796_x_a	PAQR4	-1.152361	3.83E-05		
47	215252_at	DNAJC7	-1.645	0.00000241	47	11756635_a_a	PLCB4	-1.080865	4.85E-04		
48	206531_at	DPF1	-3.181	1.17E-16	48	11735722_a_a	PNKD	-1.1099886	4.45E-04		
49	205031_at	EFNB3	-1.612	6.99E-08	49	11743950_s_a	POU4F1	-1.0839214	3.57E-03		
50	205249_at	EGR2	-1.503	0.000306	50	11758134_s_a	PPM1H	-1.0455768	1.19E-04		
51	212225 at	EIF1	-1.57	0.000143	51	11759665 a a	SLC1A6	-1.1189464	1.64E-03		
52	220029 at	ELOVL2	-1.504	0.000143	52	11742878 a a	SLC52A2	-1.1118376	4.70E-03		
53	210868 s	ELOVL6	-3.09	1.13E-08	53	11720333 a a	SLC5A6	-1.1279472	8.28E-04		
54	202017 at	EPHX1	-1.521	4.92E-08	54	11757660 a a	SNRPB	-1.2254542	1.71E-03		
55	206674 at	FLT3	-2 814	1 78F-09	55	11719561 s a	SOX4	-1.1617515	1 78F-03		
56	207178 s	FRK	-2 165	5.98E-08	56	11720447 s a	SOX9	-1.2658216	9 11F-04		
57	215052 at	FRMPD4	-3 072	3 46F-08	57	11751072 a a	SPATA2	-1 6113186	3 71F-04		
59	209702 at	FTO	-1 736	0.402 00	50	11717624 at	TBI 2	-1 0463377	1 43E-03		
50	203725 of	GADD454	-1 630	8 35E-12	50	11733681 2 3	TMEM132D	-1 0171428	4 60F-03		
03	210565 of	GCGP	-1 60	0.002 12	60	11721633 e o		-1 0734433	1 77 - 02		
00	/ ≤ 10000_at	0000	-1.09	0.000403	60	11121000_8_d	11111111111	1.01 34433	1.11 -03		

61	214106_s_GMDS	-1.541	0.000407	61	11721632_a_a	TMEM97	-1.5441796	2.47E-04
62	204220_at GMFG	-2.216	2.43E-10	62	11720970_at	TOP2A	-1.6254268	6.33E-05
63	204248_at GNA11	-1.952	0.0000935	63	11750598_s_a	TPX2	-1.1105067	5.57E-04
64	205010_at GNL3L	-2.031	0.00000234	64	11756670_x_a	TUBA1C	-1.0727344	3.86E-03
65	204984_at GPC4	-1.557	0.00000113	65	11717939_a_a	U2AF2	-1.1703863	2.64E-03
66	205419_at GPR183	-5.877	1.92E-09	66	11733695_a_a	UBE2C	-1.1441817	4.15E-04
67	214586_at GPR37	-2.726	0.0000678	67	11724328_a_a	UBE2C	-1.3292567	1.62E-04
68	206712 at GRTP1	-1.636	0.0000241	68	11761188 x a	VIL1	-1.0943304	3.81E-03
69	220190 s GTF2A1	L -1.646	0.0000282	69	11729734 a a	VIL1	-1.1039811	3.27E-03
70	202487 s H2AFV	-1.74	2.86E-08	70	11752343 a a	XKRX	-1.0264156	4.72E-04
71	202815 s HEXIM1	-3.628	2.34E-15	71	11755870 s a	YTHDF1	-1.0399127	6.59E-04
72	207721 x HINT1	-2.293	0.0000063	72	11738998 a a	ZDHHC9	-1.0403087	4.75E-03
73	211931 s HNRNP	A3 -1 822	0.00000907	73	11756626 s a	ZWINT	-1 5228266	6 16E-05
74	205601 s HOXB5	-1 653	0.000000782					0.1.02 00
75	206745 at HOXC11	-2 335	0 000404					
76	205454 at HPCA	-1 742	0.000372					
77	201610 at ICMT	-2 792	6 46F-09					
78	210666 at IDS	-1.816	0.000467					
70	2005/1_at IGE1	-2 557	0.0000407					
80	203041_at IGI \/1_4	4 -2.806	0.0000343					
91	210075_at IGEV1-4	4 -2.000	0.0000732					
01	220034_at IL23A	-1.012	0.0000490					
02	200007 at INDDEE	-1.043	0.000102					
03	203007_at INPPOF	-1.007	0.00000151					
04	35776_at 115111	-3.300	0.0000188					
60	213/15_S_KANK3	-2.017	0.0000471					
80	220412_X_KUNK7	-1.805	0.000055					
87	212355_at KHNYN	-1.655	0.0000659					
88	212303_X_KHSRP	-1.666	0.0000478					
89	205306_X_KMU	-1.667	0.000366					
90	34031_I_aIKRIT1	-4.243	2.13E-11					
91	213287_s_KRT10	-1.533	0.000191					
92	210306_at L3MBTL	1 -1.843	0.00000286					
93	215516_at LAMB4	-3.142	0.00000016					
94	212682_s_LMF2	-1.527	0.000183					
95	211050_x_LOC100	28 -2.116	0.0000668					
96	216455_at LOC101	92 -3.26	0.0000525					
97	214110_s_LOC654	34 -1.931	0.000328					
98	210909_x_LPAL2	-1.61	0.0000118					
99	202737_s_LSM4	-1.626	0.000103					
100	202903_at LSM5	-2.034	0.0000103					
101	202729_s_LTBP1	-1.841	0.0000238					
102	214612_x_MAGEA	3/I -1.512	0.000281					
103	202653_s_MARCH	7 -2.382	0.00000629					
104	201555_at MCM3	-1.642	2.44E-09					
105	202610_s_MED14	-1.505	0.00000368					
106	221192_x_MFSD11	-1.977	0.00000254					
107	204580_at MMP12	-1.872	0.00000496					
108	219909_at MMP28	-1.563	0.00038					
109	219967_at MRM1	-1.636	1.77E-08					
110	218890_x_MRPL35	-1.755	8.79E-08					
111	219281_at MSRA	-1.531	0.000031					
112	215793_at MTMR7	-1.606	0.000131					
113	209596_at MXRA5	-1.772	0.0000122					
114	202431_s_MYC	-1.567	0.00000242					
115	208148_at MYH4	-1.576	0.0000841					
116	202608_s_NDST1	-1.845	0.000496					
117	204325_s_NF1	-1.968	0.0000041					
118	217150_s_NF2	-1.567	0.0000467					
119	204239_s_NNAT	-2.887	0.0000401					
120	214685_at NOP14-/	AS -2.066	0.0000796					

121 206476 s NOVA2	-2 15	4 76E-13				
122 210444 at NPV6R	-1 536	0.0000539	 			
122 210444_at NI 101	-1.000	0.0000000303	 			
123 207877_S_NVL	-1.781	0.00000124	 			
124 214306_at OPA1	-1.785	0.0000453	 			
125 201800_s_OSBP	-1.574	0.000343				
126 207576_x_OXT	-2.304	9.79E-11				
127 210401_at P2RX1	-1.512	0.0000847				
128 200815 s PAFAH1B	-2.106	0.0000735				
129 213264 at PCBP2	-1 588	0.00000212				
130 20//91 at PDE/D	-2 004	0.00000665	 			
121 210620 et DDZK1ID1	2.004	0.00000000	 			
131 219030_at PD2KTFT	-3.090	0.000116	 			
132 205736_at PGAM2	-1.728	0.000131	 			
133 218387_s_PGLS	-1.742	0.000212	 			
134 210041_s_PGM3	-2.562	2.24E-09				
135 206369_s_ PIK3CG	-8.185	1.99E-20				
136 202328_s_PKD1	-5.46	0.00000414				
137 207717 s PKP2	-1.788	0.000306				
138 206311 s PLA2G1B	-1 645	0.0000423	 			
130 200507 s PNIMA2	-1 5/3	0.0000317				
140 205000 et DOLE2	2.004	0.0000317				
140 203909_at POLE2	-2.094	0.00000162				
141 220632_s_POM12	-1.522	0.000338				
142 205478_at PPP1R1A	-2.212	0.000042				
143 211169_s_ PPP1R3A	-1.55	0.0000197				
144 202186_x_PPP2R5A	-2.255	0.0000295				
145 219515 at PRDM10	-2.665	0.00000158				
146 209677 at PRKCI	-1 643	0 0000426				
147 217786 at PRMT5	-2 028	0.0000174				
149 202527 of DDDSAD2	-2.020	2 025 09				
140 20337_al FRF3AF2	-3.139	2.02E-00				
149 218613_at PSD3	-1.736	6.09E-09				
150 201532_at PSMA3	-1.538	0.00000147				
151 208408_at PTN	-2.056	0.0000108				
152 212013_at PXDN	-1.669	0.00000556				
153 202990_at PYGL	-2.461	4.55E-12				
154 212263 at QKI	-3.499	0.00038				
155 213970 at RABL3	-1 721	0.0000127				
156 213967 at RALVI	-2 736	1 01E-11				
150 210307_dt TAETE	1 002	0.0000175	 			
157 202465_5_ KAINDE I	-1.002	0.00000175				
158 202362_at RAP1A	-1.813	0.00000025	 			
159 204189_at RARG	-2.532	0.00032	 			
160 206221_at RASA3	-1.795	0.000264				
161 215089_s_RBM10	-1.523	0.0000545				
162 201394_s_RBM5	-1.689	2.49E-08				
163 212646_at RFTN1	-1.548	0.00000772				
164 206321 at RFX1	-1.539	0.000427				
165 214449 s RHOO	-1 509	0.0000134				
166 201528 at RPA1	-1 517	0.0000104				
100 201320_at RT A1	-1.517	0.0000133	 			
107 202040_al KMS 19	-1.340	0.00000113				
168 215495_S_SAMD4A	-1.572	0.00012				
169 210862_s_SARDH	-1.751	0.0000654				
170 204166_at SBNO2	-1.572	0.000172				
171 211733_x_SCP2	-1.587	0.0000264				
172 218265_at SECISBP2	-1.598	8.72E-08				
173 209719 x SERPINB3	-1.509	0.000363				
174 205933 at SFTBP1	-1.672	0.00000135				
175 214305 c SE3B1	-12 /36	0.00000100				
176 212542 -+ 000	1 010	0.00000119				
170 213343_at 300D	-1.012	0.00000187	 			
	-1.502	0.0000143				
178 205367_at SH2B2	-1.953	0.000107				
179 219083_at SHQ1	-1.578	0.00000131				
180 204967_at SHROOM2	-1.794	0.00000101				

181	204666_s_	SIKE1	-3.32	0.0000872			
182	222030_at	SIVA1	-1.622	0.000281			
183	205316_at	SLC15A2	-1.577	0.0000796			
184	220554_at	SLC22A7	-1.715	0.0000456			
185	213167_s_	SLC5A3	-5.084	0.0000102			
186	218317_x_	SLX1A/SL	-1.544	0.00000133			
187	204240_s_	SMC2	-1.592	0.0000205			
188	212926_at	SMC5	-1.513	0.0000398			
189	205315_s_	SNTB2	-1.994	0.0000382			
190	210000_s_	SOCS1	-2.26	0.0000127			
191	209891_at	SPC25	-1.59	0.00000481			
192	205861_at	SPIB	-1.508	0.000461			
193	210693_at	SPPL2B	-2.011	1.48E-09			
194	204675_at	SRD5A1	-1.524	0.00000237			
195	212632_at	STX7	-1.92	0.00000108			
196	201263_at	TARS	-1.731	0.00000527			
197	204654_s_	TFAP2A	-1.661	3.39E-08			
198	205015_s_	TGFA	-14.044	1.01E-10			
199	203833_s_	TGOLN2	-2.179	0.00000782			
200	206409_at	TIAM1	-1.633	0.000341			
201	221496_s_	TOB2	-1.787	0.00000123			
202	215382_x_	TPSAB1/T	-1.813	0.0000765			
203	210882_s_	TRO	-1.619	0.0000209			
204	222244_s_	TUG1	-1.776	0.0000315			
205	206828_at	TXK	-2.547	0.0000331			
206	217497_at	TYMP	-1.573	0.00000179			
207	203721_s_	UTP18	-1.594	0.000281			
208	210322_x_	UTY	-1.768	6.38E-10			
209	201336_at	VAMP3	-1.703	0.0000259			
210	213480_at	VAMP4	-1.852	0.0000153			
211	205586_x_	VGF	-2.128	0.0000634			
212	212606_at	WDFY3	-1.501	0.000489			
213	212638_s_	WWP1	-2.142	0.00000961			
214	214567_s_	XCL2	-3.928	0.0000607			
215	203043_at	ZBED1	-1.575	0.00000772			
216	204216_s_	ZC3H14	-2.238	0.00000875			
217	33148_at	ZFR	-2.161	0.0000726			
218	213073_at	ZFYVE26	-3.081	0.00026			
219	212545_s_	ZHX3	-2.102	0.000185			
220	207117_at	ZNF117	-3.822	0.00000151			
221	219604_s_	ZNF3	-1.551	0.000014			
222	219741_x_	ZNF552	-4.853	1.51E-09			