Supplementary Materials

TNF-α-dependent neuronal necroptosis regulated in Alzheimer's

disease by coordination of RIPK1-p62 complex with autophagic

UVRAG

Chong Xu^{1#}, Jialin Wu^{1#}, Yiqun Wu¹, Zhichu Ren¹, Yuyuan Yao¹, Guobing Chen², Libin

Wei³, Xijing Chen⁴, Jian Sima^{*1}

1. Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic

Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing,

210009, China.

2. Institute of Geriatric Immunology, School of Medicine, Jinan University,

Guangzhou, 510632, China.

3. Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical

University, Nanjing, 210009, China.

4. Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical

Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.

These authors contributed equally to this work.

* Correspondence to: simajian@cpu.edu.cn (J. S.)

This PDF file includes:

Supplementary Figure S1-7.

Supplementary Table S1-2.

1

Supplementary Figures

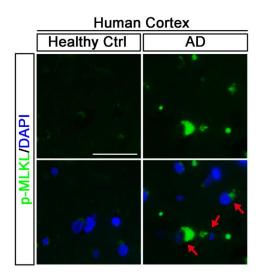


Figure S1. Increased p-MLKL levels in AD brain

IF images show the levels of p-MLKL (green) in the cortex from AD patients and healthy controls. Nuclei were counterstained with DAPI. Arrows indicate positive IF staining. Scale bar, $25~\mu m$.

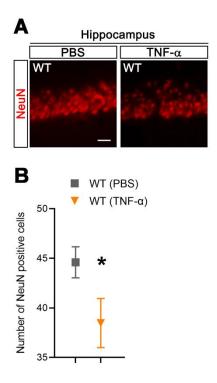


Figure S2. TNF- α injection induces neuronal loss in hippocampal CA1 region (A) IF images show the number of neurons (red) in the in the hippocampal CA1 regions from WT mice (10-month old) with or without TNF- α injection. Neurons were stained with an anti-NeuN antibody. (B) Quantitation of the number from NeuN positive cells in (A). Scale bar, 25 μ m.

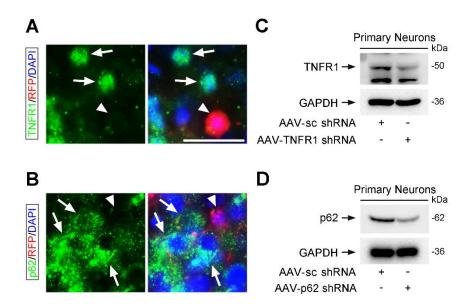


Figure S3. The validation of AAV-mediated shRNA knockdown efficiency
(A) IHC staining of TNFR1 (green) and RFP images (red) of hippocampal CA1 cells in APP/PS1 mice after injection with AAV particles. Nucleus were counterstained with DAPI. (B) As in (A), except IHC staining of p62 (green). Immunoblotting shows the

levels of TNFR1 (C) or p62 (D) in primary neurons after transduction with AAV particles. GADPH as a loading control. Scale bar, 25 µm.

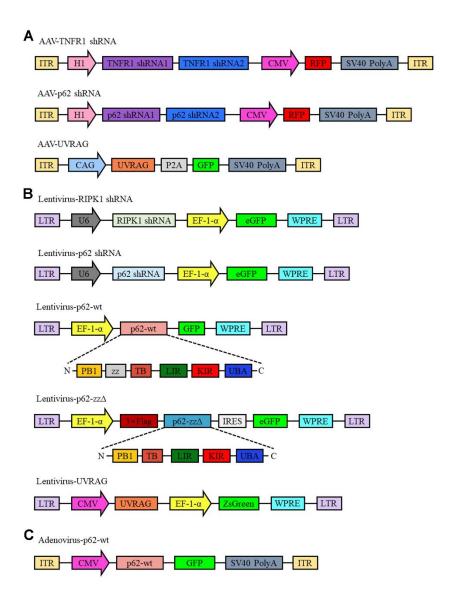


Figure S4. Schematic presentation of the plasmid constructs.

Schematic structures of the adeno-associated viral (AAV) plasmid constructs (A), HIV-1-based lentivial plasmid constructs (B), and an adenoviral plasmid construct (C) used in this study.

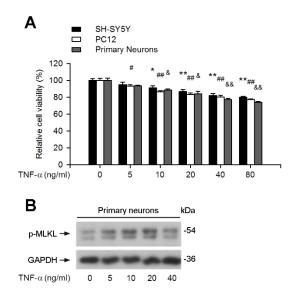


Figure S5. TNF-α induces neuronal necroptosis.

(A) Quantitation of cell viability from neuronal cell cultures after mTNF- α treatment with indicated concentrations. (B) Immunoblotting shows levels of p-MLKL in primary neurons after mTNF- α treatment with indicated concentrations. GADPH as a loading control. *, #, &p < 0.05, difference with control group; **, ##, &&p < 0.01, difference with control group. Data represent mean \pm SEM, n=3-5 independent experiments; analysis was performed by one-way ANOVA test.

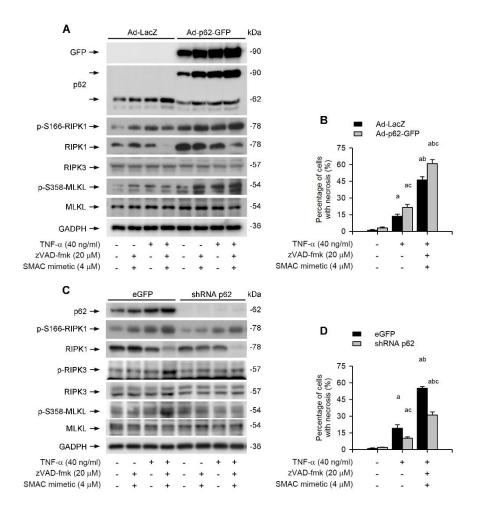


Figure S6. p62 regulates TNF-α-induced neuronal necroptosis

(A) Immunoblotting analysis of the SH-SY5Y cells transduced with adenoviral (Ad) particles encoding LacZ (as control) or p62-GFP with TSZ treatments using the indicated antibodies. GADPH as a loading control. (B) Quantitation of PI-positive cells from SH-SY5Y cells transduced with Ad-LacZ or Ad-p62-GFP after indicated treatments. (C) Immunoblotting analysis of the SH-SY5Y cells transduced with lentiviral particles encoding eGFP (as control) or p62 shRNA with TSZ treatments using the indicated antibodies. (D) Quantitation of PI-positive cells from SH-SY5Y cells transduced with lentiviral particles encoding eGFP or p62 shRNA after indicated treatments. $^ap < 0.05$, difference with control group; $^bp < 0.05$, difference with TNF- α treated group; $^cp < 0.05$, difference with LacZ or eGFP group. Data represent mean \pm SEM, n=3-5 independent experiments; analysis was performed by one-way ANOVA test.

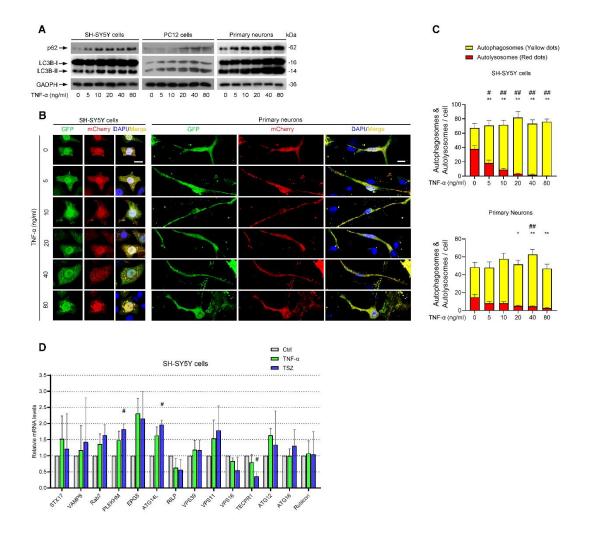


Figure S7. Impaired autophagic flux is involved in TNF- α -induced neuronal necroptosis

(A) Immunoblotting shows the levels of LC3 with different doses of TNF- α treatment in SH-SY5Y cells (left panels), in PC12 cells (middle panels) and in primary neurons (right panels). GADPH as a loading control. (B) Representative images of SH-SY5Y cells or primary neurons transduced with adenoviral particles encoding GFP-mCherry-LC3.Cells without TNF- α treatments as control (Ctrl). Total autophagosomes (yellow puncta) and functional autophagolysosomes (red only puncta) are shown. Scale bar, 5 µm. (C) Quantitation of autophagosomes (yellow puncta) and functional autophagolysosomes (red only puncta) from fluorescence-labeled cells in (B). (D) qPCR assays show the indicated mRNA levels in SH-SY5Y cells with TNF- α or TSZ treatments. The mRNA levels in control groups (without treatment) were normalized as 1. Error bars indicate mean \pm SEM from at least 15 adenovirus-infected cells; n=3-5 independent in-vitro experiments; *p < 0.05, **p < 0.01, difference with control group in red puncta; *p < 0.05, **p < 0.01, difference with control group in yellow puncta; analysis was performed by one-way ANOVA test.

Table S1. Antibodies used in this study

Antibodies	Source	Identifier
anti-MLKL	Santa Cruz	Cat# sc-293201
anti-MLKL	Abclonal	Cat# A19685
anti-p-MLKL (S345)	Abcam	Cat# ab196436
anti-p-MLKL (S358)	Abcam	Cat# ab187091
anti-Aβ	Cell Signaling Technology	Cat# 2454
anti-NeuN	Abcam	Cat# ab177487
anti-TNFR1	Thermo Fisher Scientific	Cat# 16-1202-85
anti-TNFR1	Proteintech	Cat# 21574-1-AP
anti-Tuj1	Cell Signaling Technology	Cat# 5568
anti-Caspase-8	Abclonal	Cat# A0215
anti-Caspase-3	Abclonal	Cat# A0214
anti-RIPK1	Cell Signaling Technology	Cat# 3493
anti-p-RIPK1 (S166)	Cell Signaling Technology	Cat# 65746
anti-p-RIPK1 (S166)	Affinity	Cat# AF2398
anti-RIPK3	Abclonal	Cat# A5431
anti-p-RIPK3 (T231/S232)	Abcam	Cat# ab205421
anti-p-RIPK3 (S227)	Abcam	Cat# ab209384
anti-p62	Abclonal	Cat# A19700
anti-p62	Cell Signaling Technology	Cat# 39749
anti-LC3B	Sigma	Cat# L7543
anti-UVRAG	MBL	Cat# M160-3MS
anti-RelA	Cell Signaling Technology	Cat# 8242
anti-GFP	Abclonal	Cat# AE012
anti-Flag	Abclonal	Cat# AE063
anti-GAPDH	Abclonal	Cat# AC002
anti-Actin	Abclonal	Cat# AC004

Table S2. RT-qPCR primers used in this study

Primer name	DNA sequence (5'-3')	
UVRAG-qPCR F	CAGCAGATTCATGCCCGAAA	
UVRAG-qPCR R	CTGGGCTCTATGAAGCCGTA	
STX17-qPCR F	ATGTGTGGAGAGCGTCAA	
STX17-qPCR R	ACAGTTCCACAAAGGCATCC	
VAMP8-qPCR F	TGGGAGGAAGCCGACTAGGCG	
VAMP8-qPCR R	ACTTTGCAGGTTCCGCACACGA	
Rab7-qPCR F	ACAGACAAGTGGCCACAAAG	
Rab7-qPCR R	CCGAGCAATTGTCTGGAAGG	
TECPR1-qPCR F	CCCTTCAACGACCTCTCTGT	
TECPR1-qPCR R	TCTCTGTACCACACCTTGCC	
EPG5-qPCR F	CTGGACAGTGCTCAACATGG	
EPG5-qPCR R	GGGCTTTCTTCAGAGCTTGG	
ATG14L-qPCR F	ACCAGCATTAGCATCACG	
ATG14L-qPCR R	AGGTCCTTGGGTTGTTTT	
RILP-qPCR F	GGACACCAGAGGAAGCAGAG	
RILP-qPCR R	GGATCAGGAGCTGGAGACTG	
VPS39-qPCR F	TGAGAGACTTCCCAGAAGATG	
VPS39-qPCR R	GGATGATGTTCCAGATAAGG	
VPS11-qPCR F	CAAGCCTACAAACTACGGGTG	
VPS11-qPCR R	GAGTGCAGAGTGGATTGCCA	
VPS16-qPCR F	TACACGGCGAACTGGAACC	
VPS16-qPCR R	GCCTCACACTAGCAGCTTTCT	
TECPR1-qPCR F	CCCTTCAACGACCTCTCTGT	
TECPR1-qPCR R	TCTCTGTACCACACCTTGCC	
ATG12-qPCR F	TTTGCTAAAGGCTGTGGG	
ATG12-qPCR R	AAGGAGCAAAGGACTGAT	
Atg16-qPCR F	CACTAATATCTTTGGGAGACGCTCTG	
Atg16-qPCR R	AACCGGGAACCTGGACTGAAC	
Rubicon-qPCR F	AGTCCTTCTCCCACTGCTTC	
Rubicon-qPCR R	TGAGATGGGCAGTGAGTCAG	
UVRAG-ChIP F	TGCCTGGCACACCTTGTAGC	
UVRAG-ChIP R	CTGAGAACCGTCGGGCAGTC	
Ctrl-ChIP F	TGGCTCGGGAATAGCTAGTGT	
Ctrl-ChIP R	GGGAGGAAGTGGAGGCA	