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Abstract 

Rationale: The invasive behavior of non-functioning pituitary neuroendocrine tumors (NF-PitNEts) presents 
obstacles for complete surgical resection and is indicative of poor prognosis. Therefore, developing reliable 
diagnostic tools for identifying invasive PitNEts would be helpful in guiding surgical decisions and, in particular, 
the follow-up treatment. 
Methods: We analyzed differential gene expression profiles between 39 non-invasive and 22 invasive 
NF-PitNEts by high-throughput sequencing, gene co-expression, and functional annotation. Twenty-one 
transcripts were further validated by Taqman-qPCR in another 143 NF-PitNEt samples. The histological 
expression and serum-exosomal mRNA of three candidate genes were examined by tissue microarray and 
droplet digital PCR. 
Results: Non-invasive and invasive NF-PitNEts were clustered into distinct groups with a few outliers because 
of their gonadotroph, corticotroph, or null cell lineages. The gene signature with strong invasive potential was 
enriched in ‘Pathways in cancers’ and ‘MAPK pathway’, with significantly higher in situ INSM1 and HSPA2 
protein expression in invasive NF-PitNEts. Further integration of the 20 qPCR-validated differentially 
expressed genes and pituitary cell lineages provided a gene-subtype panel that performed 80.00-90.24% 
diagnostic accuracy for the invasiveness of NF-PitNEts. 
Conclusion: Our approach defined new characteristics in the core molecular network for patients at risk for 
invasive NF-PitNEt, representing a significant clinical advance in invasive PitNEt diagnostics. 

Key words: Pituitary neuroendocrine tumors; transcriptome; diagnostic panel; INSM1; HSPA2  

Introduction 
Pituitary neuroendocrine tumors (PitNEts) are 

common intracranial and neuroendocrine tumors that 
arise mostly in a sporadic manner and only a minority 

of adenomas is part of hereditary or familial 
syndromes [1, 2]. Non-functioning pituitary 
adenomas (NF-PitNEts), with signs and symptoms of 
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local mass effect or hypopituitarism, represent the 
second most frequent pituitary tumor (~30%-40%) 
after prolactinomas [3]. All NF-PitNEt patients 
present without an endocrine hypersecretion 
syndrome but display heterogeneity in morphology 
and biologic features [3, 4]. As per the World Health 
Organization (WHO) classification of endocrine 
tumors, clinically, NF-PitNEts are divided into null 
cell adenomas that exhibit negative immunoreactivity 
for both pituitary hormones and pituitary 
transcription factors, and silent adenomas that show 
histological and immunohistochemical features 
consistent with a well-differentiated, lineage-specific 
adenoma [4, 5]. Null cell adenomas tend to be 
macroadenomas with tumor cells arranged in a 
variety of histopathological patterns [4], while most 
gonadotroph adenomas, as well as up to 20% of 
corticotroph adenomas, constitute the most 
commonly encountered clinically silent tumors ( SGA 
and SCA) [6]. 

Although mostly considered benign, 35% of 
PitNEts at the time of surgery are invasive NF-PitNEts 
that can aggressively invade surrounding structures 
[7]. According to the grading system developed by 
Knosp [8], the increasing grade of PitNEts correlates 
with the cavernous sinus invasion, especially in those 
classified as grade 3 or 4. Invasive adenomas are 
generally macroadenomas that are larger than 10 mm 
[9]. Interestingly, some patients with macroadenomas 
and even giant adenomas do not present distinctive 
histopathological features of invasion and/or 
aggressiveness, and this phenomenon is more 
common for NF-PitNEts [10, 11].Certain types of 
PitNEts, such as SCA, are specially recognized as 
“high-risk PitNEts” due to their clinically aggressive 
behavior [12]. Therefore, tumor invasion is correlated 
with cell lineage, radioanatomical characteristics, and 
ultrastructural features. 

Currently, invasive PitNEts are challenging to 
manage due to incomplete surgical resection 
requiring chemotherapy and/or radiotherapy. 
However, both chemotherapy and radiotherapy 
remain difficult for some invasive PitNEts, which 
tend to recur quickly and have a fatal outcome [13, 
14]. Indeed, anatomical invasion is considered a 
critical prerequisite for malignant prognosis by the 
new WHO classification system [4]. Identifying 
accurate features indicative of invasive NF-PitNEts 
will guide surgical decision-making and particularly 
the use of follow-up treatment, preventing recurrence 
at early stages. 

Previous efforts have identified in situ molecular 
markers, including Ki-67, p53, and p27, for invasive 
PitNEts, [8, 15, 16]. However, their levels and 
immunohistochemical (IHC) staining tend to vary 

depending on the evaluation method and could 
change when PitNEts are further classified into 
subgroups [17]. Since classic oncogene mutations are 
rarely encountered in NF-PitNEts and somatic genetic 
alterations are also infrequent [5, 18, 19], identification 
of the transcriptomic signatures underlying the 
invasiveness of NF-PitNEts is crucial. A few studies 
using meta-analysis or omics-driven data approaches 
proposed mRNA or microRNA markers for invasive 
NF-PitNEts [20-23]. Given the inadequate data for the 
precise characterization of NF-PitNETs, it is a 
clinically meaningful endeavor to develop reliable 
diagnostic tools for tumor invasion detection for 
advancing the management of this disease. 

In this study, we characterized mRNA profiles of 
noninvasive and invasive NF-PitNEts and identified 
distinct molecular features among different tumor 
subtypes. We searched for transcriptomic signatures 
and signaling pathways that play important roles in 
the invasive NF-PitNEts and investigated their 
potential for differentiating these tumors. 

Methods 
Sample collection (clinical diagnosis) and study 
oversight 

Informed consent was obtained from all 
individual participants included in this study. The 
study recruitment processes and protocol were 
approved by the Ethics Review Committee of Peking 
Union Medical College Hospital (No. S-551). PitNEts 
were obtained from patients who underwent trans-
sphenoidal surgery at Peking Union Medical College 
Hospital between May 2012 and July 2017. There were 
61 NF-PitNEts for RNA-seq, 143 NF-PitNEts for 
TaqMan quantitative RT-PCR and tissue microarray. 
The diagnosis of NF-PitNEts was based on clinical 
manifestation, hormonal test and magnetic resonance 
imaging (MRI) examination. Additionally, immuno-
histochemical staining for all anterior pituitary 
hormones and transcription factors was performed to 
classify the subtypes of NF-PitNEts (Table S1). In this 
study, maximum diameter of all NF-PitNEts was 
greater than 20 mm. Non-invasive PitNEts and 
invasive PitNEts were diagnosed according to Knosp 
classification and were intraoperatively confirmed 
[24]. Non-invasive PitNEts were Knosp grade 0, 1, or 
2, and importantly did not invade the cavernous 
sinus. All invasive PitNEts included in this study 
were Knosp grade 4 and invaded the cavernous sinus 
definitely. The clinical characteristics, operative 
findings, postoperative complications, pathological 
results, and follow-up data were recorded for each 
included patient. 



Theranostics 2021, Vol. 11, Issue 1 
 

 
http://www.thno.org 

134 

RNA extraction and sequencing 
Total RNA was extracted from the tissues of 

PitNEts, and RNA integrity was examined using a 
NanoDrop 2000/2000c (Thermo Fisher Scientific Inc., 
Waltham, MA, USA). The RNA library was 
constructed using TruSeq® RNA LT Sample Prep kit 
v2 (Illumina Inc., San Diego, CA, USA) according to 
the manufacturer's instructions. Briefly, after poly 
(A)-based mRNA enrichment and RNA 
fragmentation, first-strand complementary DNA 
(cDNA) was synthesized using the First Strand 
Master Mix and SuperScript II, followed by 
second-strand cDNA synthesis using the Second 
Strand Master Mix. Double-stranded cDNA was end 
repaired, and then 3' ends were adenylated and the 
illumina adaptors were ligated. The ligation product 
was amplified with 15 cycles of polymerase chain 
reaction. After measures of yield and fragment length 
distribution, libraries were sequenced using TrusSeq 
SBS kit v3-HS, and were generated on the HiSeq 2500 
or 3000 sequencing system (both from Illumina Inc.). 
Raw reads were trimmed the adaptor sequences with 
Trim Galore. Sequencing reads were mapped to 
human genome GRCh38 with Gencode [25] v28 
annotations using TopHat2. Gene expression levels 
were quantified with Cufflinks [26] and HTSeq [27]. 

Exosome extraction from peripheral blood 
The peripheral blood of patients was drawn into 

Vacuette® tubes with serum separator clot activator 
(GREINER BIO-ONE, Germany). The blood samples 
were placed at room temperature for 10 min, 
centrifuged at 1900 × g, 4°C for 10 min. The 
supernatant was transferred into new conical-bottom 
centrifuge tubes, then centrifuged at 1600 × g for 10 
min at 4°C to remove cells and debris. After 
centrifugation, the supernatant containing clarified 
serum was carefully transferred into a new tube 
without disturbing the pellet. Exosomes were next 
extracted from clarified serum using Total Exosome 
Isolation Reagent (from serum) (Thermo Fisher 
Scientific Inc., Waltham, MA, USA) according to the 
manufacturer’s instructions. The pelleted exosomes 
were resuspended in PBS for transmission electron 
microscopy (TEM) and nanoparticle tracking analysis 
(NTA) by the NanoSight NS300 instrument. 

Exosomal RNA purification and reverse 
transcription 

For total RNA extraction, the exosome pellet was 
lysed with 1mL QIAzol Lysis Reagent, and proceeded 
using miRNeasy Micro Kit (QIAGEN, Germany). 
Then aliquots (11 μL) from total RNA were reverse 
transcribed using SuperScript™ III Reverse 
Transcriptase (Thermo Fisher Scientific Inc., Waltham, 

MA, USA) following the manufacturer’s instructions. 

Droplet digital PCR (ddPCR) 
The ddPCR reaction was performed following 

the recommendations of the supplier (Bio-Rad, 
California, USA). The reaction system is as follows: 1 
× ddPCR™ Supermix for Probes (no dUTP) (Bio-Rad), 
800 nM primer, 250 nM probe and 3 μL of cDNA of 
template, ddH2O up to 20 μL. After homogenization, 
the ddPCR reaction mixture and 70 μL of oil (Bio-Rad) 
were respectively loaded into the corresponding wells 
of droplet generator cartridge (Bio-Rad). The ddPCR 
reaction mixture were then produced an emulsion 
about 40 μL by QX200™ Droplet Generator, 
subsequently transferred to a 96-wells PCR plate. The 
plate was heat-sealed by a pierceable foil (Bio-Rad) 
and subjected to thermal cycling conditions: 95°C for 
5 min for Taq polymerase activation; 39 cycles of 94°C 
for 30 s, 60°C for 40 s; then 98°C for 10 min and held at 
12°C. Following PCR, the fluorescence was read on a 
QX200 droplet reader. Analysis of the result was 
performed with QuantaSoft software (version 
1.7.4.0917). The sequences of primers and probes were 
listed in Table S2. Expression of GAPDH was used as 
internal control as previously reported [28]. 

Unsupervised clustering and principal 
component analysis 

Unsupervised hierarchical clustering analysis 
and PCA were performed with top 5000 highest 
variance expression levels of genes. Expression levels 
were normalized via log transformation implemented 
by DESeq2 [29]. Average was used as the 
agglomeration method in clustering. The expression 
levels were scaled among samples when drawing 
clustered heatmaps. 

Differential gene expression 
Differential gene expression (DGE) analysis was 

conducted using DESeq2. The likelihood ratio test on 
the difference in deviance between a full and reduced 
model formula was used to evaluate the significance 
of interactions. Technical covariates and batch effects 
were checked before DGE analysis. Significant results 
were reported at FDR < 0.05. The replication between 
datasets were evaluated by comparing the squared 
correlation (R2) of log2 fold change of genes in each 
dataset. 

Weighted gene co-expression network analysis 
Weighted gene co-expression network analysis 

(WGCNA) was performed using the R package 
WGCNA [30]. Signed co-expression network was 
constructed with normalized counts via the function 
rlog in DESeq2. The biweight mid-correlation was 
used as the correlation method in all function in 
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WGCNA. Soft power 17 was set for network 
construction and module detection. To reduce the 
number of modules, highly correlated modules with a 
threshold of 0.8 were merged. 

In module-trait analysis, the eigengene of each 
module was related to the traits of nonfunctioning 
pituitary adenomas patients. Significant module-trait 
results were reported at P < 0.05. 

Functional annotation 
GO and KEGG enrichment analysis were 

conducted by DAVID [31] using DGEs and genes 
from significant modules. The Benjamini-Hochberg 
method was used to correct the multiple comparisons. 
Gene set enrichment analysis (GSEA) were run on 
pre-ranked gene lists using the software GSEA [32]. 
The method that was used to generate the ranked lists 
is as follows: 

(1): 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = log 2𝐹𝐹𝐶𝐶2 × log10(𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣),  
if log2FC > 0; 

(2): 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  − log 2𝐹𝐹𝐶𝐶2 × log10(𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) , 
if log2FC < 0. 

The enrichment statistic was set to classic as a 
more conservative scoring approach. 

Support vector machine classifier 
We used the support vector machine (SVM) 

algorithm implemented by the R package e1071 [33] to 
classify the invasive nonfunctioning pituitary 
adenomas and non-invasive nonfunctioning pituitary 
adenomas. The normalized counts of experimentally 
validated genes were used to construct the SVM 
algorithm. The SVM algorithm was trained on the 
training dataset to build the model, and predicted the 
samples in validation dataset (training:validation = 
2:1). Leave-one-out cross validation (LOOCV) on the 
training dataset was performed to assess the quality 
of the model. The predictive strength was evaluated 
by receiver operating curve (ROC) analysis 
implemented in the R package pROC [34]. 

Quantitative real-time PCR (qRT-PCR) 
mRNA expression was assessed using the 

TaqMan probe based gene expression analysis 
(Thermo Fisher, Foster City, CA). The sequences of 
primers and probes were listed in Table S2, and the 
measurements were normalized using the UBC and 
GAPDH [35]. The relative expression level in each 
sample was recorded as the ratio of gene expression to 
the geometric mean of two reference genes (GAPDH 
and UBC) expression [36]. Three replicates were 
performed for each sample. The standard curves for 
GAPDH, UBC, and other mRNAs showed good 
linearity between Cq values and the log of sample 

concentrations (Figure S7). 

Tissue microarray (TMA) (including 
Immunohistochemistry and scoring) 

Immunohistochemical studies of the human 
pituitary adenoma tissue microarrays were done 
using the following antibodies: INSM1 (sc-271408, 
dilution 1 : 200; Santa cruz); HSPA2 (HPA000798, 
dilution 1 : 100; Sigma-Aldrich); CDK6 (H00001021- 
M01, dilution 1 : 50; Abnova); T-PIT (ZM-0318, 
dilution 1 : 100; ZSJQ Corp.); SF-1 (ZM-0089, dilution 
1 : 100; ZSJQ Corp.); and PIT-1 (ZM-0208, dilution 
1 : 100; ZSJQ Corp.), which was stained in serial-cut 
tissue array sections as previously described [37]. 
TMAs were de-paraffinised in xylene and hydrated in 
ethanol and rinse under water. Endogenous 
peroxidase activity was blocked for 30 min with 3% 
H2O2. After a 3 h block with EnvisionTM FLEX 
Peroxidase-Blocking Reagent (Dako#SM801, Agilent, 
Santa Clara, CA), the primary antibody was used 
overnight. EnvisionTM FLEX/HRP (Dako#SM802, 
Agilent) was used as secondary antibody and 
chromogenic detection was carried out using 
EnvisionTM FLEX Substrate Buffer+EnvisionTM 
FLEX DAB+ Chromogen (Dako#SM803, Agilent). 

Images were taken with an Axio Scan.Z.1 (ZEISS, 
Germany). The staining results were assessed by a 
pathologist specialized in neuropathology and 
blinded to the patient details using the staining 
H-score method [38]. The score was obtained by 
computing staining intensity of each cell (0, 1, 2, 3) 
and the proportion of pituitary cells stained for each 
intensity (0-100) to give a score between 0 and 300, 
using the formula: 3 × percentage of strongly staining 
cell + 2 × percentage of moderately staining cell + 1 × 
percentage of weakly staining cell. Appropriate 
tissues were used as positive controls, and negative 
controls were obtained by substituting the primary 
antibodies with non-immune rabbit or mouse sera. 

Statistical analysis 
Data are shown as means ± S.D. or for maximum 

value, 75th percentile, 50th percentile, 25th percentile 
and minimum value. Chi-squared test or fisher’s exact 
test was used to the statistical test of categorical 
clinical characteristics of pituitary adenoma patients 
dependent on the theoretical frequency. Mann- 
Whitney U test or t-test after confirming equality of 
variance by F test was used for continuous variables. 

Availability of data and materials 
The RNA sequencing data generated and 

analyzed in the current study can be accessed from 
Genome Sequence Archive (GSA; http://bigd.big.ac. 
cn/gsa or http://gsa.big.ac.cn) with the accession 
number CRA001236. 
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Results 
Clinical features of NF-PitNEt patients 

To determine the core gene characteristics of 
tumor invasiveness, we developed a systems biology 
approach whereby high-throughput transcriptomic 
analyses and experimental validation were combined 
(Figure 1A). We obtained clinical NF-PitNEts without 
any endocrine hypersecretion syndrome and 
examined the pathological features of tumors. To 

define the status of invasion into the cavernous sinus, 
we determined the radiological characteristics by MRI 
(Figure 1B) with the class criteria described by Knosp 
et al. [8] and confirmed during the operation. A total 
of 39 tumors with grade 0, 1, or 2 (non-invasive NF, 
NNF) and 22 tumors with grade 4 (invasive NF, INF) 
were included in this study. The hematoxylin and 
eosin (H & E) staining characteristics and the positive 
rate of p53, and Ki-67 detection were similar between 
the two groups (Table 1 and Figure 1C). 

 

 
Figure 1. Identification of the pituitary neuroendocrine tumor samples. (A) Study design scheme. (B) Contrast-enhanced, T1-weighted coronal MRI scan of NNF- and 
INF-PitNEts. Images of INF showing the tumor invading the left cavernous sinus and surrounding the internal carotid artery. Images of NNF showing the tumor did not invade the 
cavernous sinus. (C) H&E staining and immunohistochemical analysis of Ki-67 and p53. Immunostaining for both markers was similar between each group (original magnification, 
200×; scale bar represents 100 µm or 200 µm). 
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Table 1. Clinical characteristics, surgical results, postoperative 
complications, and prognosis of NNF- and INF-PitNEt patients for 
RNA-seq 

Variable NNF INF p value 
Gender    
Female (%) 21 (53.8) 18 (81.8) 0.029 
Male (%) 18 (46.2) 4 (18.2) 
Age (years) 55.2±10.6 47.2±10.2 0.006 
Height (cm) 164.0±6.6 162.3±8.2 0.380 
Weight (kg) 66.6±10.8 67.5±13.8 0.779 
Maximum diameter of tumor (mm) 29.2±6.5 39.7±12.0 0.0007 
Degree of invasion    
Knosp Grade 0 (%) 16 (41.0) 0 (0) <0.001 
Knosp Grade 1-2 (%) 23 (59.0) 0 (0) <0.001 
Knosp Grade 3 (%) 0 (0) 0 (0)  
Knosp Grade 4 (%) 0 (0) 22 (100.0) <0.001 
Extent of tumor resection    
GTR (%) 29 (74.4) 0 (0) <0.001 
STR (%) 10 (25.6) 10 (45.5) 0.270 
PR (%) 0 (0) 12 (54.5) <0.001 
Ki-67 1.7±0.7 1.7±1.0 1 
≤3% (%) 39 (100.0) 21 (95.5) 0.120 
>3% (%) 0 (0) 1 (4.5) 
P53    
Positive (%) 1 (2.6) 2 (9.1) 0.262 
Negative (%) 38 (97.4) 20 (90.9) 
Mean follow-up in months (range) 58.2 (45-72) 60.4 (46-75) 0.162 
Postoperative symptoms    
Headache (%) 2 (5.1) 7 (31.8) 0.005 
Visual dysfunction (%) 1 (2.6) 5 (22.7) 0.011 
Monocular blindness (%) 0 (0) 2 (9.1) 0.027 
Panhypopituitarism (%) 1 (2.6) 5 (22.7) 0.011 
Permanent diabetes insipidus (%) 1 (2.6) 1 (4.5) 0.683 
Cranial nerve palsy (%) 0 (0) 6 (27.3) <0.001 
Follow-up treatments    
Radiation therapy (%) 4 (10.3) 20 (90.9) <0.001 
Medical therapy (%) 0 (0) 6 (27.3) <0.001 
Repeated surgery (%) 3 (7.7) 8 (36.4) 0.002 
Tumor control    
Without tumor (%) 29 (74.4) 0 (0) <0.001 
Tumor stability (%) 10 (25.6) 14 (63.6) 0.004 
Growth of tumor (%) 0 (0) 8 (36.4) <0.001 
Death (%) 0 (0) 2 (9.1) 0.027 
GTR = grosstotal resection; PR = partial resection; STR = subtotal resection. 
Boldface type indicates statistical significance. 

 
 
Surgical results, postoperative complications, 

and prognosis differed between NNF- and INF- 
PitNEts. All NNF-PitNEts got grosstotal (74.4%) or 
subtotal resection (25.6%), whereas more than a half 
(54.5%) of INF-PitNEts only had a partial resection. 
Therefore, significantly more INF-PitNEt patients 
received follow-up treatments, including radiation, 
medication, and surgery. During follow-up, 14 out of 
the 22 patients with INF-PitNEt had stable remnants 
while 8 patients had tumor growth, among which 2 
patients died after a mean of 60.4 months. In contrast, 
there was no tumor growth or death in the NNF 
group during a mean follow-up of 58.2 months. 
Furthermore, all INF-PitNEts but only 8.6% NNF- 
PitNEts suffered postoperative symptoms, such as 
headache, visual dysfunction, monocular blindness, 

panhypopituitarism, and cranial nerve palsy (Table 
1). 

mRNA profiles show a distinct separation of 
INF- from NNF-PitNEts 

Our data showed that tumor invasion was 
correlated with a more aggressive clinical behavior; 
therefore, we first compared the differential gene 
expression pattern between NNF- and INF-PitNEts. 
Both unsupervised hierarchical clustering and sample 
correlations revealed two main clusters, regardless of 
the methods employed (i.e. the common method used 
for clustering and the Pearson method used for 
correlations). One cluster was significantly enriched 
for NNFs and the other for INFs, and only a small size 
(4 INFs and 7 NNFs) of samples were intermingled 
(Chi-squared test P value = 1.8e-05; Figure 2A). 
Compared to NNF-PitNEts, 843 genes showed 
increased expression while 1,435 showed decreased 
expression in INF samples (FDR < 0.05 and │fold 
change│>2, Figure 2B, Figure S1A and Table S3). 
These data underscored the presence of characteristic 
transcriptional profiles in NNF- and INF-PitNEts. 
Among the 2,278 transcripts, we identified known 
invasion-related markers, such as CDKN1A (p21) and 
EZR. Remarkably, differentially expressed genes 
(DEGs) identified in this study and those from a 
previous microarray dataset [22] were highly 
concordant (Figure S1B). Functional annotation of the 
DEGs revealed significant enrichment for the 
‘transcription activity’, ‘ion channel activity’, ‘plasma 
membrane’ and ‘extracellular matrix’ networks 
(Figure 2C, Figure S1C-D). 

Co-expression network analysis to evaluate 
invasion-associated modules in NF-PitNEts 

To find invasiveness-specific expression co-
regulation, we performed weighted gene correlation 
network analysis (WGCNA) in the scope of the top 
8,000 variant genes and found 12 modules in total, 
which were identified by color (Figure 2D-E and 
Figure S2A). Six significantly different modules of 
genes associated with invasiveness were evident 
(Figure 2E and Table S4), of which three were 
upregulated and three downregulated. The most 
significantly regulated modules, the blue and 
turquoise modules, were also the largest ones 
consisting of 1214 and 1540 genes respectively. Given 
the nature of the data set, both the upregulated and 
downregulated modules had significant correlations 
with clinical traits such as ‘Gender’, ‘Texture’, and 
‘Prognosis’ (Figure S2B-C). The blue module was 
enriched in cancer and transcription regulatory genes 
while the turquoise module was enriched in genes 
associated with the cell membrane and cell junction 
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(Figure 2F), and the upregulated and downregulated 
modules exhibited significant negative correlation 
(Figure 2G). 

We further analyzed differences in clinical 
features within each module between NNF- and 
INF-PitNEts. Although the medium size of INFs was 
larger than NNFs, the tumor-growth trajectories of 

NNFs and INFs were different in all significantly 
regulated modules when tumor sizes matched (Figure 
3A and Figure S2D). Additionally, in all modules we 
identified significant transcriptional changes only 
among female patients (Figure 3B and Figure S2E), 
suggesting that gender was closely related to the 
molecular phenotype. 

 

 
Figure 2. Differential gene expression and WGCNA of NNF- and INF-PitNEts. (A) Unsupervised hierarchical clustering and heatmap of sample-sample correlations 
among NF-PitNEts. (B) Distribution of P values and the number of DEGs between NNFs and INFs. (C) GO term enrichment for genes up-regulated (red) and down-regulated 
(blue) in INFs vs. NNFs. (D) Co-expression network dendrogram with traits for NF-PitNEts. (E) Signed association of module eigengenes with the diagnosis. Positive/negative 
values indicate genes in these modules are up-regulated/down-regulated in INFs compared to NNFs. The log10 (adj. P) values of the six significantly invasiveness-related modules 
are shown in the right. (F) GO term enrichment for genes in blue and turquoise modules. (G) Heatmap of correlations between significantly associated module eigengenes. 
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Figure 3. Candidate DEG identification and their expression between NNF- and INF-PitNEts. (A) Plot of blue and turquoise module eigengenes across tumor size. 
(B) Box plot of module eigengenes of INFs and NNFs between females and males. (C) Significantly changed pathways enriched by the overlapped DEGs of blue module and 
up-regulated genes in INF-PitNEts. (D) Representative network of pathways shown in C. GS, gene significances; FC, fold change. The different colors represent their fold-changes. 
(E) Taqman RT-qPCR of up-regulated (left) and down-regulated (right) mRNA expression in INFs (n = 51) compared with NNFs (n = 92). Data are shown for maximum value, 
75th percentile, 50th percentile, 25th percentile and minimum value. (F) Correlation between the fold-changes of RNA-seq and RT-qPCR analyzed mRNA. Transcripts in the box 
are magnified in the lower right. *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001, Mann-Whitney U test. 
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Validation of candidate gene expression in 
NF-PitNEt samples 

To further identify functional pathways that 
discriminated NNFs and INFs, we first intersected 
1214 genes in the blue module and 843 upregulated 
DEGs for INF-PitNEts (Figure 3C). This analysis 
identified a highly interconnected network of 
alterations belonging to the pathway in cancers and 
mitogen-activated protein kinase (MAPK) signaling 
pathway (Figure 3D). Several receptor tyrosine 
kinases (eg, EGFR, EGFR3, and NTRK1), their 
downstream signal transducers (eg, RRAS and JAK1), 
kinases, and other components showed enhanced 
expression in INF-PitNEts to jointly regulate several 
aspects of tumorigenesis. For example, upregulated 
CDKN1A and CDK6 expression may impair RB- 
mediated cell cycle control [39]. Likewise, 1540 genes 
in the turquoise module and 1435 downregulated 
DEGs for INFs were also overlapped and enriched in 
ECM-receptor interaction and cell adhesion molecules 
pathways (Figure S3A). 

DEGs in various pathways were ranked 
according to their fold-change between NNFs and 
INFs and P-value (padj). The top 10-15 genes in each 
pathway were further manually curated for their 
reported functions in tumor development. Finally, 17 
upregulated and 4 downregulated candidates (Figure 
S3B) were subjected to qRT-PCR analysis to validate 
their expression in another cohort of NF-PitNEt 
samples (Table S5). The differential expression of 20 
genes was verified in INFs compared with NNFs 
(Figure 3E). We also confirmed the consistency of 
RNA-seq and qRT-PCR results in independent 
cohorts (Figure 3F). 

In situ and circulating INSM1 expression 
predicts INF-PitNEts 

To develop INF-PitNEt markers, we first 
analyzed HSPA2, CDK6, and INSM1 protein 
expression in a blinded fashion in NNF and INF 
samples using a tissue microarray (TMA). The three 
antigens were selected due to their key roles [39-42] in 
invasion-related dysregulated pathways (Figure 3D), 
their highly reproducible mRNA differences between 
RNA-seq and qRT-PCR analyses (Figure 3F), and the 
reliability of their commercial antibodies. Specific 
nuclear INSM1 immunoreactivity was observed in 
NF-PitNEt tissues, whereas HSPA2 and CDK6 were 
detected in both nuclear and cytoplasmic 
compartments with CDK6 displaying stronger 
nuclear staining (Figure 4A). Higher INSM1 and 
HSPA2 expression was significantly correlated with 
INFs, with INSM1 showing strong or moderate 
positive staining in 80% of INF samples but only 42% 

of NNF samples. Immunopositivity of HSPA2 was 
demonstrated in 81% of INF samples but only 44% of 
NNF samples (Figure 4A-C and Figure S4A). In 
contrast, CDK6 did not show a significant difference 
between NNFs and INFs (Figure 4A-C and Figure 
S4A), indicating the possibility of posttranscriptional 
or translational regulation. The diagnostic 
performance of INSM1 was shown by receiver 
operating characteristic (ROC) curves, with the area 
under the curve (AUC) of 0.772 (95% confidence 
interval [CI], 0.656–0.887; P=0.0001) (Figure 4D). At a 
cutoff value of 150, sensitivity was 60.0% and 
specificity was 81.1%. 

These results prompted us to further investigate 
whether serum INSM1 mRNA expression was 
correlated with NF-PitNEt invasion. We isolated 
exosomes from serum samples of NF-PitNEt patients 
using precipitation method, and assessed the 
morphology and size using transmission electron 
microscopy and nanoparticle tracking analysis. The 
average size of exosomes ranged from 140.5 to 183.9 
nm with a distinct membrane structure (Figure 4E and 
Figure S4B). The ddPCR using GAPDH as the 
normalization control identified significantly higher 
INSM1 mRNA expression in INFs compared with 
NNFs (Figure 4F), and the AUC of exosomal INSM1 
was 0.719 (95% CI, 0.563–0.874; P=0.0227) (Figure 
S4C). Collectively, these data indicated the predictive 
value of INSM1 as an in-situ or circulating biomarker 
for INF patients. 

Outliers share transcriptomic similarity with 
their respective groups 

Despite the unique genetic signatures present in 
INFs versus NNFs, minor overlap still existed (Figure 
2A). To analyze the transcriptomic patterns of the 7 
NNFs that mingled with INF cluster (NNF outliers) or 
the 4 INFs that mingled with NNF cluster (INF 
outliers), P value distributions were generated by 
comparing transcripts observed in outliers with those 
present either in INFs or NNFs. Remarkably, we 
observed more genes with lower P values than with 
higher P values in the NNF outliers vs. NNF group, 
which, when viewed together with more differentially 
expressed genes between these two groups indicated 
more significant differential expression signals than 
those between NNF outliers and INFs (Figure S5A-B). 
Similar results were obtained for INF outliers (Figure 
S5C-D). Additionally, transcriptional changes 
between NNF and INF samples showed high 
concordance between NNF outliers and NNFs (R2 = 
0.849) or INF outliers and INFs (R2 = 0.844; Figure 
S5E-F). 
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Figure 4. Detection of in-situ and exosomal INSM1 expression and their association with INF-PitNEt diagnostic. (A) Representative images of tissue microarray 
(TMA) analysis for INSM1, HSPA2, and CDK6 protein expression in NNF and INF samples. INSM1 exhibit specific nuclear immunostaining while HSPA2 and CDK6 display both 
nuclear and cytoplasmic staining. Original magnification, 200x or 400x; Bar, 200 µm. (B) Distribution of INSM1, HSPA2, and CDK6 staining in NF- PitNEt samples. (C) The score 
was obtained by computing staining intensity (0–3) and the proportion of pituitary cells stained for each intensity to give a value between 0 and 300. (D) ROC curve showing the 
true positive and false positive rates for INSM1 immunohistochemical staining. (E) Representative transmission images of purified exosomes using the negative staining method. 
(F) Serum-exosomal INSM1 mRNA relative expression in NNF compared with INF samples. *P < 0.05, ****P < 0.0001, Mann-Whitney U test. 
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Figure 5. Expression of INSM1, HSPA2, and CDK6 proteins in NF-PitNEts with different cell lineages. (A) Representative images of immunohistochemistry for 
transcription factors SF-1, PIT-1, and T-PIT in NNF and INF samples. Original magnification, 200x; Bar, 100 µm. (B) Statistical results of INSM1, HSPA2, and CDK6 
immunostaining in SGA, null cell adenomas, and SCAs. 

 
Given the high extent of sharing between the 

outliers and the samples that clustered together, we 
re-classified NNF outliers as INFs, and INF outliers as 
NNFs with respect to the transcriptional profiles. As 
expected, DEGs were highly concordant before or 
after adjustment, in which 97% of the DEGs before 
adjustment could be identified after adjustment 
(Figure S5G-H). These data demonstrated the 
alternative grouping of NF-PitNEts by transcriptomic 
profiles, consistent with the notion that marker genes 
expression and invasion capacity may be independent 
[10, 11]. Nonetheless, these re-classified NNFs had a 
worse prognosis compared with clinically defined 
NNFs due to inadequate resection during operation 
or acquired aggressive traits by radiotherapy (Table 
1). 

mRNA profiling combined with tumor subtype 
allows for INF-PitNEt diagnostics 

Next, we asked whether tumor subtypes 
contributed to the invasive potential of NF-PitNEts. 

Based on the latest WHO classification system, 
NF-PitNEt samples were classified according to 
adenohypophyseal hormones and transcription factor 
immunostaining (Figure S5I and Table S1) and 
validated at the RNA level (Figure S6A). Distinct 
nuclear staining of SF-1 or T-PIT could be observed 
independent of the invasive property of NF-PitNEts 
(Figure 5A). Moreover, an examination of 
somatostatin receptors (SSTRs) showed lower 
SSTR2/SSTR3 expression in SCAs (Figure S6A), 
indicating a higher proliferation and survival 
potential of these tumors [43, 44]. The three subtypes 
of NF-PitNEts in this study displayed clinical 
characteristics comparable with previous reports [45], 
with SCAs showing young age, female gender, and 
invasion predominance but comparable tumor sizes 
(Figure S6B-E). 

We compared the invasion-related molecular 
markers in various subtypes of NF-PitNEts and found 
that HSPA2 and INSM1 expression was higher in 
SCAs than SGAs or null cell adenomas (Figure 5B, P < 
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0.0001). For INSM1, the percentage of samples with 
H-score > 100 was 94.74% (18/19) in SCAs and 38.98% 
(23/59) in the other two types. The percentage of 
HSPA2 H-score > 100 was 63.16% (12/19) in SCAs but 
only 17.74% (11/62) in other types. These results 
further supported the higher invasive potential of 
SCAs. We next analyzed the correlation between 
HSPA2 and INSM1 markers and invasion in each 
histological type. The moderate to strong INSM1 
immunostaining was significantly increased in INFs 
compared with NNFs only among null cell adenomas 
(Figure 5B, Table S6), but there was no significant 
association between HSPA2 protein expression and 
tumor invasion in each NF-PitNETs subtype (Figure 
5B, Table S7). In contrast, CDK6 expression was 
inversely related to invasiveness in SGAs but showed 
a tendency of positive correlation with invasive SCA 
(Figure 5B, Table S8). Similar results were obtained in 
NF-PitNET subtypes for the 20 marker genes (Figure 
S6F). Our results indicated that these markers were 
associated with invasion when all subtypes were 
considered together. 

Principal-component analysis (PCA) analysis 
revealed that SCAs and SGAs were clustered into 
distinct groups while null cell adenomas exhibited 
both SCA and SGA transcriptomic features (Figure 
6A). Also, previously identified NNF outliers were all 

SCAs and 2 out of the 3 INF outliers were SGAs, 
suggesting that cell lineage was a covariate for tumor 
invasiveness. 

Finally, we tested the predictive potential of the 
20 validated DEGs between NNFs and INFs in 
combination with tumor subtypes, utilizing a support 
vector machine (SVM) algorithm with leave-one-out 
cross validation (LOOCV). In brief, we trained the 
classifier from N − 1 where N denotes the number of 
subjects and we predicted the invasiveness of the Nth. 
The entire approach was repeated for N times to 
predict the invasiveness of each sample in the cohort. 
Among the RNA-seq group, the accuracy was 90.24% 
for the N = 41 training cohort (Figure 6B). Subsequent 
validation in the other 20 samples yielded an accuracy 
of 80% (Figure 6C), with an AUC of 0.843 to 
differentiate INFs from NNFs (Figure 6D). These 
results showed that, although the sample size was 
relatively small, the 20-gene-subtype classifier 
displayed significant strength to diagnose invasive 
NF-PitNEts. 

Discussion 
Adenoma invasion and cell proliferation (mitotic 

count and Ki-67 index) are two important prognostic 
features for tumor recurrence. Since the correlation 
between the proliferation marker, Ki-67 and tumor 

 

 
Figure 6. Differentiating potential of the gene-subtype panel for INF- and NNF-PitNEts. (A) PCA with the top 5000 variant genes of the 61 NF-PitNEt samples. (B 
and C) Performance of the 20-gene-subtype SVM algorithm in the training cohort (B) and test cohort (C). Sample numbers and detection rates in percentages are shown. (D) 
ROC-curve of SVM diagnostics of training (red) and validation (blue) cohorts indicating the classification accuracies obtained by chance of the training and validation cohort (gray) 
in RNA-seq data. 
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invasion was not always consistent [46], the two 
features should be judged separately. The diagnosis of 
NF-PitNEts is based solely on the morphologic 
features as their hormonal activity is clinically 
undetectable [15]; hence, accurate detection of these 
invasive tumors at early stages remains the focus of 
much research. Both RNA and protein analyses have 
identified activated Wnt and Notch pathways but 
suppressed TGF-β/Smad signaling in the progression 
of NF-PitNEts [47, 48]. Also, up-regulation of several 
markers in INF-PitNEts, including myosin 5A 
(MYO5A) [23], EZR [22], hsa-miR-181a-5p [21] and 
angiogenic factor VEGF [49] has been reported. These 
studies, despite relatively small sample size, showed 
the promise of developing biomarkers for INF- 
PitNEts. 

Our RNA-seq data displayed distinct mRNA 
features between NNF- and INF-PitNEts, and more 
than 95% of the qRT-PCR-validated genes were 
consistent with sequencing results. Among them, 
INSM1 and HSPA2 exhibited strong concordance in 
their mRNA and protein expression. HSPA2 
(Hsp70-2), a homolog of Hsp70, is essential for the 
physiology of spermatogenesis and is also involved in 
the pathology of several types of tumors by 
promoting cell cycle progression and angiogenesis 
[42, 50]; however, its function in PitNEt is still unclear. 
The second marker INSM1, a zinc finger transcription 
factor is implicated in the differentiation of endocrine 
cells in the pituitary and other tissues [51], and its 
expression is significantly increased in multiple 
neuroendocrine neoplasms. Our finding of 100% 
positive INSM1 immunostaining in NF-PitNEts is in 
line with the results from the central nervous system 
neoplasms [52] and neuroendocrine tumors [53]. 
Recent studies have demonstrated that INSM1 
staining outperforms conventional markers for 
identifying and grading neuroendocrine tumors [40, 
54, 55]. Our results revealed that INSM1 is also a 
highly sensitive diagnostic marker for tumor invasion 
in non-functioning pituitary neuroendocrine tumors, 
with strong nuclear staining and homogenous 
expression pattern. It is worth investigating whether 
INSM1 could similarly distinguish between invasive 
and non-invasive functioning PitNEts. 

So far, surgery and/or radiotherapy are the 
first-line treatment options for NF-PitNEts, and the 
biomarkers allowing early detection of NF-PitNEts 
invasiveness are scarce. The potential of circulating 
RNAs as biomarkers in blood has been implicated in 
the diagnosis, prognosis, and recurrence of PitNEts 
[56, 57]. In the current study, serum-exosomal INSM1 
mRNA demonstrated moderate sensitivity and 
specificity with an AUC value of 0.719 in 
distinguishing INFs from NNFs. Thus, we reasoned 

that the detection of in-situ or circulating INSM1 
might be an effective and better substitute for the 
existing invasive detection strategies. 

The current findings of the clinical characteristics 
of NF-PitNEt subtypes are largely controversial [45], 
because they relied on inconsistent histopathological 
indices to classify NF-PitNEts. Here, we defined 
NF-PitNEts according to the criteria of the most recent 
WHO system, and confirmed that 66% of both ACTH- 
positive and ACTH-negative SCAs, but only 10% of 
SGAs and 33% of null cell adenomas, had invasive 
potential, and SCAs presented at an earlier age than 
other subtypes (47.6 vs. 54.3 yrs old). Also, higher 
SSTR2/SSTR3 expression in SCAs indicated the 
potential efficacy of somatostatin analogs for these 
tumors [58]. 

The transcriptomic heterogeneity among NNF or 
INF patients could be justified by their gonadotroph 
or corticotroph cells of origin. SCAs and SGAs 
displayed relatively distinct transcriptomic 
characteristics. Notably, although null cell adenomas 
and SGAs were previously recognized by different 
behavioral characteristics [13], these two subtypes 
shared transcriptomic similarity. A recent 
comprehensive multi-omics study by Neou et al. [19] 
also obtained similar results, with gonadotroph and 
null cell tumors clustering together based on the 
transcriptome. Our results also showed that 
invasion-related markers were unable to differentiate 
invasive tumors within SCAs and SGAs. These 
findings suggested that the invasion-associated 
marker gene expression is connected to a potential 
subtype(s) of PitNEts. 

In summary, the NF-PitNEt classification 
yielded a gene-subtype panel that predicted INF with 
high accuracy. Since IHC staining for transcription 
factors was only available among RNA-seq and TMA 
samples in this study, the potential of this panel for 
differentiating invasiveness needs to be confirmed in 
a larger cohort of patients. Nevertheless, we have 
shown that the precise classification of NF-PitNEts, in 
combination with the RNA profile, could potentially 
aid in predicting the disease course. 
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