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Abstract 

Rationale: Lung adenocarcinoma (LUAD) is an aggressive disease with high propensity of metastasis. 
Among patients with early-stage disease, more than 30% of them may relapse or develop metastasis. 
There is an unmet medical need to stratify patients with early-stage LUAD according to their risk of 
relapse/metastasis to guide preventive or therapeutic approaches. In this study, we identified 4 genes that 
can serve both therapeutic and diagnostic (theranostic) purposes.  
Methods: Three independent datasets (GEO, TCGA, and KMPlotter) were used to evaluate gene 
expression profile of patients with LUAD by unbiased screening approach. Upon significant genes 
uncovered, functional enrichment analysis was carried out. The predictive power of their expression on 
patient prognosis were evaluated. Once confirmed their theranostic roles by integrated bioinformatics, 
we further conducted in vitro and in vivo validation. 
Results: We found that four genes (ADAM9, MTHFD2, RRM2, and SLC2A1) were associated with poor 
patient outcomes with an increased hazard ratio in LUAD. Knockdown of them, both separately and 
simultaneously, suppressed lung cancer cell proliferation and migration ability in vitro and prolonged 
survival time in metastatic tumor mouse models. Moreover, these four biomarkers were found to be 
overexpressed in tumor tissues from LUAD patients, and the total immunohistochemical staining scores 
correlated with poor prognosis.  
Conclusions: These results suggest that these four identified genes could be theranostic biomarkers for 
stratifying high-risk patients who develop relapse/metastasis in early-stage LUAD. Developing therapeutic 
approaches for the four biomarkers may benefit early-stage LUAD patients after surgery. 
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Introduction 
Lung cancer is a complex and aggressive disease. 

About 80% of lung cancer is non-small cell lung 
cancer (NSCLC), of which lung adenocarcinoma 
(LUAD) is the most common subtype. Most LUAD 
patients die of aggressive metastatic disease, with an 
average 5-year survival of 17.1% worldwide [1]. 
About 30% of LUAD patients are diagnosed at an 
early stage with limited disease symptoms and are 
treated with surgical resection plus adjuvant therapy 
according to various protocols, with the intent to cure 
[2]. Nevertheless, large percentages (20-50%) of these 
patients eventually have a relapse of LUAD because 
of undetected residual disease or metastases [3]. For 
LUAD patients diagnosed with advanced stage III 
and IV or metastatic disease, treatment options are 
limited, the prognosis is poor, and survival rates are 
low.  

 Owing to the development of screening 
techniques such as low-dose computed tomography, a 
significantly increasing number of lung cancer 
patients are diagnosed at early stages [4]. According 
to the newest National Comprehensive Cancer 
Network (NCCN) Guidelines (version 5.2018), the 
most widely recognized standard for clinical policy in 
oncology, early-stage NSCLC patients (stage I and II) 
should undergo surgical exploration and resection if 
they are operable [5]. If the tumor margins are 
negative, stage IA patients do not require adjuvant 
treatment, but high-risk patients at stage IB and IIA 
are suggested to undergo adjuvant chemotherapy. 
However, the definition of ‘high-risk patients’ is still 
challenging. Moreover, some stage IA patients, who 
will not receive adjuvant treatment according to 
NCCN Guidelines, still will be diagnosed with relapse 
within five years. Based on these observed situations, 
improved diagnosis and therapeutic advice for 
early-stage patients should be considered an 
imperative obligation. 

Inhibitors or antibodies of NSCLC-driver 
receptors have been among the most successful 
examples of targeted cancer therapies to date. It is 
estimated that only 15–25% of NSCLC patients benefit 
from immunotherapy, suggesting there is a need to 
explore additional novel biomarkers as potential 
targets [6]. Due to the heterogeneity of mutated genes 
causing cancer in the individual patient, precision 
medicine, which considers this individual variability 
and uses different prevention and treatment strategies 
to benefit each patient, has become critical for cancer 
treatment [7]. Therefore, there is an urgent clinical 
need for new biomarkers that can help with 
early-stage diagnosis, improve prognostication, and 
predict response to various therapies, enabling more 
individualized patient treatment. Unfortunately, there 

is no reliable predictive biomarker available in LUAD 
to identify this high-risk population for therapy 
intensification. 

Theranostic biomarkers have both therapeutic 
and diagnostic functions in monitoring early response 
to treatment and predicting treatment efficacy [8]. 
Some biomarkers may be more appropriately defined 
as theranostic markers, if they have the ability to 
indicate targeted therapy based on a specific 
diagnostic test, such as driver oncogenes 
(EGFR/ALK/ROS1/BRAF) and biomarkers for 
immunotherapy with PDL1 [9]. Although many 
cancer theranostics have been reported, the 
therapeutic strategies for LUAD have room for 
improvement via properly validated biomarkers for 
prognostic features. It is essential to continue to look 
for more effective treatments, targeting precisely the 
biological characteristics of each tumor. Due to the 
limited effects of targeting a single pathway, ongoing 
trials are focusing on combination regimens to target 
multiple pathways for improved anti-tumor efficacy.  

To achieve the goals of personalized precision 
medicine, we need to develop robust methods for 
characterizing and stratifying patients, including 
computational tools for analyzing large datasets, 
rigorous testing techniques, and evidence-based 
clinical practices. In this study, we have identified and 
validated 4 prognostic biomarkers, which may serve 
as useful tools for stratifying early-stage LUAD 
patients according to their risk of relapse. The 4 
biomarkers contribute to mechanisms that promote 
disease progression, including cancer cell growth and 
metastasis. The total immunohistochemical staining 
scores of the biomarkers were correlated with stage 
and poor survival time for early-stage LUAD patients. 
These findings suggest that targeting these four 
prognostic biomarkers may be a potential approach in 
lung cancer treatment. 

Material and Methods 
Bioinformatics analysis with the public LUAD 
datasets 

Three independent datasets were used for 
evaluating the gene expression status of LUAD 
patients, GSE30219 and GSE31210 in the GEO 
database [10] and the LUAD dataset of TCGA 
obtained from our previous studies [11-13]. Survival 
analysis was performed for the expression of genes of 
interest in the GEO datasets (GSE30219, GSE31210, 
GSE42127, and GSE 8894), the TCGA LUAD dataset, 
and the KMPlotter database (http://kmplot.com/ 
analysis/) [14]. The normalized RNA-seq data from 
TCGA was obtained from our published database, 
DriverDB [13], and integrating TCGA multi-omics 
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data was from The Cancer Genomics Hub (CGHub, 
https://cghub.ucsc.edu). For the four microarray 
datasets used in this study, the normalized expression 
values were retrieved from the GEO database. 

Functional enrichment analysis of the significant 
genes was also performed as detailed in our previous 
publications [11-13]. In brief, for Geno Ontology, we 
used the topGO packages of R language to calculate 
the topology of the GO graph. In Pathway analysis, 
we used collections from KEGG [15], REACTOME 
[16], and MSigDB [17] to annotate the significant 
genes. The function/pathway with the adjusted 
p-value <0.05 were select for further analysis. 

Identification of the four prognostic 
biomarkers in lung adenocarcinoma 

To increase the reliability of our method, we 
utilized several databases to screen potential 
biomarkers and took the results that were consistent 
across all of them. First, we identified 80 genes 
overexpressed in LUAD in three datasets (GSE30219, 
GSE31210, and the LUAD dataset of TCGA), 
containing 85, 226, and 513 tumor samples as well as 
14, 20, and 59 adjacent normal tissues, respectively. 
Then, we manually selected 10 out of 80 biomarker 
candidates with high staining in lung tumors but no 
or low detection in normal lung tissues according to 
the IHC staining in the Human Protein Atlas (HPA) 
database, which is a resource for pathology-based 
biomedical research. Next, for the 10 candidate genes, 
we performed survival analysis in LUAD datasets 
from KMPlotter, as well as the two GEO datasets 
(GSE31210 and GSE30219) and the LUAD dataset 
from TCGA, to test whether their expression levels 
were related to survival. Finally, the 4 biomarkers, 
ADAM9, MTHFD2, RRM2, and SLC2A1, are selected 
for further analysis. 

Cell culture 
The human lung adenocarcinoma cell lines A549 

and CL1-0 and human embryonic kidney cell line 
293T were obtained from the Bioresource Collection 
and Research Center (Hsinchu, Taiwan). A549 and 
CL1-0 cells were maintained in RPMI 1640 medium 
(Gibco, Australia), and 293T cells were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM; Gibco) 
with 10% fetal bovine serum (FBS; Gibco) 
supplemented with 1% penicillin/streptomycin 
solution (Gibco). Lung cancer brain-metastatic subline 
Bm7 cells which were derived from CL1-0 were 
cultured in DME/F12 plus 10% FBS media as 
previously described [18]. All of the cells were 
cultured in a humidified incubator containing 5% CO2 
at 37 °C and were monitored periodically for 
mycoplasma free. Experiments were carried out 

within six months of acquiring the cells from the 
established cell bank to ensure that cells maintained 
their ability to form lung cancer tumors in SCID mice.  

Cell transfection and generation of gene 
knockdown clones 

Four individual short hairpin RNA plasmids 
(shADAM9, shRRM2, shMTHFD2, and shSLC2A1) 
and the negative control (shVOID) were obtained 
from the National RNAi Core (Academia Sinica, 
Taipei, Taiwan) (Supplementary Table 1). The 293T 
cells were transfected with the control and shRNA 
plasmids using Lipofectamine 2000 reagent 
(Invitrogen, Carlsbad, CA, USA) to generate viral 
soups as we previously described [19]. Knockdown of 
the target genes (ADAM9, RRM2, MTHFD2, and 
SLC2A1) in lung cancer cells was performed as 
previously described [20]. Briefly, an equal amount of 
viral soups of individual shRNA (one volume) mixed 
with control shVOID (3 volumes) or a combination of 
4 individual shRNA mixtures (one volume each) were 
used to knock down the specific gene expression. The 
efficiency of knockdown was examined by 
immunoblotting. The stable knockdown clones of 
A549 and CL1-0 cells were prepared for in vitro 
functional assays. The stable 4 gene knockdown 
clones of A549 cells were prepared for in vivo studies. 

Immunoblotting 
Total cell protein was extracted using RIPA lysis 

buffer. Protein concentrations were measured using 
the BCA protein assay (Bio-Rad, Hercules, CA, USA). 
The proteins were separated with 10% SDS-PAGE and 
were then transferred to PVDF membranes (Bio-Rad). 
Immunoblotting was performed by using primary 
antibodies overnight at 4 °C against ADAM9 (1:1000, 
GTX30025, GeneTex, CA, USA), RRM2 (1:1000, 
HPA056994, Sigma, MO, USA), MTHFD2 (1:1000, 
H00010797-M01, Abnova, Taiwan), SLC2A1 (1:1000, 
07-1401, Millipore, Billerica, MA, USA), GAPDH 
(1:3000, 10494-1-AP, Proteintech, CA, USA) and 
α-Tubulin (1:3000, NB100-690, Novus, CO, USA), 
followed by incubation with horseradish 
peroxidase-conjugated secondary antibodies against 
mouse or rabbit IgG (1:10000, Santa Cruz, Dallas, TX, 
USA) for one hour at room temperature. GAPDH or 
α-tubulin served as the internal control. The blots 
were developed using an enhanced 
chemiluminescence assay (ECL; Millipore). The 
luminescent signals were assessed using the 
ChemiDocTM XRS+ image system and the associated 
Image LabTM software version 3.0 (Bio-Rad). 
Immunoreactive bands were analyzed and quantified 
using Quantity One version 4.6.8 (Bio-Rad).  
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Colony formation assay 
Cells were seeded and cultured in a six-well 

plate for 10 to 14 days (until visible colonies formed) 
with selective medium replacement every three days. 
At the end of the experiment, colonies were fixed with 
50% methanol, and then the cells were stained with 
0.5% crystal violet at room temperature for 10 min. 
Images of the stained plates were captured, and the 
colonies were counted. Colonies with a diameter of 
>60 μm were counted from three independent 
experiments. 

Cell migration 
Cell migration was conducted as previously 

described by time-lapse imaging [21]. Cells were 
seeded and cultured on collagen-coated plate in 
serum-free media. Time-lapse migration was traced 
using CCD video cameras (AxioCam MRm, Zeiss, 
Jena, Germany) and Track Point function of Image J 
software (NIH, Bethesda, MD, USA). 

Senescence-associated β-galactosidase (β-gal) 
staining 

The cells were stained with the β-gal staining kit 
(#9860, CST) according to the manufacturer’s 
instructions. Briefly, the cells were cultured on plates 
and exposed to staining reagents for 24 h at 37 °C in 
the absence of CO2, then washed with PBS before 
being observed under an inverted phase-contrast 
microscope (Olympus, Tokyo, Japan). The total 
number of cells and the number of blue-green 
senescent cells were counted in six random fields, and 
the percentage of senescent cells was calculated. 

Overexpression of four prognostic biomarkers 
in lung adenocarcinoma cells  

Expression plasmids of pCMV3-SLC2A1-His 
(HG12102-CH), pCMV3-MTHFD2-Myc (HG16324- 
CM), and pCMV3-RRM2-Flag (HG18283-CF) were 
purchased from Sino Biological. A plasmid of 
pLNCX-HA-ADAM9 was constructed into the 
pLNCX vector as previously described [19]. The 
plasmids were transiently transfected into the lung 
cancer cell lines using PolyJet™ In Vitro DNA 
Transfection Reagent (SL100688, SignaGen 
Laboratories) according to the manufacturer's 
instructions. Briefly, a total of 8 µg of plasmid mixture 
by mixing 2 µg of an individual plasmid with 6 µg of 
vector plasmids or plasmid combination of 4 genes (2 
µg each gene) were used to over-express indicated 
proteins in lung cancer cells in 6 cm dishes. Protein 
levels were examined by western blot analysis. 

Tumor xenograft animal models 
All the animal experiments were carried out in 

accordance with relevant guidelines and regulations 
at China Medical University, Taiwan, and were 
approved by the Institutional Animal Care and Use 
Committee of China Medical University, Taiwan. The 
SCID mice were purchased from the National 
Laboratory Animal Center (Taipei, Taiwan). In 
metastatic tumor animal models, control, individual 
gene, and 4 genes knockdown Bm7 lung cancer cells 
(5x104 cells) were injected intracardially into 6–8 
week-old SCID mice as previously described [22]. 
Because Bm7 cells have stable luciferase expression, 
tumor metastasis in mice was detected by in vivo 
imaging system (IVIS) spectrum imaging system 
(Xenogen). Control and 4 gene knockdown A549 lung 
cancer cells (8x105 cells) were intravenously injected 
into 6–8 week-old SCID mice (BioLASCO, Taiwan). 
Then the mice were kept in specific pathogen-free 
conditions, and the mouse survival was monitored. 

Human tissue array specimens 
This research was approved by the Institutional 

Review Board at China Medical University Hospital 
(CMUH). Written informed consent was obtained 
from all patients prior to the study. Tissue specimens 
were identified using hospital medical records of lung 
cancer patients treated at CMUH from 2008 to 2013. 
According to the criteria of the World Health 
Organization (2004), stage I tumor specimens from 
LUAD patients who had not received chemotherapy 
or radiation treatment were included as comparators. 
In addition, formalin-fixed paraffin-embedded tissue 
blocks containing sufficient tumor material for 
sampling tissue cores were used. This resulted in 146 
pairs of LUAD tissue and adjacent non-cancerous 
lung tissue being used for the tissue microarray. 
Another 25 tumor specimens from Stage 1B patients 
were included. We stratified the total 171 LUAD 
patients according to disease stage in 4 groups: (1) 
Stage 0 patients (N = 9); (2) Stage 1A patients (N = 97); 
(3) Stage 1B patients (N = 61); (4) Stage 2 to 4 (N = 4). 
The age of patients ranged from 26 to 85 years old at 
the point of surgery. After retrospective sample 
collection and analysis, the clinical outcomes of 
early-stage LUAD patients were determined using 
medical records.  

Immunohistochemical (IHC) staining 
IHC staining was carried out as previously 

described [23]. Briefly, tissue sections (4 μm) were 
dewaxed, dehydrated, and rehydrated. Then, citrate 
buffer was used for antigen retrieval, followed by 3% 
hydrogen peroxide to block endogenous peroxidase 
activity. After blocking the sections with 2.5% goat or 
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horse sera, primary antibodies against ADAM9 
(AF949, R&D Systems, MN, USA; at 1:1000 dilution), 
RRM2 (HPA056994, Sigma, MO, USA; at 1:300 
dilution), MTHFD2 (H00010797-M01, Abnova, 
Taiwan; at 1:1500 dilution), and SLC2A1 (07-14011, 
Millipore, Billerica, MA, USA; at 1:3000 dilution) were 
added and incubated overnight at 4 °C. Specific 
staining was detected by goat anti-mouse or horse 
anti-rabbit horseradish peroxidase-conjugated 
secondary antibodies (Vector Laboratories), 
horseradish peroxidase-conjugated avidin-biotin 
complex from Vectastain Elite ABC Kit (Vector 
Laboratories), and AEC chromogen (Vector 
Laboratories). Counterstaining was performed using 
hematoxylin. The intensity score of each biomarker 
was assessed by pathologists according to the staining 
intensity from 0 to 3+ (0 = negative; 1 = weak; 2 = 
moderate; 3 = strong). The total IHC scores of the 4 
biomarkers were summed up to measure the sum 
score. The sum score ranged from 1-3 was considered 
as a low IHC score group and 4-9 was as a high IHC 
score group. 

Statistical analysis 
To compare the analyzed parameters between 

control and experimental groups, we used a 
two-tailed Student’s t-test or two-way ANOVA for 
continuous variables. Statistical analysis was 
performed by GraphPad Prism Version 5.01 
(GraphPad Software, San Diego, CA, USA). The 
log-rank test was used to determine survival 
differences, and a Cox proportional hazards 
regression model was used to quantitate the risk of 
patients with LUAD according to gene expression 
level. A P value <0.05 was considered statistically 
significant. 

Results 
Identification of prognostic candidates of 
LUAD 

To identify potential biomarkers for stratifying 
populations of LUAD patients by risk of metastatic 
disease with poor survival time, we included 
information from multiple independent datasets and 
selected the potential biomarkers with strict criteria 
(Figure 1A). Genes associated with patient survival 
independent of treatment received were considered 
an indicator of tumor aggressiveness, and only the 
genes that were related to prognosis by 
overexpression in tumors were selected. To increase 
the reliability of our method, we utilized several 
databases to screen potential biomarkers and took the 
results that were consistent across all of them. First, 
we identified the genes overexpressed in LUAD in 

two GEO datasets (GSE30219 and GSE31210) and the 
LUAD dataset of TCGA. Then, we chose the 
biomarker candidates with high staining in lung 
tumors but no or low detection in normal lung tissues 
according to the IHC staining in the Human Protein 
Atlas (HPA) database [24], which is a resource for 
pathology-based biomedical research. Next, we 
performed survival analysis in LUAD datasets from 
KMPlotter, as well as the two GEO datasets 
(GSE31210 and GSE30219) and the LUAD dataset 
from TCGA, to test whether their expression levels 
were related to survival (detail approach in methods). 
Finally, we identified 4 candidate genes—ADAM9, 
MTHFD2, RRM2, and SLC2A1—as potential 
prognostic biomarkers. In the paired normal and 
tumor tissue samples of the LUAD dataset in TCGA, 
the four genes were all overexpressed in primary 
tumors compared to the paired normal lung tissues 
(Figure 1B). Similar results were detected in both GEO 
datasets (GSE30219 and GSE31210, Figure S1A), 
suggesting that these four genes may be involved in 
tumorigenesis. Moreover, we used Causal Network 
Analysis, a component of Ingenuity® Pathway 
Analysis (IPA®) constructed from individual 
relationships derived from the literature, to 
investigate the causal relationships between 8 
well-known LUAD driver genes and the four genes 
(Figure S2). We found that each of the four 
prognostic-related genes were linked to at least one 
LUAD driver gene, but there was no relationship 
between the four genes. These results indicate that 
ADAM9, MTHFD2, RRM2, and SLC2A1 are likely 
involved in tumorigenesis. 

High expression of the four prognostic 
biomarkers correlates with high risk in 
early-stage LUAD patients  

The unmet medical need for LUAD is to define 
‘high-risk patients’ of early stage patients for adjuvant 
treatment. Thus, we investigated whether early-stage 
LUAD patients with higher expression of the four 
prognosis-related genes have reduced survival time. 
Using the TCGA dataset, we found that the survival 
time of early-stage LUAD patients with high 
expression of all four genes (4 high) had the shortest 
survival time, while those with low expression of all 
four genes (0 high) had the longest survival time 
(Figure 1C). Notably, the number of genes with high 
expression was directly related to the hazard ratio 
(HR) of death, as detected in the TCGA dataset 
(Figure 1C). Similar results were observed in LUAD 
patients of all stages (Figure S1B). Moreover, this 
phenomenon was validated in 4 independent LUAD 
cohorts: early stage in GSE31210 and GSE42127 
(Figure 1D), all stages in GSE30219 and GSE8894 
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(Figure S1C). All four independent LUAD cohorts 
showed that an increased number of the four genes 
correlated with short survival time. We also 
performed multivariate survival analysis and utilized 
the concordance index (C-index) that ranges from 0.5 
(no discriminating ability) to 1.0 (perfect ability to 
discriminate between cases with different outcomes) 

to evaluate the predictive ability of a survival model. 
By adjusting age, gender, pathologic stage, and 
smoking status as shown in Table 1, the multivariate 
result (P = 0.00032, C-index = 0.7221) is better than the 
univariate one (P = 0.00542, C-index = 0.6384), 
indicating the 4 biomarkers have an independent 
prognostic value. 

 

 
Figure 1. Four theranostic biomarkers identify LUAD patients with a poor prognosis. (A) The flowchart to identify the prognostic biomarkers of LUAD in public databases. (B) 
The RNA levels of the four genes from paired tumor-normal specimens from patients in the LUAD datasets of TCGA. NT, normal tissue; TP, tumor part. N = 59. P values are 
shown. (C) Kaplan-Meier survival curves of early-stage LUAD patients in TCGA datasets, grouped by different numbers of prognostic genes with high expression. 0 high: No 
genes with high expression. 1 to 4 high: the number of genes with high expression. HR: Hazard ratio. 0 high, HR reference. 1 high, HR = 1.18; 2 high, HR = 1.93; 3 high, HR = 2.65; 
4 high, HR = 3.39. (D) Kaplan-Meier survival curves of early-stage LUAD patients in the GSE31210 (left) and GSE42127 (right) datasets. GSE42127 dataset only provided overall 
survival information. In GSE31210, 1 high (HR = 1.57); 2 high (HR = 3.61); 3 high (HR = 4.9); 4 high (HR = 4.95). In GSE42127, 1 high (HR = 1.31); 2 high (HR = 3.3); 3 high (HR 
= 5.25); 4 high (HR = 9.34). (E) Functional analysis of the differentially expressed genes in the 0 high and 4 high groups in the TCGA dataset. 
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Table 1. Multivariate adjustment of 4 genes in LUAD cancer in 
TCGA datasets 

Condition HR 
factor 

Reference Log-Rank 
P value 
of 5 years 

HR 
of 5 
years 

n C-index 

Univariate 1 high 0 high 0.00542 1.18 365 0.6384 
2 high 0 high 1.93 
3 high 0 high 2.65 
4 high 0 high 3.39 

Multivariate (adjusted 
by age, gender, 
pathologic stage, and 
smoking status) 

1 high 0 high 0.00032 1.48 338 0.7221 
2 high 0 high 1.94 
3 high 0 high 2.85 
4 high 0 high 3.04 

 

Table 2. Predictive power of 4 genes by the increase of gene 
number in 32 different types of cancer in TCGA datasets 

Cancer type Log-Rank P value* 
Kidney renal papillary cell carcinoma 0 
Kidney renal clear cell carcinoma 9.17E-10 
Uveal melanoma 5.56E-09 
Kidney chromophobe 1.18E-08 
Mesothelioma 0.000000108 
Bladder urothelial carcinoma 0.0000053 
Lung adenocarcinoma 0.0000651 
Pancreatic adenocarcinoma 0.000103 
Adrenocortical carcinoma 0.000481 
Cholangiocarcinoma 0.00234 
Lymphoid neoplasm diffuse large b cell lymphoma 0.00375 
Liver hepatocellular carcinoma 0.00537 
Cervical squamous cell carcinoma 0.0129 
Low grade glioma 0.021 
Breast carcinoma 0.0265 
Colon adenocarcinoma 0.0757 
Prostate adenocarcinoma 0.111 
Uterine corpus endometrial carcinoma 0.113 
Glioblastoma multiforme 0.237 
Uterine carcinosarcoma 0.332 
Thymoma 0.367 
Thyroid carcinoma 0.378 
Head and neck squamous cell carcinoma 0.383 
Sarcoma 0.384 
Testicular germ cell tumors 0.445 
Esophageal carcinoma 0.513 
Skin cutaneous melanoma 0.536 
Pheochromocytoma and paraganglioma 0.546 
Ovarian serous cystadenocarcinoma 0.563 
Rectum adenocarcinoma 0.731 
Lung squamous cell carcinoma 0.779 
Stomach adenocarcinoma 0.866 
Statistical differences were analyzed using the unpaired t test. P values <0.05 are 
shown in bold. *Kaplan-Meier survival analysis of cancer patients, grouped by 
different numbers of prognostic genes with high expression. 

 
 
To investigate which pathways are activated in 

association with the LUAD prognosis, we performed 
a functional analysis by comparing the differentially 
expressed genes in the 4 high group with the 0 high 
group in LUAD patients from the TCGA cohorts. This 
showed that several key pathways for cancer 
progression are active, including the cell cycle, 
metabolic pathways, DNA replication, and the 
immune system, by analysis in KEGG and reactome 
(Figure 1E). 

Next, the predictive power of the four genes was 

evaluated in 32 different types of cancer in TCGA 
through the Customized Analysis function of the 
DriverDBv3 database [13]. In 15 out of 32 (47%) cancer 
types, overexpression of a higher number of the four 
genes significantly correlated with shorter survival 
time (Table 2). This suggests that patients with high 
expression of all four genes have the worst outcome, 
and that reducing the expression of any one 
biomarker of the four may have survival benefits for 
cancer patients.  

In general, the results of the bioinformatics 
analyses implicated that ADAM9, MTHFD2, RRM2, 
and SLC2A1 are overexpressed in tumors and that the 
cumulative effect of their overexpression is associated 
with poor outcomes in multiple types of cancer. Thus, 
they may have potential to serve as prognostic 
biomarkers to identify the high-risk populations of 
LUAD and other cancer types. 

Knockdown of the four prognostic biomarkers 
suppresses cell proliferation and cell migration 

To investigate whether the four biomarker 
candidates contribute to LUAD progression, we 
analyzed their functions using a lentiviral shRNA 
system to knock down the individual genes 
(shADAM9, shMTHFD2, shSLC2A1, and shRRM2) 
and all four genes simultaneously (4G KD) in A549 
cells, a human LUAD line. Compared to control cells, 
individual gene knockdown of cells reduced the 
indicated protein expression and 4G KD reduced 
expression of all four proteins in A549 lung cancer 
cells (Figure 2A). The individual gene knockdown 
and 4G KD did show significantly suppressive effects 
on cell growth in colony formation assays and cell 
migration ability compared with control cells (Figure 
2B-C). Notably, compared to the individual gene 
knockdown, 4G KD showed stronger effects on 
reducing cell growth and migration ability in A549 
cells. 

Consistent with the findings in A549 cells, the 
individual gene knockdown in CL1-0 lung cancer cells 
decreased the protein expression (Figure 2D), reduced 
the colony formation (Figure 2E) and cell migration 
ability (Figure 2F). Moreover, 4G KD showed reduced 
expression of all four proteins (Figure 2D) and caused 
greater effects on reducing plating efficiency in cell 
growth and migration ability compared with an 
individual knockdown in CL1-0 (Figure 2D-F). We 
also found similar observations in Bm7 lung cancer 
cells (Figure SF3). Thus, these findings indicate that 
reducing the expression of the four prognosis-related 
genes decreases lung cancer progression, and 
simultaneously reducing the levels of all 4 genes 
provides stronger effects on anti-cancer progression.  
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Figure 2. The functional assays of biomarker knockdown in A549 lung cancer cells using shRNAs against ADAM9, MTHFD2, SLC2A1, and RRM2 individually or simultaneously (4G 
KD). (A) Western blots of control (shVOID), individual gene knockdown (shADAM9, shMTHFD2, shSLC2A1, and shRRM2), and 4G KD in A549 cells. (B) Colony formation 
of individual single gene knockdown and 4G KD A549 cells. Colonies were detected with crystal violet staining of the cell culture after 8 days (left) and quantified (right). (C) Cell 
migration ability of control, individual single gene knockdown, and 4G KD A549 cells. Cell migration was detected by time-lapse video microscopy (left) and quantified (right). (D) 
Western blots of control, individual gene knockdown, and 4G KD KD CL1-0 lung cancer cells. (E) Colony formation assay of control, individual gene knockdown, and 4G KD 
CL1-0 cells on day 11. (F) Cell migration ability of control, individual gene knockdown, and 4G KD CL1-0 cells. GAPDH served as the internal control. Error bars represent the 
mean ± SD of triplicate experiments. Statistical differences were analyzed using the unpaired t test (*P < 0.05, **P < 0.01). 
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Figure 3. The functional assays of biomarker overexpression in A549 and CL1-0 cells using transiently transfection of plasmids expressing ADAM9, SLC2A1, MTHFD2, and 
RRM2 proteins individually or combined plasmids (4G OE). (A) Western blots of vector control, individual gene overexpression, and 4G OE in A549 cells. (B) Colony formation 
of control, individual single gene, and 4G OE A549 cells on day 8. (C) Cell migration ability of control, individual single gene, and 4G OE A549 cells. (D) Western blots of control, 
individual single gene, and 4G OE CL1-0 cells. (E) Colony formation assay of control, individual single gene, and 4G OE CL1-0 cells on day 8. (F) Cell migration ability of control, 
individual single gene, and 4G OE CL1-0 cells. Tubulin served as the internal control. Error bars represent the mean ± SD of triplicate experiments. Statistical differences were 
analyzed using the unpaired t test (*P < 0.05, **P < 0.01). 
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Overexpression of the four prognostic 
biomarkers increases cell proliferation and cell 
migration 

Subsequently, we investigated whether the 
ectopic expression of all four biomarker candidates 
promoted LUAD progression. The individual gene or 
all 4 genes were transiently overexpressed in the A549 
cells. Western blot analysis validated that the 
individual or 4 protein levels were elevated in A549 
cells upon transfection with indicated expression 
plasmids (Figure 3A). The individual gene increased 
the plating efficiency in colony formation assays 
compared with the control group (Figure 3B). 
Notably, although the elevated levels of individual 
protein were lower in the 4 gene overexpression (4G 
OE) group compared to individual gene groups, 4G 
OE showed the highest cell growth effects (Figure 3B). 
In cell migration evaluation, most individual gene 
groups increased cell migration ability compared with 
control cells, and 4G OE showed a moderately higher 
migration effect than individual groups (Figure 3C). 
Similar results were observed for the overexpression 
of individual or 4 genes in the CL1-0 cells (Figure 3D). 
The individual gene or 4G OE showed enhanced 
effects on colony formation and cell migration ability 
compared with control cells (Figure 3E-F). Except the 
RRM2 group, 4G OE demonstrated higher cell 
migration effects than individual gene groups (Figure 

3F). We found the same phenomenon in Bm7 lung 
cancer cells that 4G OE significantly enhanced the cell 
growth and migration ability compared with control 
or individual gene groups (Figure S4). Thus, these 
data indicate that the four genes function together in 
promoting tumor progression. 

Knockdown of the four theranostic biomarkers 
induces cellular senescence 

Next, we wanted to know which molecular 
mechanisms caused the 4G KD-mediated cell growth 
inhibition. Based on the functional analysis 
comparing the differentially expressed genes from the 
4 high and 0 high groups in LUAD patients from 
TCGA (Figure 1E), cellular senescence is differentially 
regulated, suggesting that the 4G KD may result 
senescence. To validate it, we analyzed the 
senescence-specific marker, senescence-associated 
β-galactosidase (SA-β-Gal), and found that individual 
gene knockdown increased the SA-β-Gal staining cell 
percentage compared with control A549 cells and 4G 
KD cells had the strongest effects (Figure 4A). Similar 
results were detected in CL1-0 cells (Figure 4B). Taken 
together, this demonstrates that knocking down each 
one of the four genes induces cellular senescence and 
4G KD provides the greatest senescence effect in 
LUAD.  

 

 
Figure 4. Knockdown of all 4 genes (4G KD) induces premature cellular senescence in lung cancer cells. (A and B) Representative images of SA-β-Gal–positive cells in control 
and 4G KD A549 cells (A) and CL1-0 cells (B). Cells were stained for SA-β-Gal and photographed under a phase-contrast microscope (left). Scale bar: 100 μm. Quantitative 
estimates of senescent cell fraction from microscope images (right) are the mean values ± SD. *P < 0.05, **P < 0.01. 
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Figure 5. Knockdown of all 4 genes (4G KD) decreased tumor metastasis in lung tumor animal models. (A) Luciferase-expressing Bm7 control or gene-knockdown cells were 
intracardially injected into SCID mice. Representative images by IVIS from Day 15 post injection were shown (top). IVIS signals were quantified (bottom), mean ± SEM. **P < 0.01. 
(B) Tumor metastasis rate was calculated based on the IVIS images on Day 15. (C) Survival analysis of mice bearing Bm7 cancer cells. Parentheses indicate survived mice 
number/total number in each group on Day 52. Log-rank test. Comparison of each group to control group. *P < 0.05. 

 

Knockdown of the four prognostic biomarkers 
in lung cancer cells reduces tumor malignancy 
and prolongs survival time in vivo  

To further investigate whether reduced levels of 
the all four biomarkers influenced tumor malignancy 
in vivo, tumor metastatic ability was evaluated by 
intracardially injecting Bm7 cells with stable luciferase 
expression into SCID mice and tumor metastases were 
monitored by in vivo imaging system (IVIS) spectrum 
imaging system (Xenogen). The metastatic tumor 
signals were strongly reduced in individual gene 
knockdown and 4G KD groups on Day 15 (Figure 5A). 
Moreover, compared with individual gene 
knockdown groups, no tumor metastasis was 
detected in the 4G KD group on Day 15 (Figure 5B). 
The survival curve demonstrated that mice in the 4G 
KD group had a significantly longer overall survival 
time than the control group or some individual gene 
knockdown groups (Figure 5C). It demonstrates that 
the effect of 4G KD is superior to the knockdown of 
individual ones in reducing tumor metastasis in vivo. 
To further evaluate the effects of 4 genes in another 
metastatic tumor animal model, we transplanted 
control and 4G KD A549 cells by intravenous injection 
into SCID mice. The survival analysis indicated that 
mice inoculated with 4G KD A549 cells had a 
significantly longer overall survival time than the 
control group (Figure S6). It suggested that 4G KD is 
relative to tumor metastasis reduction. These results 
reveal that the 4 biomarkers have a significant 
connection with the progression of LUAD. 

The four prognostic biomarkers are associated 
with prognosis and clinicopathological tumor 
staging of early-stage LUAD 

To further elucidate the clinical relevance of 
these four theranostic biomarkers for LUAD, we 
examined the correlation between the four genes and 
clinicopathological tumor stage classification by IHC 
staining on LUAD tissue arrays. There were 171 pairs 
of tumor tissue and adjacent non-cancerous lung 
tissue obtained from patients treated at China Medical 
University Hospital (Table S2). We performed IHC 
staining on these LUAD tissue arrays using antibodies 
against the four biomarkers and observed major 
positive staining in tumors versus negative staining in 
adjacent normal lung tissues (Figure 6A and Figure 
S7). By summing the IHC scores of each protein and 
dividing the total scores into low (Sum IHC score = 
1-3) and high (sum IHC score = 4-9) groups, we found 
the proportion of the high score group was elevated in 
the increased stages (Figure 6B). Moreover, the high 
score group had a shorter survival time than the low 
score group in these stage 1 patients (Figure 6C). 
Notably, in stage 1A patients, the high IHC score 
group had a significantly shorter survival time than 
the low score group (Figure 6C). A similar trend was 
observed in stage 1B patient although not reaching 
significant, probably due to the small sample size 
(Figure 6C). Taken together, these results 
demonstrated that the protein expression of the four 
genes detected by IHC was correlated with the LUAD 
stage and survival time. These findings provide the 
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clinical evidence that high levels of the four 
biomarkers can identify populations of early-stage 
LUAD patients at high risk of mortality even the stage 
1A patients who need no adjuvant treatment after 
surgery. The four prognosis-related genes not only 
serve as potential prognostic biomarkers of LUAD 
progression but also contribute to promoting the 
malignancy of LUAD in a synergic manner. Therefore, 
these four genes have strong potential to be used as 
theranostic biomarkers. 

Discussion 
The current study identified 4 progression- 

related genes, ADAM9, MTHFD2, RRM2, and 
SLC2A1, based on an integrated bioinformatics 
approach. These genes were overexpressed in lung 
tumor tissues and may function as prognosis 
biomarkers. The number of these biomarkers with 
overexpression was correlated with poor survival of 
LUAD patients in five independent cohorts. 
Moreover, these genes contributed to indicators of 

lung cancer progression, including cancer cell growth 
and cell migration ability. Knocking down these four 
genes prolonged the survival time in a metastatic lung 
tumor mice model. These findings suggest that these 
four genes could serve as theranostic biomarkers to 
identify the high-risk population of early-stage LUAD 
patients who will benefit from receiving intensified 
therapy. 

The uniqueness of this study is conducting an 
integrated bioinformatics approach including 
differential expression analysis, survival analysis, and 
protein expression to identify 4 promising prognostic 
genes. We demonstrated that the number of genes 
with high expression is related to hazard ratio (HR). 
To evaluate the effectiveness of our 4 biomarkers, we 
applied our analytic methods to other three previous 
studies which identifying 3 [25], 16 [26], and 18 [27] 
prognostic signatures. As shown in Figure S8, the 
concordance index (C-index) of our 4 biomarkers is 
0.6384, slightly better than the C-index of other 3 
studies. Moreover, two studies, the 3- and 18- 

 
Figure 6. The protein levels of the four prognostic biomarkers in LUAD tissues correlates with clinicopathologic parameters. (A) IHC staining of individual biomarkers on the 
tissue array generated at CMUH. Scale bar is 25 µm. Images were captured using an Aperio CS Scanner with a 20X objective lens. Representative images show each biomarker 
with positive staining in tumors and negative staining in adjacent normal tissues. (B) The total IHC staining score of the four genes in 171 LUAD specimens was related to disease 
stage. The patients were divided into two groups according to their total IHC staining score: 1-3 (low IHC score) and 4-9 (high IHC score). (C) Kaplan-Meier survival curves 
of 171 LUAD patients (all stage) with low and high total IHC staining scores (left). Kaplan-Meier survival curves of stage 1A (middle) or 1B (right) LUAD patients with low and 
high total IHC staining scores. 
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biomarkers, showed a small HR in 2 high (HR = 1.02) 
and 3-5 high (HR = 0.92) groups, respectively. We also 
demonstrated that the number of genes with high 
expression was correlated positively with high hazard 
ratio. Notably, although our 4 prognostic biomarkers 
were identified by gene expression datasets, they can 
be applied to clinical IHC staining for stratifying 
high-risk patients in early-stage LUAD. 

The four theranostic biomarkers, ADAM9, 
MTHFD2, RRM2, and SLC2A1, have been reported to 
participate in tumorigenesis [18, 28-30]. ADAM9, a 
metalloprotease, is thought to promote tumor 
progression through enhancing metastasis and 
angiogenesis [19]. MTHFD2, a tetramethylfolate 
dehydrogenase enzyme involved in folate 
metabolism, is highly up-regulated to sustain cell 
proliferation [31]. RRM2 is an enzyme with a role in 
DNA replication and repair [32]. It could increase 
anti-apoptotic Bcl-2 protein expression and stability, 
which in turn promotes anti-apoptotic function [33]. 
SLC2A1 (or glucose transporter 1, GLUT1), which 
transports glucose into cells, is required in glucose 
metabolism for fulfilling the high energy demands of 
cancer cells [25]. The major functions of these four 
genes are involved in the hallmarks of cancer (Figure 
1E), the essential biological processes that cancer cells 
rely on. These genes are likely to play a role in cancer 
cells’ ability to adapt to environmental stress and 
pharmacological treatment. Their dysregulation likely 
leads to tumor progression and drug resistance. For 
example, SLC2A1 and dysregulated cellular 
metabolism is linked to drug resistance [34]. 
Combination of SLC2A1 inhibitor and cisplatin or 
paclitaxel displayed synergistic therapeutic effects in 
lung and breast cancers [35]. Despite the 4 biomarkers 
were identified independently from several datasets, 
we detected the moderate associations among the 
RNA expression of MTHFD2, RRM2, and SLC2A1, 
while ADAM9 has weak correlations with other 3 
genes (Figure S9). Moreover, protein levels of RRM2 
were slightly reduced in either MTHFD2 or SLC2A1 
knockdown lung cancer cells, but no alteration of 
MTHFD1 and SLC2A1 in RRM2 knockdown cells. It 
suggests that MTHFD2 or SLC2A1 may regulate 
RRM2 expression in a minor effect, probably through 
indirect regulation. 

Senescence-associated cell-cycle arrest is a 
potential barrier to protect cells from transformation. 
Senescent cells typically exhibit a specific phenotype, 
the senescence-associated secretory phenotype 
(SASP), which consists of largely proinflammatory 
cytokines that participate in the clearance of cancer 
cells by attracting immune cells. However, 
accumulating senescent cells often drive cancer 
initiation and progression by a bystander effect in 

which SASP factors establish an immunosuppressive 
microenvironment and reinforce senescence of 
adjacent cells in a paracrine manner [36]. In effect, 
early-stage senescence may protect cells from 
transformation, while prolonged senescence often 
promotes cancer development. In addition to 
telomere shortening in each cell division, senescence 
can be triggered by multiple genotoxic stresses, e.g., 
the epigenetic repression of the INK4a/ARF locus, 
DNA damage, and oxidative stress [37]. Genotoxic 
chemotherapy and radiation can trigger 
stress-induced premature senescence in cancer cells 
during treatment, and this has been demonstrated to 
affect the therapeutic outcome [38]. Accordingly, a 
strategy that first evokes senescence and then 
eliminates senescent cancer cells via the immune 
system or other mechanisms may provide anticancer 
benefits. Synolytic drugs, such as the natural product 
quercetin and the tyrosine kinase inhibitor dasatinib, 
which selectively induce apoptosis of senescent cells 
without affecting non-senescent cells, are being 
actively developed [39]. In this study, we have 
demonstrated that reducing the levels of the four 
identified prognostic biomarkers in lung cancer cells 
can trigger cell senescence. By using them as 
theranostic biomarkers to predict prognosis and 
enhance therapeutic effects, synthetic lethal strategies 
targeting these biomarkers and then removing the 
senescent cells are necessary for an effective cancer 
remedy in the future. 

The field of oncology has seen a paradigm shift 
in the treatment and molecular diagnosis of lung 
cancer in recent years, owing to the identification of 
mutations in driver genes. These breakthrough 
investigations provide a unique opportunity for 
selected lung cancer patients to receive targeted 
treatment options at the molecular level. The 
emergent therapeutic strategies have relied on specific 
biomarkers, which provide opportunities for a 
personalized approach to specific patient populations. 
Based on the development of screening techniques 
such as low-dose computed tomography, more and 
more lung cancer patients could be diagnosed at an 
early stage. The latest clinical guidelines suggest that 
high-risk early-stage LUAD patients should receive 
adjuvant treatment, but stratifying the high-risk 
population is still challenging. Although the 
heterogeneity of LUAD remains a key barrier to the 
investigation of novel biomarkers, the four theranostic 
genes identified in this study may serve as reliable 
biomarkers in LUAD patients for improving clinical 
management, treatment response, survival outcomes, 
and cost-effectiveness of drugs in the future.  
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