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Methods

Behavior tests

1. Animal housing and handling. Homozygous Htr3a knockout mice (Htr3a-/-) and WT littermate

controls were generated by breeding heterozygous mice. Mice were group housed (4-5 mice

per cage) under Specific Pathogen Free (SPF) conditions, given a 12h:12h light-dark cycle and

allowed ad libitum access to food and water. Before behavioral tests, mice were handled for 3

days and taken into the testing rooms 30-60 minutes.

2. Social approach task. The procedure for social approach task was slightly modified from the

method described previously [1]. Specifically, the testing apparatus was a rectangular clear

Plexiglas three chambers box (60 cm (L) x 40 cm (W) x 20 cm (H)). The dividing walls had

doorways allowing mouse access to each chamber. The stranger mice from the same strain

were habituated to placement inside the wire cage for 5 days prior to testing. Each test mouse

was first placed into the center chamber with open access to both left and right chamber, each

chamber containing an empty round wire cage. The wire cage (12 cm (H), 11 cm diameter)

allows nose contact between mice but prevents fighting. After 10 min of habituation, during

the social phase, an age-matched stranger was placed in the one wire cage while the opposite

one is empty. The test mouse was allowed to freely explore the social apparatus for 10 min to

test whether it prefers to interact with the object (O) or the stranger mouse (S1). Sniffing time

was plotted as a social preference index = TS1/(TS1+TO), TS1 – time for a testing mouse

interacting with a novel mouse (S1, Stranger1), TO – time for a testing interacting with an empty

cage (O, Object). To evaluate the preference for a novel stranger, the test mouse was then

tested in a second 10-min session, which contains a novel stranger (S2) in the opposite wire

cage. Sniffing time was plotted as a social preference index = TS2/(TS1+T S2), TS1 – time for a

testing mouse interacting with a familiar mouse (S1, Stranger 1), TS2 – time for a testing mouse

interacting with a novel mouse (S2, Stranger 2). The duration of sniffing, defined as positioning

of the nose of the test mouse within 2.5 cm of a cage, was measured using software

EthoVision XT11.5 (Noldus).

3. Home cage social interaction test. The social interaction test was performed as previously

described [2]. Each mouse was left alone in its home cage for 15 min. An unfamiliar male
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C57BL/6N mouse of the same age was then introduced. The behavior of the test mouse was

video-recorded for 10 min and scored the time of active interactions, including sniffing,

allo-grooming, mounting and following.

4. Olfactory habituation/dishabituation test. This test was conducted as previously described [3].

Each subject mouse was tested in a clean mouse cage. Cotton tipped swabs were used to

deliver odor stimuli. Olfactory cues were designed to measure familiar or unfamiliar odors,

with or without social odors. Three identical swabs (2-min for each swab) were orderly

assayed for the habituation to the same odor. Water, almond odor (prepared from

almondretrieve, 1:100 dilution in tap water), banana odor (prepared from imitation banana

flavor, 1:100 dilution), odor from cage 1 (social odor 1), odor from cage 2 (social odor 2) were

presented in sequence to assay the dishabituation to different odors. Water, almond odor, and

banana odor were prepared by dipping the cotton tip in the solution for 2 sec. Social odors

were prepared by wiping a swab in pattern across a soiled cage of unfamiliar mice of the same

sex. Time spent sniffing the swab was quantitated with a stopwatch by an observer. Sniffing

time was scored when the distance between mouse’s nose and the swab was 1 cm or shorter.

5. Self-grooming test. Mouse was placed in an empty cage without bedding. After 10-min

habituation, mouse behaviors were recorded for another 10-min. Self-grooming behavior was

defined as stroking or scratching of the body or face, or licking body parts. The cumulative

time spent in grooming all body regions were evaluated by using a stopwatch as described

previously [4].

6. Novel object recognition [5]. Short habituation session, mouse was placed into a Plexiglas

rectangular cage (22 cm height × 44 cm length × 22 cm width) for 5 min. In the

familiarization session (twenty-four hours after habituation session), the mouse was presented

with a pair of identical objects (either towers of Lego bricks or Falcon tissue culture flasks) 5

cm away from the walls. The time when a mouse shows any investigative behaviors (head

orientation or sniffing occurring, or entering an area within 1 cm around the object), is

considered as exploring time. Stopwatch was used to record the time spent exploring each

object until the total exploring time reached 20 seconds. During the testing trial (testing phase,

performed 24 hours later), one of the familiar objects was replaced by a novel object. The
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exploring time for the familiar or the novel object during the test phase was recorded until 20

seconds of total exploring time was reached.

7. Contextual fear conditioning. During training, mouse was first allowed to freely explore the

apparatus (MED-VFC-NIR-M; Med Associates) for 3 min, and then exposed to 4 times of

tone-foot shock pairings (tone, 30 sec, 80 dB; foot shock, 1 sec, 0.75 mA) with an interval of

80 sec. Twenty four hours after training, mouse was returned to the chamber for 2 minutes to

evaluate contextual fear memory. The percentage of freezing time during training and testing

was measured using Med Associates Video-Tracking and scoring software.

8. Elevated plus maze test. The test consists of an elevated, plus-sign-shaped runway that was

40 cm above the floor, with two wall-closed arms (10 × 50 cm), two open arms (10 × 50 cm)

and one intersection (10 × 10 cm). Mouse was allowed to acclimate to the testing room 1 hour

before the test. Then, each mouse was placed in the center of the EPM, facing the closed arm,

and was videotaped for 5 min. The time spent in the closed or open arms was quantified using

software EthoVision XT 11.5 (Noldus).

9. Open field test. The open field test was performed in a rectangular chamber (60 × 60 × 40 cm)

that was made of gray polyvinyl chloride and was monitored by an automated video tracking

system. The center area was illuminated by 25 W halogen bulbs (200 cm above field). The

mouse was gently placed in the center for 30 min. After each trial, the apparatus was swept

out with water that contained 0.1% acetic acid. The the distance moved were automatically

calculated using the DigBehv animal behavior analysis program (MED-VFC-NIR-M; Med

Associates).

10. Seizure susceptibility test. Pentylenetetrazol (PTZ) (SIGMA, USA) was dissolved in

physiological saline and administered intraperitoneally to the wild type mice and Htr3a-/- mice

(8-9 weeks old males; 20 g-27 g body weight) at a dose of 60 mg per kg body weight in a total

volume of 0.20-0.25 ml. The mice were monitored and video-recorded in a clean cage for 1

hour. The behavioral indicators of seizure activity were as follows [6]: (1) hypoactivity

(abdomen in full contact with the bottom of the cage in the resting position); (2) focal clonus

(of face, head, or forelimbs); (3) clonus (rearing, falling, and clonus of four limbs and tail); (4)

clonic (tonic seizure, tonic hindlimb extension, or death).
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11. Memantine treatment. Memantine was purchased from SIGMA (USA) and dissolved in saline.

Memantine treatment was conducted as previously described [7]. Memantine (5 mg/kg) or

saline alone (control) was administered to mice by intraperitoneal (i.p.) injection 30 min

before behavior tests, such as the social interaction test, social approach task, measurements of

repetitive self-grooming behaviors or the injection of PTZ. For behavior tests that require

training session and test session, such as novel object recognition test and contextual fear

conditioning test, memantine (5 mg/kg) or saline was i.p. injected into mice 30 min before the

training session and 30 min before test session. Behavior tests were performed as described

above. Electrophysiological recordings were performed as described above, with/without the

bath containing 1 µM memantine. The current changes were evaluated before, and 5 min after

application of memantine.

RNA-seq and differential expression analysis

Each RNA sample was extracted from dissected hippocampi of adult mice according to the

manufacturer’s protocol (RNAeasy Mini Kit, Qiagen, USA). The quality and yield of the isolated

RNAs were assessed using a NanoDrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Only RNAs with

a high RNA integrity number (RIN > 9) were selected and used for the subsequent sequencing. RNA

sequencing was performed at Novogene (Beijing, China) using Illumina NovaSeq. The paired-end

reads were aligned to the reference mice genome (mm10 assembly) and low-quality regions were

removed. A Picard tool, MarkDuplicates, was used to mark duplicate reads. Reference genome (mm10)

and annotation files were downloaded from UCSC Genome Browser. Reads numbers mapped to each

gene were counted using HTseq-count (v0.9.0) [8]. Genes with counts > 4 counts in at least 4 of 6

samples were defined as expressed genes in the analysis with DESeq2 (v1.20.0) [9]. Genes with CPM

(count-per-million) >1 in at least one of six samples were considered as expressed genes in the

analysis with edgeR (v3.22.5) [10]. Hippocampal expressed genes are intersection of the expressed

genes identified by DESeq2 and edgeR. Heatmap of differentially expressed genes (DEGs) and

principal component analysis (PCA) were carried out based on regularized log2-transformed data

using pheatmap package and plotPCA in DESeq2. Differential expression analysis on two groups was

performed using the DESeq2 and the edgeR (v3.22.5) [10], using a cutoff of FDR < 0.05 for DESeq2
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and p < 0.01 for edgeR. Differentially expressed genes (DEGs) was the intersection part of DESeq2

(adj.p < 0.05) and edgeR (p < 0.01).

Functional enrichment analyses for differentially expressed genes

1. Functional annotations of up-regulated and down-regulated genes were done using Database

for Annotation, Visualization and Integrated Discovery (DAVID) [11] tools (v6.8) and terms

were identified with FDR less than 0.05. Visualization and plot of top selected terms were

done using ggplot2 package (v3.0.0).

2. Data source for genes used for enrichment analyses: Autism candidate genes fromAutDB [12];

epilepsy candidate genes from HGMD [13], OMIM [14], PhenGenI [15], and keyword is

‘epilepsy’ for three databases; learning/memory related genes from KEGG and PubMed.

Human gene names were converted to orthologous mouse genes using the Ensemble BioMart

[16]. The p-values of enrichment of disease-related genes in DEGs was calculated using

Fisher’s Exact Test. The same method was used for up-regulated genes and down-regulated

genes.

Construction of hippocampal interactome and DEG Network

We constructed a hippocampal interactome by mapping 16,435 expressed genes from the mouse

hippocampal transcriptome to the whole mouse interactome from BioGRID [17], which contains 4,353

nodes and 9,618 edges. We mapped the 2,092 DEGs to the mouse hippocampal interactome to retrieve

hippocampal DEG Network containing DEGs and their first co-expressed neighbors. Co-expression

relationship was determined by a cutoff 0.75 of correlation coefficient, which was calculated based on

FPKM value (fragments per kilobase of transcript per million mapped reads) using WGCNA [18].

Self-loop edges and zero-degree nodes were removed.

Networks for autism, epilepsy and learning/memory

We mapped the 1,036 ASD candidate genes to the mouse hippocampal interactome to retrieve an ASD

Network containing ASD candidate genes and their first co-expressed neighbors. The same method

was also applied for retrieving epilepsy Network and learning/memory Network.
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Figure S1. Genotyping and behavioral deficits.

(A) Mutant offspring were identified by PCR and Sanger sequencing.

(B) Ablation of mutant sites in Htr3a in the hippocampus of Htr3a-/- mice were identified by RT-PCR and

qRT-PCR. The sizes (bp) of the DNA ladder are labeled on the left.

(C) Sociability (left bar plot): In the 10-min sociability phase of the social approach task, both Htr3a-/-

and WT mice showed preference to interact with a stranger mouse (S1, Stranger1) rather than an

empty cage (O, Object) (two-way ANOVA test, p = 0.0002, n = 12 for WT mice, p = 0.0090, n = 11

for Htr3a-/- mice). Social novelty (right bar plot): In the 10-min social novelty phase of the social

approach task, Htr3a-/- mice showed no significant preference to interact with a stranger mouse (S2,

Stranger 2) over a familiar mouse (S1, Stranger 1), while WT mice showed preference to interact with

the stranger mouse (S2) over the familiar mouse (S1) (two-way ANOVA test, p = 0.0017, n = 12 for

WT mice; p = 0.9308, n = 11 for Htr3a-/- mice).

(D) In the elevated plus maze test, Htr3a-/- and WT mice showed no difference of duration time in open

arms (Student’s t test, p = 0.8526, n = 8 for WT mice, n = 12 for Htr3a-/- mice).

(E) Htr3a-/- mice showed normal locomotor activity in the 5-min open field test (Student’s t test, p =

0.2714, n = 8 mice for each group).

(F) In the training phase of the novel object recognition test, Htr3a-/- and WT mice showed no preference

for the object (Student’s t test, p = 0.9353, n = 9 for WT mice, n = 10 for Htr3a-/- mice).
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Data are presented as boxplots (median and 5th-95th percentile whiskers), or as mean ± SEM., * p < 0.05; **

p < 0.01, *** p < 0.001.

Figure S2. Female Htr3a KO mice exhibited impaired social behavior and memory.

(A) In the 10-min sociability phase of the social approach task, there was no significant difference

between female knockout and WTmice (S1, Stranger1; O, Object) (Student’s t test, p = 0.2426).

(B) Compared with WT mice, female Htr3a-/- mice showed significantly decreased preference to

interact with a stranger mouse (S2, Stranger 2) over a familiar mouse (S1, Stranger 1) in the

10-min social novelty phase of the social approach task (Student’s t test, p = 0.0198).

(C) Compared with WT mice, female Htr3a-/- mice spent less time interacting with a stranger mouse

in the home cage social interaction test (Student's t test, p = 0.0116).
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(D) Social and non-social odors were presented to female mice three times in the olfactory

habituation/dishabituation test. Female Htr3a-/- mice spent less time sniffing social odors

compared to WT mice. Statistic tests: (1) two-way ANOVA, odor effect F14,255 = 14.09, p <

0.0001; genotype effect F1,255 = 21.94, p < 0.0001; interaction between odor and genotype F14,255 =

7.421, p < 0.0001; (2) Bonferroni’s multiple comparisons test, p < 0.0001 for the first test of the

mouse cage 1; p < 0.0001 for the first test of mouse cage 2.

(E) Female Htr3a-/- and WT mice spent a similar amount of time on self-grooming (Mann Whitney

test, p = 0.1128).

(F) In the EPM test, female Htr3a-/- and WT mice showed no difference of duration time in open

arms (Student’s t test, p = 0.8742).

(G) Female Htr3a-/- mice showed normal locomotor activity in 5-min open field test (Student’s t test,

p = 0.4041).

(H) In the training phase of the novel object recognition test, Htr3a-/- and WT mice showed no

preference for the object (Student’s t test, p = 0.4579). In the novel object recognition test phase,

Htr3a-/- mice spent less time exploring the novel object than WT mice (Student’s t test, p =

0.0060).

(I) In the contextual fear conditioning test, KO mice showed a lower percentage of freezing time in

the 4 times of the tone-shock paired training (two-way ANOVA test, F1,76 = 5.551, p = 0.0210).

After 24 hours, female knockout mice showed less freezing time in the contextual fear memory

test than WT mice (Student’s t test, p = 0.0035).

(J) Female Htr3a-/- mice showed a normal seizure state after PTZ injection (Mann Whitney test, p =

0.2445).

n = 10 for WT mice, n = 9 for Htr3a-/- mice; data are presented as boxplots (median and 5th-95th percentile

whiskers), or as mean ± SEM., * p < 0.05; ** p < 0.01
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Figure S3. Enhanced GABAergic transmission perturbed excitatory / inhibitory balance.

(A) Representative traces of sEPSCs (held at -70 mV) and sIPSCs (held at 0 mV) recorded on the

same neuron in the Htr3a-/- and WT mice. Scale bar: 20 pA, 2 s.

(B) Boxplots of sEPSC amplitude and frequency, showing normal sEPSC amplitude (Student’s t test, p

= 0.2673) and frequency (Student’s t test, p = 0.4711) in Htr3a-/- and WT mice.

(C) Boxplots of sIPSC amplitude and frequency, showing normal sIPSC amplitude (Student’s t test, p

= 0.3627) and increased sIPSC frequency (Student’s t test, p = 0.0029) in Htr3a-/- and WT mice.

(D) Boxplots of the ratio of sEPSC / sIPSC frequency, showing decreased E/I ratio in Htr3a-/- mice

(Student’s t test, p = 0.0328)

n = 11 cells from 3 WT mice, n = 9 cells from 3 Htr3a-/- mice; median and 5th-95th percentile whiskers, or

as mean ± SEM., * p < 0.05; ** p < 0.01, *** p < 0.001.
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Figure S4. Transcriptome sequencing and DEG Network.

(A) PCA was performed on the regularized log2-transformed data using plotPCA DEseq2.



14

(B) The Pie chart shows 1,010 up-regulated genes and 1,082 down-regulated genes in Htr3a KO

mice.

(C-D) Top 10 cellular components (C), molecular functions (D) in Gene Ontology (GO) of the

up-regulated and down-regulated genes are listed as derived from the DAVID functional annotation

tool with an adjusted p value cutoff of 0.05 (Table S3).

(E) The protein interaction network for DEGs (DEG Network) consists of 245 nodes and 222 edges. Dotted

circles indicate the subnetworks (the major components of the network). Each of these subnetworks is

enriched with indicated function, and is thus considered to be a functional module (marked as M1-6).

Red node: upregulated; blue node: downregulated; gray node: without expression change; node with

green border: co-expressed neighbor; gray line: protein-protein interaction (PPI); double lines: PPI and

co-expression.

Figure S5. Comparison of the enriched pathways between ASD-, EP- and LM Networks.
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There were 47 enriched pathways shared by three networks. The enrichment analysis was performed using

DAVID functional annotation tool with an adjusted p-value cutoff 0.05.

Figure S6. The P/Q calcium channel mediated the GABAergic transmission and the NMDAR current
were enhanced in the pyramidal neurons in the CA1 region of Htr3a-/- mice.

(A-C) The antagonist of P/Q calcium channel, ω-Aga-TK reduced sIPSC. Representative traces of sIPSCs

recorded in Htr3a-/- and WT mice, scale bar, 20 pA, 2 s (A). Treatment with ω-Aga-TK significantly

decreased sIPSC frequency (B) and amplitude (C) in Htr3a-/- mice (For frequency, WT(-) vs. KO(-),

Student’s t test p = 0.0005, WT(-) vs. WT(+), Paired t test p = 0.0018, KO(-) vs. KO(+), Paired t test p <

0.0001, WT(-) vs. KO(+), Student’s t test p = 0.2804; for amplitude, WT(-) vs. KO(-), Student’s t test p =

0.9116, WT(-) vs. WT(+), Paired t test p = 0.0041, KO(-) vs. KO-(+), Paired t test p = 0.0018; n = 9 cells

from 3 mice for each group).

(D) Representative traces of the evoked AMPAR current (held at -70 mV) and NMDAR current (held

at +40 mV) of pyramidal neurons in the CA1 region of the Htr3a-/- and WT mice. Scale bar: 20 pA,

100 ms.

(E) Normal AMPAR current in pyramidal neurons in the CA1 region of Htr3a-/- mice. (For AMPAR

current, two-way ANOVA, F1, 140 = 0.1517, p = 0.6975; n = 10 cells from 3 WT mice, n = 12 cells

from 4 KO mice).
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(F) Increased NMDAR current in pyramidal neurons in the CA1 region of Htr3a-/- mice. (two-way

ANOVA, F1, 140 = 28.61, p < 0.0001. n = 10 cells from 3 WT mice, n = 12 cells from 4 KO mice).

Data are presented as boxplots (median and 5th-95th percentile whiskers), or as mean ± SEM., * p <

0.05; ** p < 0.01, *** p < 0.001, **** p < 0.0001.


