

Figure S1. Thymus atrophy in Foxp3^{cre}PDK1^{fl/fl} mice. (A) Representative images of thymus from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice. (B) Thymic CD4⁺ and CD8⁺ T cell populations from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice. Thymic CD4⁺ and CD8⁺ T cell percentages (C) and numbers (D) in thymus from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice (n≥3). * $P \le 0.05$; ** $P \le 0.01$; unpaired Student's t test. Data represent three independent experiments.

Figure S2. PDK1 deletion in Foxp3⁺ Tregs caused activation of conventional T cells. 9 (A) Flow cytometry analysis of the CD3⁺T cells for the changes of FSC, SSC (left) and 10 expression of Ki67 in CD4⁺YFP⁻ T cells and CD8⁺T cells (right) in spleen and lymph 11 nodes (LN) from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice. (B) Expression of 12 CD71, CD98 in CD4⁺YFP⁻ T cells (left) and CD8⁺T cells (right) in spleen and lymph 13 nodes (LN) from PDK1^{+/+}Foxp3^{Cre} and PDK1^{fl/fl}Foxp3^{Cre} mice. (C, D) Left, flow 14 cytometric analysis of the expression of CD62L and CD44 on CD4⁺YFP⁻T cells (C) or 15 CD8⁺ T cells (**D**) from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice (n=5). Right, 16 effective (CD62L^{lo}CD44^{hi}) CD4⁺ T cells (C) or CD8⁺ T cells (D) percentage in spleen 17 and lymph nodes (LN). (E) Representative image of IFN-y, IL-17, IL-4 and IL-10 18

production in CD4⁺ cells and IFN-γ production in CD8⁺ cells from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice. ** $P \le 0.01$; *** $P \le 0.001$; unpaired Student's t test. Data represent three independent experiments.

24 Figure S3. Loss of PDK1 in Foxp3⁺ Treg cells causes decreased frequencies and number of Foxp3⁺ Treg cells. (A) Representative plots (left) and the average frequency 25 (right) of CD4⁺Foxp3⁺ Treg cells in spleen and lymph nodes (LN) from 26 $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice (3-4 weeks old). (n=4). (B) 27 Representative plots (left) and the average frequency (right) of CD4⁺Foxp3⁺YFP⁺ Treg 28 cells in spleen and lymph nodes (LN) from PDK1^{+/+}Foxp3^{Cre} and PDK1^{fl/fl}Foxp3^{Cre} 29 mice (3-4 weeks old). (C) Expression of Foxp3, GITR, ICOS, CTLA4, CD98 and CD25 30 in CD4⁺YFP⁺ Treg cells from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice. (D) 31 Expression of Ki67 in CD4⁺YFP⁺ T cells in spleen and lymph nodes (LN) from 32

 $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice (n=5). * $P \le 0.05$, *** $P \le 0.001$; unpaired

34 Student's t test. Data represent two independent experiments.

37	Figure S4. Loss of PDK1 in Foxp3 ⁺ Treg cells causes decreased frequencies and
38	number of Foxp3 ⁺ Treg cells under noninflammatory station. (A) Haematoxylin and
39	eosin staining of skin, colon, lung, pancreas, liver (original magnification, $\times 10$), from
40	$PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice. (B) Up, expression of CD4 and CD8
41	on CD3 ⁺ T cells in spleen and lymph nodes (LN) from $PDK1^{+/+}Foxp3^{Cre/+}$ and
42	<i>PDK1fl/flFoxp3^{Cre/+}</i> mice. Down, the ratios of CD4 ^{+/} CD8 ⁺ T cells in spleen and lymph
43	nodes (LN) (n=5). (C) Up, expression of CD62L and CD44 on CD4 ⁺ YFP ⁻ T cells in
44	spleen and lymph nodes (LN) from $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice.
45	Down, naïve (CD62L ^{hi} CD44 ^{lo}) CD4 ⁺ T cell percentage in spleen and lymph nodes (LN)
46	($n \ge 4$). (D) Up, expression of CD62L and CD44 on CD8 ⁺ T cells in spleen and lymph
47	nodes (LN) from $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice. Down, naïve
48	(CD62L ^{hi} CD44 ^{lo}) CD8 ⁺ T cell percentage in spleen and lymph nodes (LN) ($n \ge 4$). (E)
49	The fraction of YFP ⁺ Treg cells among Foxp3 ⁺ populations in heterozygous female
50	$PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice at different age. (F, G) Represent plots
51	show the caspase 3 activity (F) and Ki67 expression (G) in CD4 ⁺ Foxp3 ⁺ YFP ⁻ Treg
52	cells (WT) and CD4 ⁺ Foxp3 ⁺ YFP ⁺ Treg cells (KO) from $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice. (H)
53	The number of donor-derived CD4 ⁺ T cells in $Rag1^{-/-}$ mice (n=5). (I) Representative
54	plots show the percentage of donor-derived Foxp 3^+ pTreg in $Rag1^{-/-}$ mice 2 weeks after
55	adoptive transfer. (J) Represent overlay plots show the expression of CTLA4, ICOS,
56	Helios and GITR in CD4 ⁺ Foxp3 ⁺ YFP ⁻ Treg cells (WT) and CD4 ⁺ Foxp3 ⁺ YFP ⁺ Treg
57	cells (KO) from $PDKl^{fl/fl}Foxp3^{Cre/+}$ mice.

Figure S5. NAC could inhibit the secretion of IFN- γ by effector T cell caused by PDK1 deficiency in Treg cells *in vivo*. (A) MFI statistic of total ROS level in Treg cells from $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/f}Foxp3^{Cre/+}$ mice (n=4). (B) MFI statistic of mitochondrial ROS level in Treg cells from $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/f}Foxp3^{Cre/+}$ mice (n=4). (C, D) IFN- γ production in CD4⁺YFP⁻ T cells in spleen from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/f}Foxp3^{Cre}$ mice fed water with or without NAC (1.5g/L) for 20 days from 18-day-old (n=7). (E, F) IFN- γ production in CD8⁺ T cells in spleen

from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice fed water with or without NAC (1.5g/L) for 20 days from 18-day-old (n=7). $*P \le 0.05$; $**P \le 0.01$; $***P \le 0.001$; unpaired Student's t test. Data represent two independent experiments.

69

Figure S6. Treg cells require PDK1 to inhibit its apoptosis and Iron-dependent cell death. (A, B) OCR analysis of Treg sorted form spleen and lymph nodes (LN) of $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice, statistics of 3-5 duplicates were shown in B. (C, D) ECAR analysis of Treg sorted form spleen and lymph nodes (LN) of $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice, statistics of 3-4 duplicates were

76	shown in D . (E) MFI statistic of Fe^{2+} level in Treg cells from spleen and lymph nodes
77	(LN) of $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice (n \geq 3). (F) MFI statistic of
78	Lipid ROS level in Treg cells from $PDK1^{+/+}Foxp3^{Cre/+}$ and $PDK1^{fl/fl}Foxp3^{Cre/+}$ mice
79	(n=5). (G, H) Treg cells from $PDK1^{+/+}Foxp3^{Cre}$ and $PDK1^{fl/fl}Foxp3^{Cre}$ mice were
80	treated with or without different concentrations of Z-VAD-FMK and Nec-1 for 24h, cell
81	viability analyzed using 7-AAD, statistics of 4-10 duplicates were shown. $*P \le 0.05$;
82	** $P \le 0.01$; *** $P \le 0.001$; unpaired Student's t test. Data represent three independent
83	experiments.

- 92 CD4⁺CD25⁺ Treg cells from *Raptor*^{fl/fl}CD2^{Cre} and their control mice (n=5). $*P \le 0.01$;
- 93 **** $P \le 0.001$; unpaired Student's t test. Data represent two independent experiments.