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Abstract 

Rationale: Siglec15 is an emerging target for normalization cancer immunotherapy. However, pan-cancer 
anti-Siglec15 treatment is not yet validated and the potential role of Siglec15 in bladder cancer (BLCA) remains 
elusive. 
Methods: We comprehensively evaluated the expression pattern and immunological role of Siglec15 using 
pan-cancer analysis based on RNA sequencing data obtained from The Cancer Genome Atlas. We then 
systematically correlated Siglec15 with immunological characteristics in the BLCA tumor microenvironment 
(TME), including immunomodulators, cancer immunity cycles, tumor-infiltrating immune cells (TIICs), immune 
checkpoints, and T cell inflamed score. We also analyzed the role of Siglec15 in predicting the molecular 
subtype and the response to several treatment options in BLCA. Our results were validated in several public 
cohorts as well as our BLCA tumor microarray cohort, the Xiangya cohort. We developed an immune risk 
score (IRS), validated it, and tested its ability to predict the prognosis and response to cancer immunotherapy. 
Results: We found that Siglec15 was specifically overexpressed in the TME of various cancers. We 
hypothesize that Siglec15 designs a non-inflamed TME in BLCA based on the evidence that Siglec15 negatively 
correlated with immunomodulators, TIICs, cancer immunity cycles, immune checkpoints, and T cell inflamed 
score. Bladder cancer with high Siglec15 expression was not sensitive to cancer immunotherapy, but exhibited 
a higher incidence of hyperprogression. High Siglec15 levels indicated a luminal subtype of BLCA characterized 
by lower immune infiltration, lower response to cancer immunotherapy and neoadjuvant chemotherapy, but 
higher response to anti-angiogenic therapy and targeted therapies such as blocking Siglec15, β-catenin, PPAR-γ, 
and FGFR3 pathways. Notably, a combination of anti-Siglec15 and cancer immunotherapy may be a more 
effective strategy than monotherapy. IRS can accurately predict the prognosis and response to cancer 
immunotherapy.  

Conclusions: Anti-Siglec15 immunotherapy might be suitable for BLCA treatment as Siglec15 correlates 
with a non-inflamed TME in BLCA. Siglec15 could also predict the molecular subtype and the response to 
several treatment options. 

Key words: Siglec15, Bladder cancer, Immunotherapy, Molecular subtype, Tumor microenvironment 

Introduction 
Bladder cancer (BLCA) is the second most 

common urinary cancer [1]. Despite neoadjuvant and 
adjuvant chemotherapy, the outcome for metastatic 

BLCA is poor [2]. Cancer immunotherapy, including 
immune checkpoint blockade (ICB), has achieved 
promising survival benefits for advanced BLCA [3, 4]. 
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Although BLCA is an immunogenic cancer 
characterized by high tumor mutation burden (TMB) 
and neoantigens [5], only a small number of patients 
respond to ICB because of primary or secondary 
mechanisms of resistance to it [3, 4]. An inflamed 
tumor microenvironment (TME) in conjunction with 
pre-existing anticancer immunity is necessary, but not 
sufficient, for the success of ICB [6-9]. ICB inhibits 
tumor growth by re-invigorating tumor-cytotoxic T 
cells in TME, but does not induce their formation [10]. 
Theoretically, molecules or pathways resulting in a 
non-inflamed TME will cause resistance to ICB. In 
BLCA, such molecules and pathways, including 
β-catenin, PPAR-γ, and FGFR3 pathways, have been 
shown to promote the formation of a non-inflamed 
TME by excluding the infiltration level of 
tumor-infiltrating immune cells (TIICs) [11-15]. For 
patients with a non-inflamed TME, transforming it 
into an inflamed TME by reversing these ICB-resistant 
mechanisms is one of the top priorities along with 
promoting the recruitment of TIICs to drive tumor 
regression [16]. 

Given the substantial economic burden and toxic 
side effects of cancer treatments, more robust and 
economic biomarkers that predict the response to ICB 
must be explored. PD-L1 is related to the clinical 
response of ICB in many clinical trials, but its 
predictive value may be weakened by many factors 
[17, 18]. TMB, microsatellite instability (MSI), and the 
molecular subtype can predict the clinical response of 
BLCA to ICB. However, these biomarkers are detected 
using complex molecular methods, which are slow 
and expensive [3, 4]. Moreover, molecular subtypes 
can predict the prognosis and some therapeutic 
responses of BLCA [19], but their widespread clinical 
application has failed so far. Therefore, there is an 
urgent medical need for the development of faster 
and economical molecular subtype predictors. 

Siglec15, a member of the sialic acid-binding 
immunoglobulin-like lectins family, is an emerging 
broad-spectrum target for normalization cancer 
immunotherapy, and is complementary to PD-L1 [20, 
21]. Wang et al. demonstrated that Siglec15 promoted 
tumor growth by inhibiting the proliferation of CD8+ 
T cells, and Siglec15 inhibitors could relieve this 
immunosuppression [20]. The results of a phase I 
clinical trial in advanced non-small cell lung cancer 
(NSCLC) indicated that Siglec15 inhibitors achieved a 
promising clinical response (NCT03665285). 
Currently, a phase II clinical trial is ongoing to assess 
this treatment’s efficacy in solid tumors including 
NSCLC, ovarian cancer (OV), melanoma, breast 
cancer (BRCA), and colorectal cancer. However, it is 
critical to note that the potential of Siglec15 as a 
broad-spectrum therapeutic target was not validated 

in pan-cancers before initiating this phase II clinical 
trial. The recent progress of this phase II clinical trial 
in NSCLC and ovarian cancer has been slow, casting 
doubt on the validity of Siglec15 inhibitors in 
unselected cancer types (http://ir.nextcure.com/ 
news-releases/news-release-details/nextcure-provid
es-interim-update-phase-2-portion-nc318). Recently, 
Li et al. performed a pan-cancer analysis on Siglec15 
and confirmed that Siglec15 plays an 
immunoregulatory role in lung adenocarcinoma and 
may be a vital prognostic biomarker [22]. However, 
the role of Siglec15 in BLCA should be further 
investigated.  

In this study, we performed a pan-cancer 
analysis of the expression patterns and 
immunological role of Siglec15. We found that BLCA 
may be a suitable candidate for anti-Siglec15 therapy. 
We also report that Siglec15 promotes the 
development of a non-inflamed TME in BLCA, and 
has the potential to predict the molecular subtype of 
BLCA.  

Methods  
Figure 1 shows the workflow of this study. 

Data retrieval and preprocessing 
The Cancer Genome Atlas (TCGA) data: The 

pan-cancer RNA sequencing (RNA-seq) data (FPKM 
value), somatic mutation data, and survival 
information were downloaded from the UCSC Xena 
data portal [23]. Data on RNA-seq were log2 
transformed, while somatic mutation data were 
analyzed using VarScan2 and then used to calculate 
TMB. MSI data were collected from the 
supplementary files of Bonneville’s study [24]. The 
copy number variation (CNV) data, processed using 
the GISTIC algorithm, were downloaded from the 
UCSC Xena data portal, whereas the methylation data 
were downloaded from the LinkedOmics data portal 
[25]. The abbreviations for various cancer types are 
given in Table S1. 

Gene Expression Omnibus (GEO): Eight BLCA 
GEO cohorts with detailed survival data were 
downloaded, namely GSE13507, GSE31684, GSE4 
8075, GSE48277, GSE69795, GSE70691, GSE32894, and 
GSE5287. Three immunotherapy-related cohorts, 
GSE78220 (melanoma), GSE135222 (NSCLC), and 
GSE91061 (melanoma), were also downloaded. In 
addition, an immunotherapy cohort (PMID29301960) 
of renal cell carcinoma was collected from the 
supplementary files of Miao’s study [26]. Based on the 
Creative Commons 3.0 License, the complete 
expression data and detailed clinical information of 
the IMvigor210 cohort (a BLCA immunotherapy 
related cohort) were obtained from http://research- 
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pub.Gene.com/imvigor210corebiologies/[27]. 
Detailed information about these datasets is 

summarized in Table S1.  

 

 
Figure 1. Overview of the study design. (A) Data sources used in this study; (B) Correlations between Siglec15 and pan-cancer immunological elements. TIICs were 
estimated using ssGSEA algorithm. (C) Correlation between Siglec15 and the immunological status of the tumor microenvironment in BLCA. The immunological status includes 
immunomodulators, steps of the cancer–immunity cycle, immune checkpoints, T cell-inflamed score, and TIICs. (D) Role of Siglec15 in predicting the molecular subtypes in 
BLCA. (E) Role of Siglec15 in predicting therapeutic responses to immunotherapy, neoadjuvant/adjuvant chemotherapy, targeted therapy, EGFR therapy, and radiotherapy in 
BLCA. (F) Development of an immune risk score; (G) Sankey plot displaying the main results in this study. TIICs: tumor-infiltrating immune cells, IF: immunofluorescence. 
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Other data sources: Expression data of Siglec15 
in normal tissues were downloaded from BioGPS data 
portal and Genotype-Tissue Expression (GTEx) 
project. Finally, expression data of Siglec15 in cancer 
cell lines were downloaded from the BioGPS data 
portal and Cancer Cell Line Encyclopedia (CCLE) 
project.  

Evaluation of the immunological 
characteristics of the TME in BLCA 

Immunological characteristics of the TME in 
BLCA include the expression of immunomodulators, 
activity of the cancer immunity cycle, infiltration level 
of TIICs, and the expression of inhibitory immune 
checkpoints. We first collected information on 122 
immunomodulators including MHC, receptors, 
chemokines, and immune stimulators from the study 
of Charoentong et al. (Table S2) [28]. The cancer 
immunity cycle reflects the anticancer immune 
response and comprises seven steps: release of cancer 
cell antigens (Step 1), cancer antigen presentation 
(Step 2), priming and activation (Step 3), trafficking of 
immune cells to tumors (Step 4), infiltration of 
immune cells into tumors (Step 5), recognition of 
cancer cells by T cells (Step 6), and killing of cancer 
cells (Step 7) (Table S3) [29]. The activities of these 
steps determine the fate of the tumor cells. Xu et al. 
evaluated the activities of these steps using a single 
sample gene set enrichment analysis (ssGSEA) based 
on the gene expression of individual samples [30]. 
Thereafter, several algorithms were developed to 
calculate the infiltration level of TIICs in TME using 
bulk RNA-seq data. Different algorithms and marker 
gene sets of TIICs initiate calculation errors. To avoid 
these errors, we comprehensively calculated the 
infiltration level of TIICs using seven independent 
algorithms: Cibersort-ABS, MCP-counter, quanTIseq, 
TIMER, xCell, TIP, and TISIDB (Table S4) [30-36]. We 
also identified the effector genes of TIICs from 
previous studies (Table S5). Finally, we collected 22 
inhibitory immune checkpoints with therapeutic 
potential from Auslander’s study (Table S6) [37]. 

 Ayers et al. developed and validated a 
pan-cancer T cell-inflamed score, which could define 
pre-existing cancer immunity, as well as predict the 
clinical response of ICB [38]. The eighteen genes 
included in the T cell-inflamed score algorithm and 
their coefficients are shown in Table S7. Here, we 
computed the T cell inflamed score as a weighted 
linear combination of the scores from the 18 genes. 
Hyperprogression is an adverse event associated with 
ICB. We summarized several predictors of 
hyperprogression (Table S8) [39-41]. The 
amplification and high mRNA expression of MDM2, 
MDM4, DNMT3A, CCND1, FGF19, FGF4, and FGF3 

are positively correlated with hyperprogression. In 
addition, the deletion and low mRNA expression of 
CDKN2A and CDKN2B are also positively correlated 
with hyperprogression.  

To confirm the role of Siglec15 in modulating 
cancer immunity in BLCA, we analyzed the 
correlation between Siglec15 and the immunological 
characteristics of TME with respect to the above 
aspects. The findings from this study were validated 
in three independent external cohorts, including 
GSE31684, GSE32894, and IMvigor210.  

Immunohistochemistry and 
immunofluorescence staining of bladder 
cancer microarray 

Sixty-three bladder cancer specimens were 
prepared in a tissue microarray (TMA) format. 
Representative tumor areas were obtained from 
formalin-fixed, paraffin-embedded specimens of 
primary cancer tissues, where 1.5-mm cores from each 
cancer block were arrayed. Immunohistochemistry 
was performed as described previously [42]. Briefly, 
staining was performed using a CD8-specific 
antibody (ab4055, Abcam), an anti-PD-L1 antibody 
(ab213524, Abcam), and an anti-Siglec15 antibody 
(ab198684, Abcam) in combination with a secondary 
antibody [horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit immunoglobulin G (IgG)]. For the 
scoring of PD-L1, we first evaluated the staining 
intensity of whole tumor tissue at low magnification. 
Samples with no staining in any cancer cells were 
assigned score 0, weakly stained samples scored 1, 
samples stained with moderate intensity scored 2, and 
samples with a strong intensity of staining scored 3. 
We also calculated the number of positive cells from 
five high magnification fields chosen at random as 
well as their mean intensities. As described above, 
samples with < 25 % positive expression were scored 
1, samples within the expression range of 25 %–50 % 
scored 2, samples within the expression range of 50 
%–75 % scored 3, and samples with expression ≥ 75% 
scored 4. The final PD-L1 expression was determined 
by multiplying the intensity score with the positive 
expression value. For CD8 and Siglec15 staining, we 
estimated only the percentage of cells with a strong 
intensity (brown staining) of membrane staining. 
Tumors were classified into three phenotypes based 
on the spatial distribution of CD8+ T cells. These 
included the “inflamed phenotype”: CD8+ T cells 
located in the tumor parenchyma; the “excluded 
phenotype”: CD8+ T cells located in the stroma 
surrounding the tumor but not in parenchyma; and 
the “deserted phenotype,” characterized by the 
absence of CD8+ T cells in both tumor parenchyma 
and stroma. Both excluded and deserted phenotypes 
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can be considered as non-inflamed phenotypes. All 
slides were reviewed by two independent 
pathologists. Immunofluorescence co-staining of 
Siglec15, CD8, and PD-L1 was performed as described 
by Wang et al. [20]. Briefly, co-staining for Siglec-15, 
PD-L1, and CD8 was performed using a sequential 
multiplexed immunofluorescence protocol with three 
antibodies used in the immunohistochemistry. 
Corresponding secondary antibodies used were 
CY3-TSA (G1222, Servicebio) for Siglec15 detection, 
FITC-TSA (G1223, Servicebio) for PD-L1 detection 
and CY5-TSA (G1224 Servicebio) for CD8 detection. 
Nuclei were highlighted using DAPI. Finally, we 
estimated the proportions of positive cells in the 
whole field. 

RNA sequencing of bladder cancer samples 
Sixty fresh bladder cancer samples were 

collected from our hospital and were immediately 
stored in liquid nitrogen. Total RNA was extracted 
from the tissues using TRIzol (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s 
instructions. Subsequently, NanoDrop and Agilent 
2100 bioanalyzer (Thermo Fisher Scientific, MA, USA) 
were used to quantify total RNA. The mRNA library 
was then constructed. Total RNA was purified and 
fragmented into small pieces. Then, first-strand cDNA 
and second-strand cDNA were synthesized. The 
cDNA fragments were further amplified by PCR after 
incubating with A-tailing mix and RNA Adapter 
Index for end repair. The qualified double-stranded 
PCR products were then used to construct the final 
library (single-stranded circular DNA). Among the 60 
samples collected, 57 qualified. Eventually, the 57 
qualified bladder cancer samples (named the Xiangya 
cohort) were further sequenced on a BGISEQ-500 
platform (BGI-Shenzhen, China). The gene expression 
levels were calculated using RSEM (v1.2.12). 

Real-time quantitative PCR (qPCR) 
For real-time qPCR analysis, total RNA was 

extracted from 30 paired samples of bladder cancer 
and adjacent normal tissues using RNA extraction 
reagent (Donghuan, Shanghai, China) according to 
the manufacturer’s instructions. cDNA was 
synthesized using a cDNA synthesis kit (Takara, 
Dalian, China). Real-time q-PCR was performed to 
detect the expression of Siglec15 using SYBR Green 
qPCR Master Mix (Junxing, Suzhou, China). Gene 
expression levels were normalized to the 
“housekeeping” gene GAPDH. Primer sequences for 
Siglec15 and GAPDH were as follows: Siglec15 
(forward primer: 5′-TTTGAGCCAGATGAACCC 
CC-3′; reverse primer: 5′-CAGGGAGCTCCGAAATG 
GTT-3′); GAPDH (forward primer: 5′-GACAGTCAG 
CCGCATCTTCT-3′; reverse primer: 5′-GCGCCCAA 

TACGACCAAATC-3′). 

Calculation of the enrichment scores of 
various gene signatures 

A set of gene signatures positively correlated 
with the clinical response of an anti-PD-L1 agent 
(atezolizumab) in BLCA were collected from 
Mariathasan’s study [27]. Twelve bladder cancer 
signatures that are specific to different molecular 
subtypes were collected from the study performed by 
the Bladder Cancer Molecular Taxonomy Group [19]. 
We also collected other therapeutic signatures, 
including oncogenic pathways that could shape a 
non-inflamed TME, targeted therapy-associated gene 
signatures, and gene signatures predicting 
radiotherapy responses (Table S9). The enrichment 
scores of these signatures were calculated using the 
GSVA R package [43]. Subsequently, it was noted that 
the mutation statuses of several critical genes, 
including RB1, ATM, ERBB2, ERCC2, and FANCC, 
were predictors of the response to neoadjuvant 
chemotherapy in BLCA [44-47]. 

After comparing the differences in the values of 
the enrichment scores of therapeutic signatures and 
the mutation statuses of neoadjuvant chemotherapy 
predictors between Siglec15 groups, we could 
determine the role of Siglec15 in predicting the 
response to these therapies. Finally, the BLCA-related 
drug-target genes were screened using the Drugbank 
database (Table S10) [48].  

Prediction of the molecular subtypes in BLCA 
There are several molecular subtype systems, 

such as CIT, Lund, MDA, TCGA, Baylor, UNC, and 
Consensus subtypes [19, 49-54]. ConsensusMIBC and 
BLCAsubtyping R packages were used to determine 
the molecular subtypes of individuals. Thereafter, we 
correlated Siglec15 with different molecular subtypes 
and specific bladder cancer gene signatures. Based on 
the correlations between different molecular subtype 
systems depicted previously, BLCA can be classified 
into two major subtypes, namely basal and luminal 
subtypes (Table S11) [19]. Receiver operating 
characteristic (ROC) curves were plotted to explore 
the predictive accuracy of Siglec15 for molecular 
subtypes. Moreover, the predictive accuracy of 
Siglec15 was validated in four external validation 
cohorts, including two general BLCA cohorts 
(GSE31684, GSE48277), one immunotherapy-related 
cohort (IMvigor210), and one neoadjuvant 
chemotherapy-related cohort (GSE70691).  

Identification of immune-related differentially 
expressed RNAs (DERs)  

Patients were classified into various groups 
based on the median Siglec15 mRNA expression, 
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immune score, and stromal score. The immune and 
stromal scores of BLCA were calculated using the 
ESTIMATE R package. The empirical Bayesian 
approach of the limma R package was applied to 
identify DERs from the RNA-seq data. The criteria for 
determining differential DERs were set with the 
adjusted P-value < 0.01, and the |log(fold 
change)|>1. We determined the common DERs using 
the VennDiagram R package. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were performed using the 
ClusterProfiler R package. Finally, we performed a 
protein–protein interaction (PPI) network analysis 
using Cytoscape to identify key clusters.  

Development of an immune risk score (IRS)  
Based on the time of inclusion of patients into the 

trial, TCGA-BLCA cohort was divided into training 
and validation sets with a ratio of 7:3. In the training 
set, we performed univariate Cox analysis in common 
DERs using the survival R package. Furthermore, the 
least absolute shrinkage and selector operation 
(LASSO) algorithm was applied to screen optimal 
candidate DERs (IRS RNA-expression profiles) with 
the best discriminative capability. We then developed 
an IRS based on the IRS RNA-expression profiles, 
weighted using the multivariate Cox regression 
coefficient as follows: 

IRS=∑𝛽𝑖 ∗ 𝑅𝑁𝐴𝑖 

where βi is the coefficient of the ‘i’th IRS 
RNA-expression profile. Specifically, patients were 
classified into high and low IRS groups based on the 
median IRS. The Kaplan–Meier method was applied 
and the log-rank test was used to statistically compare 
the groups in order to estimate the prognostic 
significance of the IRS. The statistical performance of 
the IRS was assessed using the tROC R package. 
Additionally, the prognostic value of the IRS was 
validated in TCGA internal validation set. However, 
some RNAs included in the primary IRS algorithm 
could not be detected in external validation sets due 
to different RNA detection platforms. Therefore, we 
could not directly validate the performance of the 
primary IRS algorithm in external validation sets. 
However, we re-developed an IRS based on the 
common RNAs that were included in both, the IRS 
RNA-expression profiles and the external validation 
sets. Consequently, we determined the prognostic 
performance of the new IRS, which reflects the 
prognostic value of the IRS RNA expression profiles.  

Since the IRS was developed based on immune 
DERs, we explored the role of IRS in predicting the 
clinical response of ICB in TCGA-BLCA cohort by 
analyzing the correlations between IRS and the 

immunological characteristics of an inflamed TME. 
Jiang et al. developed a signature of T cell dysfunction 
and exclusion (TIDE), which could accurately predict 
cancer immunotherapy response [55]. Therefore, we 
compared the accuracy in predicting ICB response 
and survival probability between the IRS and TIDE 
algorithms in four immunotherapy cohorts, 
GSE78220, GSE91061, IMvigor210, and 
PMID29301960. The TIDE scores of samples in these 
cohorts were calculated and downloaded from 
http://tide.dfci.harvard.edu/. 

Statistical analysis 
Correlations between variables were explored 

using Pearson or Spearman coefficients. Continuous 
variables fitting a normal distribution between binary 
groups were compared using a t-test. Otherwise, the 
Mann-Whitney U test was applied. Categorical 
variables were compared using the chi-squared test or 
Fisher’s exact test. Survival curves for prognostic 
analyses of categorical variables were generated using 
the Kaplan-Meier method, while the log-rank test was 
applied to estimate statistical significance. The level of 
significance was set at P < 0.05, and all statistical tests 
were two-sided. All statistical data analyses were 
implemented using R software, version 3.6.3. 

Results 
Pan-cancer expression pattern, prognostic 
significance, and immunological correlation of 
Siglec15 

After a comprehensive analysis of the expression 
data from TCGA, GTEx, and Oncomine databases, we 
found that Siglec15 was highly expressed in the 
majority of cancers such as BLCA and breast cancer 
(BRCA) compared with normal tissues (Figure 
S1A-D). Siglec15 was also expressed in various cancer 
cell lines, including bladder cancer cell lines, based on 
the screening of expression data from BioGPS and 
CCLE databases (Figure S1E-F). On the other hand, 
Siglec15 was expressed in very low amounts in 
normal tissues, except for macrophages (Figure S1G). 
In thirty paired samples consisting of bladder cancer 
and normal tissues, Siglec15 was found to be 
significantly and more highly expressed in cancer 
tissues than in normal tissues (Figure S1H). The 
pan-cancer overexpression pattern of Siglec15 
prompted us to explore its prognostic value. 
Therefore, we performed a pan-cancer survival 
analysis concerning overall survival, progression-free 
survival, and cancer-specific survival using the Cox 
regression model, Kaplan–Meier analysis, and 
log-rank test. As anticipated, Siglec15 emerged as a 
prognostic biomarker in various cancers (Figure 
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S2-S4), even though its prognostic value was variable 
in different cancers. However, these results need 
further evaluation, especially using multivariable 
analysis. 

Pan-cancer analyses aimed at depicting the 
immunological role of Siglec15 are critical in 
determining the types of cancers that may benefit 
from anti-Siglec15 immunotherapy. Our findings 
revealed that Siglec15 was negatively correlated with 
a majority of immunomodulators in BLCA (Figure 
2A). We also estimated the infiltration levels of TIICs 
in the TME using the ssGSEA algorithm. Likewise, 
Siglec15 was negatively correlated with the majority 
of TIICs in BLCA (Figure 2F). Furthermore, we 
demonstrated that the expression of Siglec15 was 
mutually exclusive of several immune checkpoints, 
including PD-L1, PD-1, CTLA-4, and LAG-3 in BLCA 
(Figure 2B-E, Table S2). Apart from BLCA, these 
negative immunological correlations of Siglec15 were 
not observed with other malignancies, such as 
NSCLC, ovarian cancer, melanoma, BRCA, and 
colorectal cancer. Nevertheless, we noted that Siglec15 
was negatively correlated with TMB and MSI in 
several cancers, suggesting that Siglec15 may reflect 
cancer immunogenicity in these cancers (Figure S5). 

In summary, the overexpression pattern of 
Siglec15 is TME specific, which demonstrates the 
potential of Siglec15 as a target for normalized cancer 
immunotherapy. The immunosuppressive effect of 
Siglec15 in TME is the most obvious in BLCA, which 
suggests that BLCA may be a suitable candidate 
cancer type for anti-Siglec15 immunotherapy.  

Mutational analyses of Siglec15 in BLCA 
There were no mutations found in the Siglec15 

gene. The CNV pattern of Siglec15 is shown in Figure 
S6A. Notably, copy number deletion and methylation 
of the Siglec15 reduced the expression of Siglec15 
mRNA (Figure S6B-C). These results indicate that 
epigenetic modifications of the Siglec15 gene may be 
an alternative therapeutic method of intervention for 
anti-Siglec15 inhibitors. The top 30 mutational genes 
in the low- and high-Siglec15 groups, and an 
overview of the mutation profiles in BLCA are 
summarized in Figure S6D-F.  

Siglec15 shapes a non-inflamed TME in BLCA 
Siglec15 was found to be negatively correlated 

with a large number of immunomodulators (Figure 
3A, Table S2). A majority of MHC molecules were 
downregulated in the high-Siglec15 group, which 
indicated that the capacity of antigen presentation 
and processing was downregulated in the 
high-Siglec15 group. Three critical chemokines 
(CXCL9, CXCL10, and CCR3), which induce the 
recruitment of CD8+ T cells into the TME in BLCA, 

were downregulated in the high-Siglec15 group. 
Other chemokines, including CCL2, CCL3, CCL4, 
CCL5, CCL19, CCL20, CCL21, CXCL11, CXCL13, and 
paired receptors including CCR1, CCR2, CCR5, 
CCR6, and CXCR3, were negatively correlated with 
Siglec15. These chemokines and receptors promote 
the recruitment of effector TIICs such as CD8+ T cells, 
TH17 cells, and antigen-presenting cells. Given the 
complex and manifold functions of the chemokine 
system, the relationship between Siglec15 and 
individual chemokines was not sufficient to clarify the 
overall immunological effect of Siglec15 in TME.  

The activities of the cancer immunity cycle are a 
direct comprehensive performance of the functions of 
the chemokine system and other immunomodulators 
[29, 30]. In the high-Siglec15 group, activities of the 
majority of the steps in the cycle were found to be 
downregulated, including the release of cancer cell 
antigens (Step 1), priming and activation (Step 3), and 
trafficking of immune cells to tumors (Step 4) (CD8 T 
cell recruiting, Macrophage recruiting, Th1 cell 
recruiting, NK cell recruiting, DC recruiting, and 
TH17 recruiting) Siglec15(Figure 3B, Table S3). 
Subsequently, the reduced activities of these steps 
may reduce the infiltration levels of effector TIICs in 
the TME. Interestingly, the activity of recognition of 
cancer cells by T cells (Step 6) was downregulated in 
the low-Siglec15 group. This may be due to the high 
expression of PD-L1 in the low-Siglec15 group. The 
activity of Step 7 (killing of cancer cells) was 
downregulated in the high-Siglec15 group. 

Next, we calculated the infiltration level of TIICs 
using seven independent algorithms (Figure S7-S13, 
Table S4). In line with the previous results, Siglec15 
was negatively correlated with the infiltration level of 
CD8+ T cells, NK cells, Th1 cells, macrophages, and 
dendritic cells in different algorithms (Figure 3C). 
Similarly, Siglec15 was negatively correlated with the 
effector genes of these TIICs (Figure 3D, Figure S14A, 
Table S5). In addition, Siglec15 was negatively 
correlated with the marker genes of macrophages 
(Figure S14B-E). The expression of immune 
checkpoint inhibitors such as PD-L1/PD-1 was 
reported to be low in non-inflamed TME [7]. 
Consistently, in this study, Siglec15 was found to be 
negatively correlated with a majority of immune 
checkpoint inhibitors including PD-L1, PD-1, CTLA-4, 
LAG-3, TIM-3, IDO1, and TIGIT (Figure 3E, Table S6). 

These results were validated in a TMA cohort 
(Table S12). Samples in the TMA cohort were divided 
into three phenotypes, deserted, excluded, and 
inflamed, based on the spatial distribution of CD8+ T 
cells. Representative images are shown in Figure 4A 
and Figure S14F. The PD-L1 IHC score in the inflamed 
phenotype was the highest (Figure 4B).  



Theranostics 2021, Vol. 11, Issue 7 
 

 
http://www.thno.org 

3096 

 
Figure 2. The effect of Siglec15 on immunological status in pan-cancers. (A) Correlation between Siglec15 and 122 immunomodulators (chemokines, receptors, MHC, 
and immunostimulators). (B-E) Correlation between Siglec15 and four immune checkpoints, PD-L1, CTLA-4, PD-1, and LAG-3. The dots represent cancer types. The Y-axis 
represents the Pearson correlation, while the X-axis represents -log10P. (F) Correlation between Siglec15 and 28 tumor-associated immune cells calculated with the ssGSEA 
algorithm. The color indicates the correlation coefficient. The asterisks indicate a statistically significant p-value calculated using spearman correlation analysis. (*P < 0.05; **P < 
0.01; ***P < 0.001). 
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Figure 3. Siglec15 shapes a non-inflamed TME in BLCA. (A) Differences in the expression of 122 immunomodulators (chemokines, receptors, MHC, and 
immunostimulators) between high- and low-Siglec15 groups in BLCA. (B) Differences in the various steps of the cancer immunity cycle between high- and low-Siglec15 groups. 
(C) Correlation between Siglec15 and the infiltration levels of five types of TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells), which were calculated using 
seven independent algorithms. (D) Differences in the effector genes of the above tumor-associated immune cells between high- and low-Siglec15 groups. (E) Correlation between 
Siglec15 and 20 inhibitory immune checkpoints. The color and the values indicate the Spearman correlation coefficient. The asterisks indicated a statistically significant p-value 
calculated using Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001). 

 
Consistently, the inflamed phenotype had the 

highest CD8 positive rate (Figure S14G). These results 
indicated that the classification of these three immune 
phenotypes was suitable. We then analyzed the 
correlations between Siglec15, CD8, and PD-L1. The 

inflamed phenotype had the lowest Siglec15 
expression among these three phenotypes (Figure 4C). 
Meanwhile, the Siglec15 expression was negatively 
correlated with CD8 expression (Figure 4D, Figure 
S14H). Also, the expression of PD-L1 was positively 
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correlated with the expression of CD8 (Figure S14I). 
Finally, we found that the Siglec15 expression was 

negatively correlated with the PD-L1 expression 
(Figure 4E, Figure S14J).  

 

 
Figure 4. Correlations between Siglec15, the immune phenotype, and the clinical response of immunotherapy in BLCA. (A) Expression of Siglec15, CD8 and 
PD-L1 in the bladder cancer microarray (TMA) cohort were detected using immunofluorescence. Representative co-staining images of Siglec15, PD-L1, and CD8 in three 
immune phenotypes. Bladder cancer tissues were divided into three immune phenotypes, namely deserted, excluded, and inflamed phenotypes, based on the spatial distribution 
of CD8+ T cells. The scale bars correspond to 200 μm. (B-C) PD-L1 IHC score and the positive rate of Siglec15 (detected using immunofluorescence) in the three phenotypes 
of the TMA cohort. (D) Correlation between the Siglec15 positive rate and CD8 positive rate detected using immunofluorescence. (E) Correlation between the Siglec15 positive 
rate (detected using immunofluorescence) and PD-L1 IHC score. (F) Expression of Siglec15 in all three phenotypes in the IMvigor210 cohort. (G-H) Differences in the PD-L1 
expression on tumor cells, and the PD-L1 expression on immune cells between high- and low-Siglec15 groups in the IMvigor210 cohort. (I) Differences in the enrichment scores 
of immunotherapy-predicted pathways between high- and low-Siglec15 groups in TCGA-BLCA cohort. (J) Correlation between Siglec15 and the clinical response of cancer 
immunotherapy in the IMvigor210 cohort. The asterisks indicate a significant statistical p-value calculated using the Mann-Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001). 
IHC: immunohistochemistry; PD: progressed disease; SD: stable disease; PR: partial response; CR: complete response. 
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Furthermore, we validated these results in three 

external cohorts with a larger sample size. In the 
IMvigor210 cohort, the expression of Siglec15 was 
higher in deserted phenotypes, TC0 (tumor cells with 
the lowest PD-L1 values), and IC0 (immune cells with 
the lowest PD-L1 values) groups (Figure 4F-H). 
Siglec15 was negatively correlated with a majority of 
immunomodulators, effector genes of TIICs, and 
immune checkpoints in GSE32894, GSE31684, and 
IMvigor210 cohorts (Figure S15A-C, Figure S16A-C, 
Figure S17A-C).  

Collectively, Siglec15 strongly correlated with 
the development of a non-inflamed TME. However, 
despite the immunosuppressive properties of Siglec15 
in BLCA, multivariate Cox analysis showed that it did 
not have any effect on the prognosis of BLCA (Table 
S1: survival analysis). 

Siglec15 predicts clinical response and 
hyperprogression of ICB in BLCA 

In theory, patients with higher Siglec15 
expression should have a lower response to ICB 
because Siglec15 defines a non-inflamed TME. As 
expected, the expression of Siglec15 was significantly 
higher in patients with a progressive and stable 
disease compared to the patients showing a partial or 
complete response to therapy (Figure 4J). Siglec15 
negatively correlated with the enrichment scores of 
most immunotherapy-positive gene signatures 
(Figure 4I, Table S13), which was validated in three 
external cohorts (Figure S15D, Figure S16D, Figure 
S17D). Furthermore, we analyzed the correlations 
between Siglec15 and various immune signatures 
(expression of immunomodulators and TIIC effector 
genes, immune checkpoints, and immunotherapy- 
related signatures) in subgroups with different ICB 
responses. These groups were defined as complete 
response, partial response, stable disease, and 
progressed disease groups. Results of the subgroup 
analyses indicated that high Siglec15 was negatively 
correlated with these immune signatures and 
predicted a lower response to immunotherapy in all 
subgroups (Figure S18-S21). In addition, Siglec15 was 
negatively correlated with the pan-cancer T cell 
inflamed score (R = -0.38, P < 0.001) (Figure 5A-B). 
Another concern was that the incidence of 
ICB-associated hyperprogression may be higher in the 
high-Siglec15 group. The copy number amplification 
rates and mRNA expression of genes positively 
correlated with hyperprogression, including CCND1, 
FGF3, FGF4, FGF19, MDM2, MDM4, and DNMT3A, 
were significantly higher in the high-Siglec15 group 
(Figure S22A-B). In contrast, the mRNA expression of 

genes negatively correlated with hyperprogression, 
including CDKN2A and CDKN2B, was significantly 
lower in the high-Siglec15 group (Figure S22A-B).  

In summary, ICB should not be implemented in 
BLCA patients with high-Siglec15 expression as they 
are not responsive to ICB and instead exhibit a higher 
incidence of hyperprogression.  

Siglec15 predicts molecular subtypes and 
therapeutic opportunities 

Findings from the PURE-01 study elucidated 
that basal-type BLCA showed the highest immune 
cell infiltration and pathological response rates to 
pembrolizumab [56]. In addition, the consensus 
subtype revealed a similar conclusion that basal-type 
tumors were more likely to respond to ICB [19]. BLCA 
with lower Siglec15 expression was more likely to be 
the basal subtype among the seven molecular 
subtyping systems (Figure 5C). This re-validated the 
conclusion that Siglec15 was negatively correlated 
with the response to ICB. In addition, the enrichment 
scores for luminal differentiation, Ta pathway, and 
urothelial differentiation were greater in the 
high-Siglec15 group. On the other hand, the 
enrichment scores for basal differentiation, EMT 
differentiation, immune infiltration, and interferon 
response were lower in the high-Siglec15 group 
(Figure 5C). These outcomes were validated using 
three external cohorts (Figure S15E, Figure S16E, 
Figure S17E). Moreover, except for the Baylor 
molecular subtyping system, the area under the ROC 
curves (AUC) of Siglec15 in other systems was ≥ 0.90 
(Figure 5E). We observed similar findings, using four 
cohorts for validation (Figure S22C-F).  

A molecular subtype can also predict the clinical 
response to neoadjuvant chemotherapy, radiotherapy, 
and several targeted therapies [19, 57]. Basal subtype 
tumors were more likely to respond to neoadjuvant 
chemotherapy. The mutation rates of RB1, ERBB2, 
and FANCC were significantly higher in the 
low-Siglec15 group (basal subtype) (Figure 5D). In 
addition, the enrichment scores for 
radiotherapy-predicted pathways and EGFR ligands 
were higher in the low-Siglec15 group (Figure 5F, 
Table S13). Furthermore, results from the Drugbank 
database indicated a significantly higher response to 
chemotherapy, immunotherapy, and ERBB therapy in 
the low-Siglec15 group (Figure 5G). This shows that 
ICB, neoadjuvant or adjuvant chemotherapy, and 
ERBB therapy can be used, either alone or in 
combination, for the treatment of BLCA with low 
Siglec15 expression.  
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Figure 5. Siglec15 predicts the molecular subtype and the therapeutic response to several therapies in BLCA. (A-B) Correlations between Siglec15 and the 
pan-cancer T cell inflamed score and the individual genes included in the T cell inflamed signature. The T cell inflamed score is positively correlated with the clinical response to 
cancer immunotherapy. (C) Correlations between Siglec15 and molecular subtypes using seven different algorithms and bladder cancer signatures. (D-E) Mutational profiles of 
neoadjuvant chemotherapy-related genes in low- and high-Siglec15 groups. (E) Predictive accuracy of Siglec15 for molecular subtypes using seven different algorithms. The 
accuracy was equal to the area under the ROC curves. (F) Correlations between Siglec15 and the enrichment scores of several therapeutic signatures such as targeted therapy 
and radiotherapy. (G) Correlation between Siglec15 and the BLCA-related drug-target genes screened from the Drugbank database. 

 
BLCA with higher Siglec15 expression was more 

likely to be the luminal subtype (Figure 5C). ICB, 
chemotherapy, and radiotherapy were all unsuitable 
for BLCA with high Siglec15 expression. The 
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enrichment scores for several immunosuppressive 
oncogenic pathways were significantly higher in the 
high-Siglec15 group (Figure 5F, Table S13). These 
oncogenic pathways were related to the non-inflamed 
TME in BLCA. Consequently, inhibiting these 
pathways promoted the formation of an inflamed 
TME, thereby reactivating cancer immunity [13, 58]. 
In line with this observation, drugs targeting the 
PPARG and FGFR pathways have achieved 
promising results in BLCA. Likewise, erdafitinib (an 
FGFR inhibitor) achieved an excellent response in 
metastatic BLCA with a prior ICB therapy [59]. 
Theoretically, Siglec15 shares a similar 
immunosuppressive function with these oncogenic 
pathways. Therefore, targeted therapy blocking these 
pathways can be used in combination with 
anti-Siglec15 therapy for the treatment of BLCA with 
high Siglec15 expression. These results were validated 
in three external cohorts (Figure S15F, Figure S16F, 
Figure S17F). We found that anti-angiogenic therapy 
may be suitable for BLCA with high Siglec15 
expression (Figure 5G, Table S10).  

Siglec15 predicts immune phenotypes and 
molecular subtypes in Xiangya cohort 

In our cohort, Siglec15 negatively correlated with 
a majority of immunomodulators, such as CXCL9, 
CXCL10, CCL2, CCL3, CCL4, CCL19, and others 
(Table S14). Siglec15 was also found to be negatively 
correlated with CD8+ T cells, NK cells, dendritic cells, 
and macrophages in multiple algorithms (Figure 6A). 
Siglec15 also negatively correlated with four critical 
marker genes of macrophages (Figure 6B). As 
expected, Siglec15 negatively correlated with the 
critical steps of the cancer–immunity cycle, including 
the release of cancer cell antigens (Step 1), and 
trafficking of immune cells to tumors (Step 4) (CD8 T 
cell recruiting, Macrophage recruiting, Th1 cell 
recruiting, NK cell recruiting, DC recruiting, and 
TH17 recruiting) (Figure 6C). We also analyzed the 
correlations between Siglec15 and the predicted ICB 
response signatures. Siglec15 negatively correlated 
with the enrichment scores for all immunotherapy- 
related positive signatures (Figure 6D). Furthermore, 
Siglec15 was also negatively correlated with a 
majority of immune checkpoints (such as PD-L1, 
LAG-3, and CTLA-4) and the T cell-inflamed score 
(Figure 6E-G).  

 In summary, Siglec15 can accurately distinguish 
basal and luminal subtypes in seven different 
molecular subtype algorithms (Figure S23A-B). BLCA 
with higher Siglec15 expression was more likely to be 
the luminal subtype. The accuracy of Siglec15 in 
predicting molecular subtypes ranged from 0.81 to 
0.91 in seven algorithms. Furthermore, the roles of 

Siglec15 in predicting therapeutic responsiveness to 
neoadjuvant or adjuvant chemotherapy, radio-
therapy, and targeted therapy were successfully 
validated (Figure S23C). 

Identifying immune-related DERs 
In this study, we identified 1500 common DERs 

(Figure S24, Table S15). Interestingly, there was no 
commonality between DERs upregulated in the 
high-Siglec15 group and the high immune/stromal 
score groups. Similarly, there was no intersection 
between DERs downregulated in the high-Siglec15 
group and the high immune/stromal score groups 
(Figure S24H-K). This revealed that Siglec15 was 
negatively correlated with the immune and stromal 
scores in the TME. As expected, several basal 
subtype-specific genes, including KRT6A, KRT6B, 
KRT6C, KRT5, and KRT14, were upregulated in the 
low-Siglec15 group (Figure S24A). Also, several 
luminal subtype-specific genes, including UPK1A, 
UPK2, UPK3A, and KRT20 were upregulated in the 
high-Siglec15 group (Figure S24A). This implied that 
Siglec15 expression levels could predict the molecular 
subtype of BLCA. Results based on GO and KEGG 
analyses suggested that these DERs were enriched in 
the immune-related functional processes (Figure S25, 
Table S16). Findings from PPI analyses identified 24 
clusters. Among these 24 clusters, the top three 
clusters and corresponding hub genes were also 
associated with the immune-related processes (Table 
S17).  

Development and validation of an IRS 
Overall, 524 DERs were found to affect prognosis 

based on univariate Cox analysis (Table S18). We then 
identified 21 best candidate DERs (IRS 
RNA-expression profiles) with minimal lambda 
(0.001765) (Figure 7A-C) using the LASSO algorithm. 
IRS was developed according to the IRS 
RNA-expression profiles using multivariate Cox 
regression analysis. In TCGA training set, 275 patients 
were classified in the high IRS group (n=137) and low 
IRS group (n=138) using the median value of IRS as 
the risk cut-off. As shown in Figure 7D, patients with 
low IRS had significantly longer overall survival time 
than those with high IRS. The AUC of IRS was 0.78, 
0.78, and 0.83 at 12, 36, and 60 months, respectively. 
The predictive accuracy of the IRS was well validated 
in TCGA internal validation set (Figure 7E). We 
further validated the prognostic value of the IRS 
RNA-expression profiles in several external BLCA 
cohorts. Our findings demonstrate that the IRS 
RNA-expression profiles were a valuable prognostic 
panel in all BLCA cohorts (Figure 7F-H, Figure 
S26A-D, Figure S27, Figure S28). In addition, the 
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prognostic value of the IRS RNA-expression profiles 
can be validated in GSE135222 (NSCLC) (Figure 

S26E).  

 

 
Figure 6. Roles of Siglec15 in predicting immune phenotypes in the Xiangya cohort. (A) Correlations between Siglec15 and the infiltration levels of five 
tumor-associated immune cells (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells). (B) Correlations between Siglec15 and four critical marker genes of 
macrophages. (C) Correlations between Siglec15 and the steps of the cancer immunity cycle. (D) Correlations between Siglec15 and the enrichment scores of 
immunotherapy-predicted pathways. (E) Correlations between Siglec15 and immune checkpoints. (F-G) Correlations between Siglec15 and the T cell inflamed score. 
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Figure 7. Developing IRS RNA-expression profiles using LASSO Cox regression. (A) LASSO coefficient profiles of 524 prognostic RNAs in TCGA training cohort. 
The coefficient profile plot was developed against the log (Lambda) sequence. (B) Cross-validation for turning parameter selection via minimum criteria in the LASSO regression 
model. Two dotted vertical lines were plotted at the optimal values using the minimum criteria. Optimal RNAs with the best discriminative capability (21 in number) were 
selected for developing the IRS. (C) Forest plot of the IRS RNA-expression profiles in univariate cox analysis. (D) Development of IRS in TCGA training set and the predictive 
accuracy of IRS for survival. (E) Validation of the IRS in TCGA validation set. (F-H) Validation of the IRS RNA-expression profiles in three external independent sets: GSE32894, 
GSE5287, and GSE69795. 
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Apart from the prognostic value, IRS can predict 
the clinical response to ICB. Remarkably, the IRS was 
negatively related to Siglec15, but positively related to 
the pan-cancer T cell inflamed score (Figure S29A-B). 
The expression of several immune checkpoints, such 
as PD-L1, CTLA-4, and LAG-3, was significantly 
higher in the high IRS group (Figure S29C). 
Meanwhile, the IRS was positively related to several 
immunomodulators, effector TIICs, and cancer 
immunity cycle activities (Figure S29D-F). Lastly, the 
enrichment scores of most immunotherapy positively 
related signatures were significantly higher in the 
high IRS group (Figure S29G). 

Finally, we compared the accuracy in predicting 
ICB response between the IRS and TIDE algorithms, 
and we also evaluated the prognostic value of these 
two algorithms. In GSE78220 (melanoma), TIDE 
behaved better in predicting the ICB response than 
IRS (C-index: 0.76 Vs. 0.69) (Figure S30A) Meanwhile, 
high TIDE or IRS predicted poor prognosis (Figure 
S30B-C). However, IRS performed better in predicting 
prognosis than TIDE (Figure S30D-E). In GSE91061 
(melanoma), there was no difference in the predictive 
accuracy in predicting ICB response between the two 
algorithms (Figure S31A). However, TIDE was not 
related to prognosis (Figure S31B). Notably, IRS 
performed better in predicting prognosis than TIDE 
(Figure S31C-E). In PMID29301960 (KIRC), IRS 
behaved better in predicting ICB response than TIDE 
(C-index: 0.75 vs. 0.56) (Figure S32A). Similarly, IRS 
performed better in predicting prognosis than TIDE 
(Figure S32B-E). However, the predictive accuracy of 
TIDE or IRS for ICB response or prognosis was low in 
the IMvigor210 cohort (Figure S33). In general, TIDE 
and IRS were comparable in predicting ICB response. 
As for the prognostic value, IRS may behave better 
than TIDE. 

Discussion 
In this study, we demonstrated that bladder 

cancer (BLCA) is a suitable candidate for anti-Siglec15 
immunotherapy. We further confirmed that Siglec15 
shaped a non-inflamed TME based on the evidence 
that Siglec15 negatively correlated with the 
immunological status of TME in BLCA. In addition, 
we elucidated that Siglec15 could accurately predict 
the clinical response of ICB as well as the molecular 
subtypes, and the response to several therapies. 
Finally, we developed an IRS to predict prognosis and 
clinical response to ICB. 

Furthermore, whether a molecule can be a target 
for normalization cancer immunotherapy depends on 
two necessary characteristics: TME-specific over- 
expression and immunosuppressive function [60]. 
Siglec15 was overexpressed TME-specifically in 

various cancers, which implies fewer side effects of 
anti-Siglec15 treatment. This has been validated in 
preclinical research using mouse models [20]. 
Findings from preclinical research and phase I clinical 
trials of Siglec15 inhibitors indicated that Siglec15 
may be a broad-spectrum therapeutic target [20]. 
However, in this case, pan-cancer analyses revealed 
that Siglec15 exerted no immunosuppressive effect in 
the majority of cancers, including lung 
adenocarcinoma, lung squamous cell carcinoma, 
BRCA, head and neck squamous cell carcinoma, and 
OV, which were enrolled in a phase II clinical trial of 
Siglec15 inhibitor. Meanwhile, Siglec15 was positively 
related to PD-L1, PD-1, CTLA-4, and LAG-3 in most 
cancers. These results provide an insight into why the 
further progress of the phase II clinical trial in NSCLC 
and OV was hindered. Finally, BLCA was identified 
as the ideal cancer for anti-Siglec15 immunotherapy. 

The cancer immunity cycle represents the 
immune response of our body to cancer. The activities 
of the cancer–immunity cycle comprehensively reflect 
the final effect of the complex immunomodulatory 
interactions in TME. Here, we noted that Siglec15 was 
negatively correlated with the activities of several 
steps of the cancer immunity cycle. For example, the 
activity of T cell recruitment was significantly 
downregulated in the high-Siglec15 group. 
Consequently, the infiltration levels of several effector 
TIICs, such as CD8+ T cells, NK cells, macrophages, 
TH1 cells, and dendritic cells, were also significantly 
decreased. These results can be validated in different 
algorithms or external validation cohorts. Therefore, 
Siglec15 defines a non-inflamed TME. Another critical 
characteristic of an inflamed TME is the upregulation 
of inhibitory immune checkpoints such as 
PD-L1/PD-1, which are driven by pre-infiltrating 
TIICs [61]. These immune checkpoints suppress 
pre-existing cancer immunity to avoid excessive 
immune response, but also lead to immune evasion. 
The ICB targeting these immune checkpoints has 
achieved promising survival benefits in advanced 
BLCA [3, 4]. In our study, the expression of inhibitory 
immune checkpoints was significantly downre-
gulated in the high Siglec15 group, which might be 
attributed to the downregulation of pre-existing 
TIICs. This suggested that BLCA with high Siglec15 
expression was not sensitive to ICB. Further, we 
consistently found that both the clinical response rates 
to ICB, and CD8+ T cell infiltration and PD-L1 
expression were significantly downregulated in the 
high-Siglec15 group in the IMvigor210 cohort. 
Meanwhile, Siglec15 was negatively related to the T 
cell inflamed score and the enrichment scores of 
immunotherapy-predicted pathways. Another 
concern is that ICB-associated hyperprogression was 
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more likely to occur in the high-Siglec15 group. In this 
respect, the exploration of alternative treatment 
options is urgently needed for BLCA, particularly 
with high Siglec15 expression.  

Wang et al. demonstrated that Siglec15 promotes 
immune evasion by inhibiting the proliferation of 
CD8+ T cells [20]. However, we found that Siglec15 
may exert an immunosuppressive function by 
comprehensively downregulating the expression of 
critical immunomodulators such as CXCL9, CXCL10, 
and CXCR3, and subsequently downregulating the 
activities of the cancer–immunity cycle. Subsequently, 
the recruitment of effector TIICs decreased, thereby 
promoting the development of a non-inflamed TME. 
To a certain extent, the immunological role of Siglec15 
was similar to those of several reported 
immunosuppressive oncogenic pathways, including 
β-catenin, PPAR-γ, and FGFR3 pathways [13-15]. 
These oncogenic pathways have been reported to 
impair the infiltration of TIICs by reducing the 
expression of immunomodulators; hence, shaping a 
non-inflamed TME [13]. Siglec15 was significantly 
positively correlated with the enrichment scores of 
these oncogenic pathways. However, it seems that 
Siglec15 may exert a wider range of effects on the 
anticancer immune response compared to these 
pathways. These outcomes not only provide clues for 
subsequent research on the mechanism of Siglec15 in 
immune regulation, but also lay the foundation for 
developing new treatment options. Reversing these 
oncogenic mechanisms may make the tumor 
immunologically “hot” and trigger the anticancer 
immune response in the TME [12, 59, 62]. Likewise, a 
prior treatment option for BLCA with high Siglec15 
expression was to transform a non-inflamed TME into 
an inflamed TME and consequently trigger an 
anti-cancer immune response. The expression of 
inhibitory immune checkpoints will increase due to 
negative feedback regulation. Therefore, subsequent 
ICB therapy may reactivate the suppressed anticancer 
immunity and enhance the efficacy of anti-Siglec15 
therapy, which mainly triggers anticancer immunity. 
A combination of different ICB drugs was noted to be 
more effective than monotherapy [63, 64]. However, 
therapeutic targets, such as PD-L1, PD-1, and CTLA-4, 
of the current ICB were positively correlated with 
each other in BLCA. Therefore, a combination of these 
drugs appears to have overlapping clinical 
applications. In contrast, Siglec15 was significantly 
negatively correlated with these ICB therapeutic 
targets, which suggests that anti-Siglec15 therapy in 
combination with ICB exhibited complementary 
effects.  

Wang et al. found that the cytokine, macrophage 
colony-stimulating factor, acts as a positive regulator 

in myeloid cells and promotes the expression of 
Siglec15 [20]. Interestingly, we found that CSF1R and 
CSF1 were downregulated in samples with high 
Siglec15 expression. There could be several reasons 
for this discrepancy. First, the study performed by 
Wang et al. was conducted in vivo and in vitro rather 
than in the human tumor microenvironment. There 
are many biological differences between the in 
vivo/in vitro systems and the human tumor 
microenvironment. For example, the number and 
types of tumor-infiltrating immune cells, tumor cells, 
immunomodulators, and the extracellular matrix 
composition may have an effect on the level of 
macrophages and the expression of Siglec15. 
However, it is difficult to consider all of these factors 
at the same time in an in vivo/in vitro study. Second, 
the results of our study suggest that Siglec15 is mainly 
expressed in bladder cancer cells rather than 
macrophages. Several findings support this 
conclusion. Siglec15 was negatively related to the 
infiltration levels of tumor-associated macrophages in 
multiple immune cell estimation algorithms, such as 
TIMER and CIBERSORT. Furthermore, we found that 
Siglec15 was negatively related to the effector genes of 
macrophages, including C1QA, CLEC5A, CYBB, 
LILRA2, MARCO, MMP8, and MS4A6A. We further 
revealed that Siglec15 was negatively related to four 
critical marker genes of macrophages, including 
EMR1 (F4/80), CD68, PTPRC (CD45), and ITGAM 
(CD11b). In addition, the activities of macrophage 
recruitment and monocyte recruitment were 
significantly lower in the high-Siglec15 group. 
Therefore, we hypothesized that Siglec15 expressed 
from bladder cancer cells may decrease the infiltration 
level of macrophages and monocytes by 
downregulating the recruiting ability of macrophages. 
As a result, Siglec15 was negatively related to CSF1R 
and CSF1 in our study. 

A molecular subtype can explain the 
heterogeneity of BLCA at the molecular level; thus, it 
can be used to predict the prognosis and the response 
to several treatment options, including neoadjuvant 
chemotherapy and ICB [19, 49-54]. Recent studies 
have focused on developing more convenient and 
economical molecular subtyping methods for clinical 
applications. For instance, Eckstein et al. created an 
ImmuneTyper based on the expression of three 
cytotoxic T cell-related genes (CD3Z, CD8A, and 
CXCL9), detected using reverse transcription- 
quantitative polymerase chain reaction. This 
ImmuneTyper can assess immunological status, 
stratify the molecular subtype, and predict the 
prognosis of BLCA [65]. Alternatively, Woerl et al. 
developed a pathological deep learning algorithm 
based on whole histological slide images, which can 
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precisely predict individual molecular subtypes in 
BLCA [66]. Here, we explored an individual’s 
molecular subtype using seven different algorithms. 
Except for with the Baylor molecular subtype 
algorithm, the AUCs of Siglec15 in predicting the 
molecular subtype were ≥ 0.90. The Baylor molecular 
subtype algorithm was developed based on an 
18-gene signature selected from urothelial cellular 
differentiation. Therefore, this molecular subtype 
algorithm is a simple classification, which also 
explains why the accuracy of Siglec15 in this 
algorithm was slightly lower. Moreover, the 
predictive accuracy of Siglec15 for molecular subtypes 
can also be validated from the perspective of 
therapeutic responses. Basal subtype tumors 
(low-Siglec15 group) were more responsive to ICB 
and neoadjuvant chemotherapy compared to luminal 
subtype tumors (high-Siglec15 group). For BLCA in 
the high-Siglec15 group, targeted therapy such as 
blocking Siglec15, β-catenin, PPAR-γ, and FGFR3 
pathways and anti-angiogenic therapy may be 
valuable alternative options.  

Finally, we developed and validated an IRS to 
predict prognosis and response to ICB based on the 
IRS RNA-expression profiles. Of note, the IRS 
RNA-expression profiles were generalized and robust 
in external validation cohorts. That said, there were 
also a few limitations to this study. First, the sample 
size of our TMA cohort was small. Second, although 
our results were validated in many external validation 
cohorts, the batch effects from different cohorts 
should be considered to confirm these intriguing 
findings. Third, we did not determine the optimal 
cut-off value of Siglec15. Here, the median Siglec15 
mRNA expression was considered as the cut-off 
value. Finally, further experiments are needed to 
determine the expression profiles of Siglec15 in tumor 
cells and TIICs. 

Conclusions 
This study demonstrated that bladder cancer 

may be a suitable candidate for anti-Siglec15 
immunotherapy. We show that Siglec15 shapes a 
non-inflamed TME in BLCA and can also predict the 
clinical response to ICB and the BLCA molecular 
subtype. 
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