
Theranostics 2021, Vol. 11, Issue 11 
 

 
http://www.thno.org 

5313 

 Theranostics 
2021; 11(11): 5313-5329. doi: 10.7150/thno.56595 

Research Paper 

Deep-learning and MR images to target hypoxic habitats 
with evofosfamide in preclinical models of sarcoma 
Bruna V. Jardim-Perassi1#, Wei Mu1#, Suning Huang1,2, Michal R. Tomaszewski1, Jan Poleszczuk3,4, 
Mahmoud A. Abdalah5, Mikalai M. Budzevich6, William Dominguez-Viqueira6, Damon R. Reed7, Marilyn 
M. Bui8, Joseph O. Johnson9, Gary V. Martinez1,6,10, Robert J. Gillies1 

1. Department of Cancer Physiology, Moffitt Cancer Center, Tampa, US. 
2. Current Address: Guangxi Medical University Cancer Hospital, Nanning Guangxi, China. 
3. Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, US. 
4. Current Address: Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Poland. 
5. Quantitative Imaging Core, Moffitt Cancer Center, Tampa, Florida. 
6. Small Animal Imaging Laboratory, Moffitt Cancer Center, Tampa, Florida. 
7. Department of Interdisciplinary Cancer Management, Adolescent and Young Adult Program, Moffitt Cancer Center, Tampa, Florida. 
8. Department of Pathology, Moffitt Cancer Center, Tampa, Florida. 
9. Analytic Microscopy Core, Moffitt Cancer Center, Tampa, Florida. 
10. Current Address: Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center. 

#These authors contributed equally to this work. 

 Corresponding authors: Bruna V. Jardim-Perassi, Department of Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Drive Tampa, FL 33612. Phone: (813) 
745-3225, E-mail: bruna.perassi@moffitt.org; Robert J. Gillies, Department of Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Drive Tampa, FL 33612. Phone: 
(813) 745-8355, E-mail: robert.gillies@moffitt.org. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2020.11.30; Accepted: 2021.02.03; Published: 2021.03.11 

Abstract 

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely 
variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs 
(HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown 
promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable 
soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to 
a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) 
to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. 
Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and 
co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of 
rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). 
Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia 
fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in 
combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but 
not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 
resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 
under prolonged treatment that was not due to a reduction in hypoxic volumes. 
Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent 
response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the 
emergence of resistance. 
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Introduction 
Sarcomas constitute an heterogeneous group of 

malignant tumors of mesenchymal origin, divided 
into two categories: soft tissue sarcomas (STS) and 

sarcomas of bone [1]. Although STS account for only 
1.5% of all malignant tumors in adults, with an 
estimated 13,130 new cases in the United States in 
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2020, they represent approximately 7.4% of all tumors 
in children and young adults [2, 3]. 

The heterogeneity of sarcomas is significant with 
at least 50 different histologic subtypes, all of which 
have distinct biologic behavior and therapy response 
[4]. Rhabdomyosarcoma is the most common STS 
histological type in children, accounting for 3 to 5% of 
all pediatric tumors every year in the United States 
and 50% of all STS diagnosed in children under age 10 
[5]. While it is typically sensitive to chemotherapy 
initially, durable control of the primary tumor 
requires surgical resection and/or radiation therapy 
[5, 6]. Fibrosarcoma is rarer, currently accounting for 
3.6% of STS [7]. Regardless the subtype, however, the 
standard of care for non-rhabdomyosarcoma STS 
patients is fairly homogeneous: first-line 
chemotherapeutic agents, such as doxorubicin (Dox), 
surgery, and radiation. However, the clinical response 
to these drugs is heterogeneous and limited [8]. 

Sarcoma often presents with significant tumor 
hypoxia, which is associated with poor prognosis and 
innate biochemical resistance to chemo- and 
radiotherapies [9]. Hypoxic tissue also associated with 
poor vascular perfusion, which can lead to inefficient 
drug delivery and hence physiological resistance [10]. 
Hence, regional hypoxia can subsequently lead to the 
formation of localized environmental niches where 
drug-resistant cell populations can survive, evolve, 
and thrive. Thus, targeting hypoxia in the tumor 
microenvironment is of great interest to improve 
clinical outcome [11]. 

For this purpose, hypoxia-activated prodrugs 
(HAPs) have been designed to penetrate hypoxic 
regions and release cytotoxic agents. Multiple HAPs 
are in development with low toxicity and proven 
efficacy in pre-clinical and early stage clinical trials 
[12]. Evofosfamide (TH-302) is a HAP created by 
linking a 2-nitroimidazole moiety to the DNA 
cross-linker bromo-ifosfamide mustard (Br-IPM). As 
with most HAPs, TH-302 is selectively reduced under 
hypoxic conditions, which releases the Br-IPM 
leading to DNA crosslinking [13]. HAPs have been 
tested in clinical trials but despite early promise in 
phase I-II trials, definitive phase III trials have failed 
to show a survival benefit [14]. Specifically, the 
randomized two-arm phase III clinical trial TH 
CR-406/SARC021 (NCT01440088) tested TH-302 + 
Dox vs. Dox in patients with locally advanced, 
unresectable, or metastatic soft-tissue sarcomas. 
Although the proportion of patients who achieved 
complete or partial response was significantly higher 
and progression free survival (PFS) was prolonged for 
the TH-302 + Dox arm, this combination did not 
improve overall survival (OS) when compared with 
Dox monotherapy, which was the primary endpoint 

[15]. Some limitations have been discussed regarding 
the lack of OS improvement in this trial [16, 17], but 
one logical possibility was a complete lack of patient 
stratification based on hypoxic status to identify 
patients who were most likely to benefit from HAP 
therapy and simultaneously least likely to benefit 
from Dox monotherapy [18]. 

In this context, we propose that imaging of 
hypoxia may help with patient stratification and 
therapy monitoring [19-22]. Pimonidazole (PIMO) is 
often used as the “gold standard” to measure hypoxia 
in tissues, but a major limitation is that it requires 
collection of tissue for histology, which is not 
conducive for longitudinal measurements. Although 
a biopsy can be taken to assess hypoxic status prior to 
or during therapy, it would not account for 
intratumor heterogeneity and would be prone to 
interfering with the study. In this context, if 
noninvasive imaging of hypoxia can be developed it 
would allow longitudinal monitoring of therapy 
response without a biopsy. 

To this end, different magnetic resonance 
imaging (MRI)- and positron emission tomography 
(PET)-imaging based analyses have been explored to 
identify tumor hypoxia [23, 24] and predict response 
to HAPs in pre-clinical models [19, 25]. We have 
previously reported that multiparametric (mp) data 
using T2, T2*, diffusion-weighted imaging (DWI) and 
dynamic contrast enhanced (DCE) MRI maps can 
capture subtle differences in the tumor 
microenvironments, and is able to differentiate viable, 
necrotic and hypoxic tumor habitats in breast cancer 
models [26]. Herein, we take a similar approach to 
identify hypoxia in sarcoma using deep learning (DL) 
models developed with mp data from T2-weighted 
(T2W), T2 map, T2* map and DCE-MRI co-registered 
with PIMO stained histology. 

The main goal of this study was to classify 
hypoxic habitats, in order to monitor TH-302 therapy 
response in preclinical models of sarcoma. Thus, this 
study had two specific goals: first, to evaluate the 
response to TH-302 monotherapy or in combination 
with Dox in sarcoma mouse models; and second to 
develop a combined DL and MRI-based method to 
identify hypoxic habitats to investigate the temporal 
evolution of changes in hypoxic habitats non-
invasively in sarcomas over the course of treatment. 

Materials and Methods 
Sarcoma mouse models 

Animal experiments were approved by the 
Institutional Animal Care and Use Committee 
(IACUC), and Institutional Review Board (IRB) 
(University of South Florida) (Protocol #4778). All 
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mice were obtained from Charles River Laboratory 
(Wilmington, MA) and housed in a facility under 
pathogen-free conditions in accordance with IACUC 
standards of care at the H. Lee Moffitt Cancer Center. 

Two sarcoma models were used in this study: 1) 
a patient-derived xenograft (PDX) of 
rhabdomyosarcoma and 2) a murine fibrosarcoma 
syngeneic model. 

To develop the PDX model, cryopreserved PDX 
rhabdomyosarcoma cells (reference number: 
SJRHB010468_X1) were obtained from The Childhood 
Solid Tumor Network (CSTN) at St. Jude Hospital 
[27]. Tumor was established through subcutaneous 
implantation into the flank of severe combined 
immunodeficiency (SCID) Hairless Outbread (SHO) 
mice (female, 6–8 weeks of age). Tumors were 
measured with digital caliper and were passaged into 
new mice when them reached >1000 mm3. Mice were 
anesthetized with 2% isoflurane delivered in 1.5 
L/min oxygen ventilation and tumors were collected, 
placed in Roswell Park Memorial Institute (RPMI) 
1640 culture media (Gibco, Waltham, MA) and 
dissected to 1 mm3 pieces. Tumors explants were then 
implanted into new mice with 50% RPMI1640 / 50% 
Matrigel. 

The fibrosarcoma model was developed by 
inoculating the radiation-induced fibrosarcoma cell 
line (RIF-1) [28] into immunocompetent C3H mice 
(female, 6-8 weeks of age). An additional experiment 
was performed, where RIF-1 cells were inoculated 
into immunodeficient NSG (NOD scid gamma). RIF-1 
cells were kindly provided by Dr. Zaver M. 
Bhujwalla, Department of Radiology, Johns Hopkins 
School of Medicine. RIF-1 cells were maintained in 
Waymouth’s media (Gibco, Waltham, MA) 
supplemented with 10% fetal bovine serum (FBS), 1 
mM of N-2-hydroxyethylpiperazine-N-ethanesulfonic 
acid (HEPES) and 1% of penicillin/streptomycin 
(P/S) (Sigma, St. Louis, MO) at 37 °C and 5% CO2. 
RIF-1 cells were confirmed to be of mouse origin and 
no mammalian interspecies contamination was 
detected for the sample using short tandem repeat 
(STR) DNA profiling. Cells were tested free of 
mycoplasma (MycoAlert Mycoplasma Detection kit; 
Lonza, Basel, Switzerland). For tumor inoculation, 
RIF-1 cells were suspended in Hanks’ Balanced Salt 
Solution (HBSS) media (Gibco, Waltham, MA) and 1 × 
106 cells were subcutaneously inoculated in the right 
flank of mice. 
Groups of treatment 

Tumor volumes were measured by acquiring 
multi-slice axial T2W MRI covering the entire tumor 
(TurboRARE sequence; repetition time (TR) = 4825 
ms, effective echo time (TE) = 73.58 ms, field of view 

(FOV) = 35 × 35 mm2, matrix = 256 × 256, slice 
thickness of 1 mm). Tumor volumes were obtained 
from manually drawn regions of interest (ROIs) in 
MATLAB (MathWorks, Natick, MA) using an open 
source toolbox for medical image analysis (aedes.uef. 
fi). During MRI scanning, mice were maintained 
anesthetized with 2% isoflurane delivered in 1.5 
L/min oxygen ventilation, and body temperature and 
respiratory function were continuously monitored 
(SA Instruments Inc, System 1025, Stony Brook, NY) 
and maintained at 37 °C ± 0.7 °C and 40-60 breaths per 
min, respectively. 

When tumors reach approximately 500 mm3 
(day 0), mice were randomly assigned to the 
following treatment groups: 1) Control; 2) 
monotherapy with Dox, dose of 4 mg/kg by 
intravenous (IV) injection once a week; 3) 
monotherapy with TH-302 (obtained from Threshold 
Pharmaceuticals, Redwood City, CA), dose of 50 
mg/kg by intraperitoneal (IP) injection, five times per 
week; and 4) combination of TH-302 + Dox. 

The percentage of tumor growth changes and OS 
were calculated from the first day of treatment (day 0) 
until the last of experiment, when individual tumors 
reached approximately 1500 mm3. 

For the PDX model, a total of 22 SCID/SHO mice 
were studied with 3 mice dying during the 
experiment in the MRI scanner, and were excluded 
from the study. Treatment groups were composed of 
5; 5; 5 and 4 mice in Control; Dox; TH-302; and TH-302 
+ Dox groups, respectively. For the RIF-1 model, 20 
C3H mice were inoculated with tumor cells, while one 
mouse did not develop a tumor and one died during 
MRI scanning and was excluded from the study. 
Treatment groups were composed of 4; 5; 5; and 4 
mice in Control; Dox; TH-302; and TH-302 + Dox 
groups, respectively. For the additional experiment 
with immunodeficient NSG mice, 5 mice were used in 
total, where RIF-1 cells were inoculated into those 
mice, 2 were used as control and 3 treated with 
TH-302 monotherapy. 
Cell viability in vitro 

Cell viability was assessed by crystal violet 
(Sigma, St. Louis, MO) to test the in vitro response to 
different concentration of TH-302 in hypoxic 
conditions and to a DNA cross-linking agent 
mitomycin C (MCC) (Tocris, Minneapolis, MN). 
Experiments were performed with RIF-1 cells and 
rhabdomyosarcoma PDX-derived dissociated cells, as 
well as with cell lines of human rhabdomyosarcoma 
(RD) (ATCC, Manassas, VA) and human lung cancer 
(H460) (ATCC, Manassas, VA), which were used as 
positive controls. 
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To obtain the dissociated PDX cells, tumors were 
harvested and enzymatically disassociated using the 
Animal free Collagenase/Dispase Blend II reagent 
(Millipore, Burlington, MA). Cells were maintained in 
culture with RPMI-1640 media (Gibco, Waltham, MA) 
supplemented with 10% FBS and 1% of P/S at 37 °C 
and 5% CO2. 

Cells were seeded into 96-well plates and grown 
overnight prior to initiating treatment. For TH-302 
experiments, on the day of the test, cells were exposed 
to increasing concentrations of TH-302 and the plates 
were incubated overnight under normoxic (20% O2) 
or hypoxic conditions (0.2% O2 and 1% O2). After 
overnight exposure, plates were removed from the 
hypoxia chamber and further incubated for 72 h in 
standard incubator (20% O2). For MCC experiments, 
cells were treated with different concentrations of 
MCC for 72 h under normoxia (20% O2). 

Cells were washed with PBS, fixed with 100% 
methanol for 10 min, and stained with 0.5% crystal 
violet solution in 25% methanol for 10 min. The 
crystal violet solution was discarded, and cells were 
washed with water and allow to dry at room 
temperature (RT). The stain was solubilized with 1% 
sodium dodecyl sulfate (SDS) and plate was placed in 
an orbital shaker until color was uniformly 
distributed in each well. Absorbance (abs) was read at 
540 nm. Cell viability (%) was calculated using the 
formula (%) = [100*(sample abs)/ (control abs)]. 

Multiparametric MRI (mpMRI) 
mpMR images (T2W, T2 map, T2* map and 

DCE-MRI) were acquired pre- and post- therapy. 
Imaging was acquired for each mouse at day 0 
(pre-therapy) and longitudinally until the last day of 
therapy. 

Imaging acquisition and corresponding MR 
parametric maps were obtained similarly as described 
in [26]. T2 and T2* maps were generated with the multi 
slice multiecho (MSME) and multi gradient echo 
(MGE) sequences, respectively. T1-weighted 
DCE-MRI were acquired pre- and post- IV 
administration of 0.2 mmol/kg gadobutrol (Gadavist; 
Bayer, Leverkusen, Germany). All sequences were 
obtained with FOV of 35 × 35 mm2, matrix size of 256 
× 256, 11 central slices with a slice thickness of 1 mm. 
Imaging was performed using a 35 mm Litzcage coil 
(Doty Scientific, Inc, Columbia, SC) on a 7T horizontal 
magnet (Agilent ASR 310, Santa Clara, CA) and NMR 
platform (Bruker Biospin, Inc. BioSpec AV3HD, 
Billerica, MA). T2 and T2* maps were computed in 
ParaVision 6.0.1 (Bruker Biospin, Inc, Billerica, MA). 
The total acquisition time for DCE-MR imaging was 
25 min and 66 s, and the temporal resolution was 
approximately 70 s per scan, with 22 repetitions. 

Gadobutrol was administered through an IV catheter 
after the first repetition. Semi-quantitative parametric 
maps calculated from DCE-MRI data included area 
under the time-series curve (AUC), slope and time to 
maximum (TTM). The AUC is the sum of the entire 
DCE dynamic curve, not only the initial uptake as 
commonly report with iAUC, allowing extra time for 
some regions to shown slow uptake, which could be 
indicative of hypoxia [26]. The slope is the numerical 
ratio: ∆ST1/∆t, where ∆S is the T1-weighted signal 
intensity temporal change and ∆t is the corresponding 
time-difference and the TTM is the time that 
corresponds to the maximum enhancement achieved. 

Histology 
To ensure the co-registration of histology with 

MRI, tumors were collected after the last mpMRI, 
according with the 3D-printed tumor mold workflow 
developed previously [26]. Briefly, multi-slice axial 
T2-weighted images were acquired during the last 
mpMRI scanning (a slice thickness of 1 mm, FOV of 35 
× 35 mm2 and image size of 256 × 256), and a ROI was 
drawn encompassing the entire tumor to create a 
3D-printed tumor mold. Tumor-specific molds were 
designed in SolidWorks (Dassault Systems, 
SolidWorks Corp., Waltham, MA), containing slots 
every 2 mm, which were used to guide the slicing of 
the tumor, aligned with the 1 mm MRI slices. Thus, 
each tumor was sliced in serial 2 mm tissues, placed in 
individual cassettes, and embedded in paraffin to 
perform immunohistochemistry (IHC) staining. 

Paraffin tissue-blocks were serially sectioned 
with slices thickness of 4 µm on a microtome (Leica 
Biosystem, Buffalo Grove, IL) and allowed to dry at 
RT and subsequently heated to 60 °C for 1 h. 

PIMO was used as a hypoxia marker, as it is an 
exogenous 2-nitroimidazole probe that binds 
covalently to thiol-containing proteins when the O2 
tension is below 10 mmHg (< 1.3%) [29] and can be 
visualized in histological sections by IHC. Mice 
received an IP injection of PIMO hydrochloride (60 
mg/kg) 1 h prior to collection of tumors, and PIMO 
staining was detected by IHC using an anti-PIMO 
antibody (PAB2627AP, HPI, Burlington, MA). In 
addition, IHC was performed with the following 
primary antibodies: Cluster of differentiation 31 
(CD31) (#ab28364, Abcam, Cambridge, MA), which 
was used as a marker of endothelial cells of blood 
vessels; Cleaved Caspase-3 (CC3) (#9661, Cell 
Signaling, Danvers, MA) used as an apoptosis marker; 
and phospho gamma-H2AX (#NB100-2280, Novus 
Biologicals, Littleton, CO) used as a marker for 
DNA-damage. 

IHC protocol consisted in deparaffinization of 
slides in xylene and hydration through subsequently 
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incubation in aqueous solutions of decreasing ethanol 
concentration. Endogenous peroxidase activity was 
blocked with 0.6% H2O2 in methanol for 30 min and 
antigen retrieval with citrate buffer (pH 6.0) in the 
pressure cooker for 20 min. Sections were incubated 
with 10% goat serum at 4 °C overnight for blocking, 
followed by incubation with primary antibody in 
humid chamber for 1 h at RT, and with a biotinylated 
secondary antibody (Vectastain Elite kit; Vector Labs, 
Burlingame, CA) for 60 min at RT. Section were then 
incubated in avidin-biotin complex (ABC) (Vectastain 
Elite ABC Kit; Vector Labs, Burlingame, CA) for 45 
min and chromogen substrate visualization was 
performed using the NovaRed VectaStain Peroxidase 
kit (Vector Labs SK-4800, Burlingame, CA). 

Sections were counterstained with hematoxylin, 
dehydrated in ethanol followed by xylene, and finally 
mounted using Permount medium (Thermo Scientific, 
Waltham, MA). Negative controls were obtained by 
omitting the primary antibody, and a tissue known to 
express the protein of interest was used as positive 
controls in every assay. Positive controls for each 
antibody were: MDA-MB-231 breast cancer for PIMO 
for both human (PDX) and mouse (RIF-1) tissues; 
placenta and tonsil for CD31 antibody for mouse and 
human tissues, respectively; spleen and tonsil for CC3 
antibody for mouse and human tissues, respectively; 
and colon adenocarcinoma for phospho 
gamma-H2AX, for both mouse and human tissues. 

Histological analyses 

Detection and quantification of positive pixels 
Histology slides were scanned (Aperio AT2, 

Leica Biosystems, Buffalo Grove, IL), saved as .svs 
files and imported into Visiopharm software 
(Visiopharm A/S, Horsholm, Denmark). 

Multiple intensity-based threshold algorithms 
were created to identify positive stained-pixels for 
each antibody. A global threshold was used across all 
images for each antibody (CD31, CC3 and phospho 
gamma-H2AX). Area of positive pixels (%) (stained 
pixels) was calculated over the total area. For CD31, 
microvessel density was quantified by calculating the 
number of vessels by unit area (mm2). The results 
were verified by the study pathologist. 

Binary mask of pimonidazole positive areas 
For PIMO staining, MATLAB was used to 

automatically select individual thresholds based on 
the Otsu method for each histological slice. Threshold 
levels were calculated in grayscale images, on a scale 
from 0 (no staining, white) to 255 (maximum staining, 
black) (Figures S1A-B). 

Then, Visiopharm software was used to create 
the binary mask of PIMO-positive areas using 

individual Otsu threshold-based algorithms for each 
slice. The fractional PIMO-positive area was 
calculated for each slice. To compare PIMO-positive 
area in histology between groups of therapy, values of 
all histological slices for each tumor were averaged to 
have one value per tumor. To ensure that the 
individual thresholding method would not affect the 
comparison of PIMO-positive areas between groups 
of therapy, we calculated a global threshold across all 
PIMO-stained slices for each tumor type. Using these 
global thresholds (92 for PDX and 86 for RIF-1), we 
recalculated the PIMO-positive area for each tumor 
(Figure S1C). Notably, this alternative thresholding 
method did not significantly affect the values of total 
PIMO-positive area in each tumor, nor the 
comparison between groups (Figure S1D). Individual 
thresholds were chosen to increase accuracy in 
detecting PIMO positive areas as it was used as the 
true hypoxia fraction for the convolutional neural 
network (CNN) models. 
MRI and histology co-registration algorithm 

MATLAB was used to convert the full resolution 
binary masks of PIMO-positive pixels generated in 
VisioPharm software (.mld files) into .mat files, which 
was then co-registered with MRI slices and used as 
input to the build DL models to identify hypoxic 
habitats. 

Information about positive pixel areas in .mld 
files is stored as a collection of polygons. Each 
polygon is defined by a list of consecutive vertices, 
which are connected by lines. The order of the 
polygons defines which one encompasses a positive 
region and which one is a boundary of a negative one 
(e.g. hole). In order to transform that information into 
an image of given resolution and store it as a .mat file 
in MATLAB, each polygon was drawn into an image 
matrix using Bresenham’s line algorithm and then 
filled accordingly using queue-scanline algorithm 
going from top of the image to bottom. 

The PIMO-positive mask for each histology slice 
was co-registered with the mp-maps of the 
corresponding MRI slice, according to a method 
previously described in [30]. Briefly, custom written 
MATLAB code was used to perform affine 2D 
registration based on manual detection of 4 
corresponding landmarks in histology and MRI 
images. Prior to co-registration, slices where the 
tissues were broken or with missing parts were 
excluded from co-registration analyses. 

Dice similarity coefficients (DSC) were 
calculated between each MRI slice and its 
corresponding histology slice by creating binary 
masks for both slices and measuring the similarity 
between the masks using Dice formula in equation 1. 
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The similarity score ranges between 0 and 1. A score 
close or equal to 1 indicates the slices are very similar 
or identical. More specifically, if M is the binary mask 
of the MRI slice and H is the histology binary mask, 
the DSC score is obtained by the following Dice 
equation: 

𝐷𝑆𝐶 = 2|𝑀∩𝐻|
|𝑀|+|𝐻|

 … (1) 

Hypoxic habitats using deep-learning model 
As described above, the ground truth hypoxia 

maps were the mask generated from PIMO stained 
histology. These were then down sampled and 
co-registered with the corresponding mpMRI maps of 
T2W, T2 map, T2* map, slope, TTM and AUC images, 
and a DL model was used to identify which 
combination of the MR parameters best predicted 
hypoxia in individual pixels in training and test sets. 

The division of the data at the slice level was first 
based on a training/validation/testing ratio of 
60/10/30 which is commonly preferred [31-33]. 
Therefore, 43 slices of 18 PDX samples were randomly 
divided into a training (n=25), validation (n=4) and 
test datasets (n=14), and 49 slices of 15 RIF-1 samples 
were randomly divided into a training (n=26), 
validation (n=5) and test datasets (n=18). 

The DL residual neural network (ResNet), a type 
of CNN that uses residual blocks, achieves 
state-of-the-art performance in image recognition 
field. In this study, the architecture of ResNet-18 with 
small number of filters in each layer was used to 
predict the hypoxia probability of each pixel, which is 
shown in Figure S2. In details, for each pixel within 
the tumor region, a 15×15 fixed size sliding window 
centered on this pixel was used to generate a mp 
patch from T2* map, T2W, slope, TTM and AUC 
images, which was fed into the DL model after z-score 
normalization for each channel to update the 
parameters with backward propagation. The 
binarized average value of the PIMO-positive mask 
map within this window was encoded to one-hot and 
used as the label of this patch. The output of the 
network was used as the classification result to 
represent the hypoxia probability of each pixel. The 
final predicted hypoxic habitats could be 
reconstructed utilizing the location information of 
each pixel. To guarantee the accuracy of the labels, 
only samples with similarity score higher than the 
average scores were involved in the construction of 
the DL model. The prediction of hypoxia was 
conducted blindly for each sample. 

The CNN models for PDX and RIF-1 tumor 
models were trained on 138,748 and 154, 873 training 
patches, respectively, both of which takes around two 
hours. Using these CNN models, 230 µs was required 

for the prediction of each patch, which means it took 
0.79 s ~ 2.05 s for each tumor slice in this study. 

During the training, binary cross entropy was 
employed as the loss function, while the Adam 
optimizer was used with an initial learning rate of 
0.0001 and decaying by a factor of 0.2 if no 
improvement of the loss of the validation dataset was 
seen for 10 epochs. Additionally, augmentation 
including width/height-shift, horizontal/vertical-flip, 
rotation and zoom were used to expand the training 
dataset to improve the ability of the model to 
generalize. The implementation of this model used 
the Keras toolkit and Python 3.5. The computations 
were carried out on a desktop computer with an Intel 
Xeon E5 CPU and a Nvidia GeForce GTX 1080 GPU 
with 32GB memory. 

Statistical analyses 
Comparison of data between groups was done 

by using Student’s t-test or one-way analysis of 
variance (ANOVA) followed by multiple comparisons 
test. Kaplan-Meier was used to estimate survival rates 
and the log-rank test was used to analyze differences 
between the groups. P values <0.05 were considered 
statistically significant. 

DSC was calculated to measure the spatial 
overlap between the predicted hypoxic habitats and 
PIMO-positive mask quantitatively. The cutoff to 
binarize the predicted hypoxia probability was 
determined according to the average optimal value to 
obtain the largest DSC for each training sample. Give 
the label of the patch was the binarized average value 
of the PIMO-positive mask map within this patch, 
which means the PIMO result is not the real 
patch-based label, the correlation between the true 
hypoxia fraction (PIMO-positive fraction in histology) 
and the predicted hypoxia fraction by the model in 
the co-registered MRI was analyzed by Pearson 
correlation coefficient and visualized with regression 
line rather than identify line (Detailed explanation 
shown in Figure S3). 

To measure the predictive ability of the 
predicted hypoxia fraction in identifying the samples 
with response to TH-302, area under the receiver 
operating characteristics curve (AUROC) was used. 
The optimal cutoff was determined to maximize the 
Youden’s index by balancing the sensitivity and 
specificity, and the Cox proportional hazards model 
was used to analyze the prognostic value of the 
predicted hypoxia fraction. 

Results 
Tumor growth and survival 

In the rhabdomyosarcoma PDX model, mono-
therapy with TH-302 or the combination of TH-302 + 
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Dox resulted in reduced tumor growth, while Dox 
monotherapy was ineffective (Figure 1A). Compared 
to untreated control or the Dox monotherapy arm, the 
OS significantly increased with both the TH-302 
monotherapy (p=0.0019 vs Control; p=0.0016 vs Dox) 
and the TH-302 + Dox combination (p=0.0046 vs 
Control; p=0.0035 vs Dox). The median survival for 
control and Dox-treated groups were 9 and 7 days 
respectively, while it increased to 35 and 82 days 
when mice were treated with TH-302 monotherapy or 
TH-302 + Dox combination, respectively (Figure 1B). 
Further, combination therapy was superior to TH-302 
monotherapy in increasing OS, and this may be 
consistent with concept that TH-302 controls hypoxic 
habitats while Dox controls the normoxic viable 
tumor areas [34]. In the combination group, 4 of 5 
tumors regressed during therapy, but eventually 
regrew (Figure 1A), suggesting that they may have 
acquired a resistance mechanism during prolonged 
therapy. All therapies were well tolerated, and mice 
did not show significant changes in body weight 
during the therapy course (p-values > 0.05; Figure 
S4A). 

In the RIF-1 model, there were no differences in 
tumor growth between the control mice and mice 
treated with any therapy (Figure 1C). In addition, 
there were no differences in the OS, with median 
survivals of 5; 5; 7 and 6.5 days for the Control, Dox, 
TH-302, or TH-302 + Dox groups, respectively 

(p-values > 0.05 for all groups; Figure 1D). Mouse 
body weight was not affected during any therapy 
protocol (p-values >0.05; Figure S4B). 

Hypoxia status can determine TH-302 
response 

Surprisingly, the percentage of PIMO-positive 
pixels was statistically higher in the last day of 
therapy in the PDX tumors treated with TH-302 + Dox 
combination when compared with control (p=0.006) 
and Dox-treated tumors (p=0.005) (Figure 2A). The 
TH-302 monotherapy treated-tumors also appeared to 
have increased hypoxia, but the results were not 
significant (p=0.36). For RIF-1 tumors, there was no 
significant difference in PIMO-positive areas between 
control and any of the therapy groups (p>0.05; Figure 
2B). While the proportion of positive pixels was 
similar for both tumor types under control conditions, 
these values cannot be directly compared as the two 
tumor types are physiologically distinct with respect 
to cell density, etc. For example, tumors were also 
stained with a blood vessel marker CD31. RIF-1 
tumors were much more vascularized than PDX 
tumors, showing significantly higher CD31 staining 
(p=0.0002) and microvessel density (p<0.0001) (Figure 
3), suggesting that a well-perfused and well- 
oxygenated tumor environment can be contributing to 
the non-response to TH-302 in the RIF-1 tumors. 

 

 
Figure 1. Tumor growth and survival plots for sarcoma mouse models. A. Tumor growth changes (%) after starting treatment (day 0) for patient-derived xenograft 
(PDX) rhabdomyosarcoma model. B. Kaplan-Meier plots for PDX shown that monotherapy with TH-302 or with the TH-302 + doxorubicin (Dox) combination increased the 
overall survival (OS) (p=0.35 Dox vs Control; *p=0.019 TH-302 vs Control; **p=0.0016 TH-302 vs Dox; **p=0.0046 TH-302 + Dox vs Control; **p=0.0035 TH-302 + Dox vs 
Dox; **p=0.0051 TH-302 + Dox vs TH-302 + Dox). C. Tumor growth changes (%) after starting treatment in the radiation-induced fibrosarcoma (RIF-1) model. D. Kaplan-Meier 
plots for RIF-1 shown that there was not significant difference in the OS between groups of treatment (p=0.13 Dox vs Control; p=0.08 TH-302 vs Control; p=0.06 TH-302 vs 
Dox; p=0.16 TH-302 + Dox vs Control; p=0.12 TH-302 + Dox vs Dox; p=0.73 TH-302 vs TH-302 + Dox). 
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Figure 2. Quantification and representative images of pimonidazole staining in tumors collected in the last day of therapy at the time of sacrifice. A. 
Patient-derived xenograft (PDX) rhabdomyosarcoma model. (p>0.99 Dox vs Control; p=0.36 TH-302 vs Control; **p=0.006 TH-302 + Dox vs Control; p=0.27 TH-302 vs Dox; 
**p=0.005 TH-302 + Dox vs Dox; p=0.32 TH-302 vs TH-302 + Dox). B. Radiation-induced fibrosarcoma (RIF-1) model; (p=0.94 Dox vs Control; p>0.99 TH-302 vs Control; 
p>0.99 TH-302 + Dox vs Control; p>0.99 TH-302 vs Dox; p=0.65 TH-302 + Dox vs Dox; p=0.78 TH-302 vs TH-302 + Dox). Analysis of variance (ANOVA) followed by 
Bonferroni multiple comparisons test. Values presented as mean± SD. 

 
Figure 3. Cluster of differentiation 31 (CD31) staining for blood vessels. A. Representative images of CD31 staining in patient-derived xenograft (PDX) 
rhabdomyosarcoma and radiation-induced fibrosarcoma (RIF-1) tumors. B. Values of CD31-positive area from control groups were compared between PDX and 
RIF-1 tumors in last day of therapy. ***p=0.0002 by Student’s t test to positive pixel area (%); C. Microvessel density from control groups was compared between PDX and RIF-1 
tumors. ***p<0.0001 by Student’s t test. 

 

RIF-1 resistance to TH-302 therapy is due to 
lack of hypoxia 

Although unlikely, it is possible that the 

mechanisms responsible for TH-302 resistance in the 
RIF-1 model involved adaptive immunity. The 
resistant RIF-1 model is syngeneic (RIF-1 cells 
inoculated into C3H mice), but the sensitive PDX 
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model is immune compromised (human cells 
inoculated into SCID/SHO athymic mice). To 
evaluate this, we grew RIF-1 tumors in NSG 
immunodeficient mice. As shown in Figure S5, 
TH-302 therapy was also not effective in this 
immunocompromised NSG model, showing similar 
results as observed for the immunocompetent C3H 
model. These results indicate that TH-302 resistance is 
not mediated by an adaptive immune response. 
However, it is important to note that NSG mice retain 
elements of the innate immune system including 
macrophages and neutrophils [35], which could 
participate in the overall response to therapy, in both 
immunocompetent and immunocompromised mice. 

Another possible source of resistance could be a 
biochemical resistance to alkylating agents, e.g. 
through enhanced DNA repair processes. To 
investigate this, we tested if RIF-1 cells in vitro were 
affected by a DNA cross-linking agent MCC. We used 
MCC because Br-IPM is too hydrophilic to diffuse at 
significant rates across the plasma membrane and it is 
less cytotoxic when added to extracellular medium 
compared to when it is generated intracellularly from 
the prodrug [36]. As shown in Figure 4, RIF-1 cell 
viability was highly sensitive to MCC, indicating that 
these cells can respond to alkylating agents, such as 
Br-IPM. H460 cells (human lung cancer cell line) were 
used as positive control as a known MCC sensitive 
line. 

Finally, to check if controlled conditions of 
hypoxia would improve sensitivity to TH-302 in the 

RIF-1 cells, we tested TH-302 therapy in vitro under 
hypoxia and normoxia. These experiments 
demonstrated that RIF-1 cells were highly sensitive to 
TH-302 under hypoxic conditions. There was a 
concentration-dependent response to TH-302 under 
hypoxia, while only higher concentrations were 
effective under normoxia in both the RIF-1 and PDX 
cells. The human rhabdomyosarcoma cell line (RD 
cells) were used as positive control [37] and showed 
sensitivity to TH-302 in doses > 1 µM under normoxia 
and hypoxia conditions (Figure 4). 
Noninvasive measurement of hypoxia in MR 
imaging 

The above data indicates that RIF-1 cells can 
respond to TH-302, but only at hypoxic conditions. 
This emphasizes the importance of identifying tumor 
hypoxia at the stage of treatment planning in order to 
predict response. 

In addition, increase of PIMO staining observed 
in TH-302 and TH-302 + Dox treated tumors collected 
on the last day of therapy raises the question whether 
there were changes in hypoxia during therapy that 
could be measured with longitudinal imaging. 

Thus, we used the co-registered mpMRI maps 
and PIMO stained histology to train CNN models to 
identify hypoxia in MR imaging. Using these models, 
we were able to non-invasively identify and quantify 
hypoxia pre-therapy and longitudinally during 
therapy with MRI. 

 

 
Figure 4. In vitro experiments to test cell viability (%). A. Dose-dependent mitomycin C (MCC) treatment for 72 h. Only p-values <0.05 are shown. P-values for 
radiation-induced fibrosarcoma (RIF-1) cells: **p=0.007 for Control (C) (0 nM) vs 50 nM MCC; ***p=0.0007 for C vs 100 nM MCC. P-values for PDX cells: *p=0.04 for C vs 100 
nM MCC. P-values for H460 cells: ***p<0.001 C vs ≥ 20 nM MCC. B. Dose-dependent TH-302 treatment under normoxic (20% O2) or hypoxic conditions (1% O2 and 0.2% O2). 
Only p-values <0.05 are shown. P-values for RIF-1 cells: ***p<0.001 for Control (C) (0 µM) vs ≥ 10 µM at 20% O2, and ≥ 1 µM at 1% O2 and 0.2% O2. p-values for patient-derived 
xenograft (PDX) rhabdomyosarcoma cells: **p<0.01 for C vs 100 µM at 1% O2 and 0.2% O2. p-values for RD cells: **p<0.005 for C vs ≥ 1 µM at 20% O2, 1% O2 and 0.2% O2. 
Analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. 
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Figure 5. Representative samples of training, validation and test datasets for Patient-derived xenograft (PDX) rhabdomyosarcoma model. Images shows 
multiparametric MRI maps (T2* map, T2-weighted image (T2W) and slope, time to maximum (TTM) and area under the curve (AUC) from dynamic contrast enhanced (DCE) 
MRI), co-registered pimonidazole stained histology slice (PIMO), and predicted hypoxia fraction (cutoff: 0.4). Note. HF represents hypoxia fraction. 

 
For the PDX tumor model, 57 slices were 

co-registered, and the average of DSC was 0.92 ± 0.02 
(median = 0.93), while for the RIF-1 tumor model, 63 
slices were co-registered with an average DSC of 0.93 
± 0.02 (median = 0.93) as shown in Table S1. 
Subsequently, only samples with greater than average 
similarity scores of ≥ 0.92 were used to develop the 
CNN models. 

Representative mpMRI maps, co-registered 
PIMO stained histology slice and the predicted 
hypoxia fraction of PDX and RIF-1 tumor models 
from training, validation and test datasets are shown 
in Figures 5 and 6, respectively. Additional samples 
for each tumor model are shown in Figures S6 and 
S7. 

For PDX tumors, strong correlations of 0.80 
(p<0.001), 0.82 (p=0.18), and 0.77 (p<0.001) were 

found between true hypoxia fraction and predicted 
hypoxia fraction in the training, validation, and test 
cohorts, respectively. For the RIF-1 tumors, the 
correlations were also as strong as 0.85 (p<0.001), 0.90 
(p=0.038) and 0.76 (p<0.001) in the training, validation 
and test cohorts, respectively. Detailed plots are 
provided in Figure 7 and detailed quantitative metrics 
for each slice are shown in Table S2. 
Hypoxia status prior to therapy can determine 
TH-302 response 

Comparison of hypoxic status at pre-therapy 
between tumor models confirmed that predicted 
hypoxia portion was significantly lower in RIF-1 than 
PDX tumors, which is consistent with the response to 
TH-302 in the PDX model, and resistance in the RIF-1 
model (Figure 8A). 
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Figure 6. Representative samples of training, validation and test datasets for radiation-induced fibrosarcoma (RIF-1) tumors. Images shows multiparametric 
MRI maps (T2* map, T2-weighted image (T2W) and slope, time to maximum (TTM) and area under the curve (AUC) from dynamic contrast enhanced (DCE) MRI), co-registered 
pimonidazole stained histology slice (PIMO), and predicted hypoxia fraction (cutoff: 0.4). Note. HF represents hypoxia fraction. 

 
Interestingly, survival of PDX mice treated with 

TH-302 monotherapy increased to 35 days, however 
there was one mouse that did not respond to TH-302, 
reaching the limit tumor volume 12 days after starting 
therapy. Subsequent to the above CNN analyses, we 
observed that this mouse showed the lowest level of 
predicted hypoxia by pre-therapy MRI among this 
group, which is consistent with the non-response to 
TH-302. 

To test if levels of hypoxia prior to therapy could 
predict response to TH-302, we analyzed all mice 
treated with TH-302 and TH-302 + Dox regardless of 
PDX or RIF-1 tumor models, consistent with the 
SARC21 (NCT01440088) clinical trial wherein STS 
patients were treated regardless of histotype. Here, 
we compared the CNN-generated predicted fraction 
of pre-therapy hypoxia to the TH-302 response with a 
median survival cutoff of 14 days. This generated an 
AUROC of 0.89 (95%CI: 0.72, 1.00, p=0.005), and a 
C-index of 0.73 (95%CI: 0.57, 0.88, p=0.004) in 
predicting the survival >14 days. The optimal cutoff 
of 25.60% was obtained based on the maximum 

Youden’s index in the receiver operating 
characteristics (ROC) curve to identify the mice which 
are more likely to respond to TH-302. Using this 
cutoff, mice were stratified into high- and 
low-hypoxia fraction groups. The mice within the 
high-hypoxia fraction group had longer survival with 
a median value of 35 (interquartile range (IQR): 14-75) 
days versus 7 (IQR: 6-7) days for the low-hypoxia 
fraction group. Using Cox proportional hazards 
regression analysis, the binarized predicted hypoxia 
fraction with this cutoff was identified as significant 
prognostic factor with the hazard ratio (HR) of 0.27 
(95%CI: 0.090, 0.83, p=0.022) in survival prediction. 

Temporal evolution of hypoxic habitats 
Figures 8B-G present longitudinal 

measurements of predicted hypoxia fraction for the 
PDX tumor model, which showed paradoxically high 
levels of hypoxia by PIMO following a course of 
successful therapy (see Figure 1A). An increase in 
predicted hypoxia after day 7 for most of the tumors 
regardless the therapy was observed (Figures 8B-E). 
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However, for tumors treated with TH-302 or with 
TH-302 + Dox, the hypoxic fraction was decreased or 
controlled during the course of the therapies (Figures 
8D-E). More specifically for the TH-302 group, one 
mouse showed a decrease of 9.5% at day 7, while it 
was decreased or controlled in other 3 mice after day 
14. For the mouse that did not respond to TH-302, 
there was an increase of 31% of hypoxia from 
pre-therapy to day 12 (diamond symbol in Figure 
8D). All mice treated with TH-302 + Dox showed a 
decrease in hypoxia at different time points during 
therapy. In the first measurement after starting 
therapy, hypoxic fraction decreased in one mouse but 
increased in the other 3 mice. It was reduced at day 14 
for one mouse, and after day 50 for the other 2 mice, 
however, eventually an increased in hypoxia was 
observed in this group, as the tumors grew, and the 
resistance to TH-302 emerged (Figure 8E). 

When comparing values of predicted hypoxia 
fraction from pre-therapy with the final measurement 
taken before sacrifice, more hypoxia was observed in 
the last day of therapy for all groups of PDX tumors. 
Surprisingly, this increase in hypoxia was statistically 
significant in the tumors treated with TH-302 
monotherapy (p=0.0009) and with the TH-302 + Dox 
combination (p=0.02), as shown in Figure 8H. These 
results are consistent with PIMO staining observed at 
the histology collected before sacrifice, which showed 
higher levels in TH-302 and TH-302 + Dox treated 
groups than control and Dox-treated groups (cf. 
Figure 2). For RIF-1 tumors, the predicted hypoxia 
fractions were also higher on the last day of therapy, 

and it was statistically significant for the Dox-treated 
tumors (p=0.01) and tumors treated with the TH-302 + 
Dox combination (p=0.0009), shown in Figure 8I. As 
discussed below, this increase in hypoxic volume 
fraction may be due to the tumors’ increased volume 
relative to its perfused volume, further emphasizing 
the need to measure hypoxic fractions longitudinally. 
Longitudinal measurements of predicted hypoxia 
fraction for each therapy group of the RIF-1 tumor 
model are shown in Figure S8. 

For the PDX model, we also noted that the 
percentage of cells stained with the apoptosis marker 
CC3 in the TH-302 treated tumors was significantly 
lower than control and Dox-treated tumors in the last 
day of therapy (p<0.05; Figure S9A), while phospho 
gamma-H2AX did not show significant changes 
(p>0.05; Figure S9B), which corroborated the 
hypothesis that, at the time of sacrifice, tumors were 
therapy resistant. 

Discussion 
In this study, we used the HAP TH-302 to target 

hypoxia in sarcoma mouse models, and we developed 
a deeply learned MRI-based method to predict 
hypoxia prior to and longitudinally during therapy. 
We showed that TH-302 monotherapy or in 
combination with Dox was able to delay tumor 
growth and increase survival in a PDX model of 
rhabdomyosarcoma, while a syngeneic RIF-1 
fibrosarcoma model was resistant to TH-302. 

 

 
Figure 7. Correlation between true hypoxia fraction (from pimonidazole stained histology) and predicted hypoxia fraction (from multiparametric MRI). 
Plots of training, validation and test cohorts for patient-derived xenograft (PDX) rhabdomyosarcoma (A) and radiation-induced fibrosarcoma (RIF-1) (B) tumors. N.B. The 
non-zero intercept is a consequence of using patch-based labeling (see Figure S3). 
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Figure 8. Predicted hypoxia fraction calculated in pre-therapy MR imaging. A. Comparison between predicted hypoxia fraction in pre-therapy MR imaging for 
patient-derived xenograft (PDX) rhabdomyosarcoma and radiation-induced fibrosarcoma (RIF-1) tumor models; ***p<0.0001, Student’s t-test. B-E. Longitudinal measurements 
of predicted hypoxia fraction in MRI for the PDX tumor model for control group (B), Doxorubicin (Dox) treated group (C), TH-302 treated group (D) and TH-302 + Dox 
treated group (E). F-G. Representative images of changes in predicted hypoxia fraction (in magenta) during therapy for a TH-302-treated tumor in (F) and for a TH-302 + 
Dox-treated tumor in (G); H-I. Comparison of predicted hypoxia fraction in pre-therapy and last day of therapy between groups of therapy for PDX tumor model (Pre-therapy 
vs last day: p=0.15 Control; p=0.14 Dox; ***p=0.0009 TH-302; *p=0.02 TH-302 + Dox) in (H); and for RIF-1 tumor model (Pre-therapy vs last day: p=0.35 Control; *p=0.01 Dox; 
p=0.10 TH-302; ***p=0.0009 TH-302 + Dox) in (I). Analysis of variance (ANOVA) followed by the Bonferroni test. 

 
Notably, Dox monotherapy was not effective in 

either PDX or RIF-1 tumor models. In the PDX, a 
possible explanation would be the high levels of 
hypoxia arising from poor perfusion in these tumors. 
RIF-1 tumors have shown to be vascularized and a 
response to Dox would have been expected. This 
resistance is not intrinsic to the RIF-1 cells, as we 
showed in their in vitro responsiveness to TH-302 or 
MCC. Resistance of RIF-1 tumors to Dox in vivo has 

been observed by others [38]. As it does not appear to 
be perfusion-mediated, we speculate that resistance 
may be due to 1) a smaller fraction of cells in the cell 
cycle; 2) stromal protection; or 3) elevated interstitial 
fluid pressure, all of which are known mechanisms to 
confer resistance to Dox. 

Hypoxic status has been associated with TH-302 
response in several pre-clinical models [19, 34, 39]. 
However, resistance was observed in hypoxic tumors 
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[40], as TH-302 efficacy is also dependent on other 
conditions, such as prodrug-activating reductases, 
intrinsic sensitivity to the drug warhead and DNA 
repair status [41]. Here, we explored different 
mechanisms that could be contributing to TH-302 
resistance in RIF-1 model and showed that hypoxia 
status may be the causal effect. Pre-therapy MR 
imaging showed that RIF-1 tumors are less hypoxic 
than PDX tumors. In fact, RIF-1 tumors are known to 
present a small fraction of radiobiologically hypoxic 
cells [42, 43]. 

This emphasizes the importance of knowing the 
hypoxia status in order to individualize and hence 
optimize therapies using HAPs. As mentioned before, 
although TH-302 monotherapy or in combination 
with chemo- or radiotherapy have been showing 
promising results in pre-clinical studies, there has not 
been much progress in clinical studies, with its failure 
in improving OS in phase III clinical trials in 
advanced pancreatic cancer (MAESTRO; 
NCT01746979) or soft tissue sarcoma (TH 
CR-406/SARC021). The reasons for this failure are 
multifaceted but neither study stratified patients 
based on their tumor hypoxia-status [14]. Notably, in 
the MAESTRO trial, the combination of TH-302 + 
gemcitabine was shown to be efficacious in increasing 
PFS (p=0.004) and the objective response rate (ORR, 
p=0.009), but the primary endpoint of OS was not 
significantly different (p=0.059) when compared to 
the gemcitabine + placebo group [44]. In this context, 
it can be proposed that a biomarker-stratified study 
design, with upfront assessment of hypoxia, would 
increase the chance to achieve clinical benefit from 
HAPs, with fewer trial patients needed [14]. 

Multiple approaches have been used for hypoxia 
detection [45], but priority must be given to imaging 
methods. MRI methods such as Blood Oxygen Level 
Dependent (BOLD) [46] or Oxygen Enhanced 
(OE)-MRI [47], designed to provide insight into blood 
and tissue oxygenation respectively, have been shown 
to correlate with hypoxia ex vivo [48]. The intrinsic low 
sensitivity and other confounding factors [49] may 
however limit the wide application of these functional 
techniques. Our imaging approach can easily be 
translated to the clinic, as DCE-MRI is routinely used 
and is reproducible, which allow not only pre-therapy 
measurement, but also longitudinal assessment of 
hypoxia to follow therapy response. 

However, it is important to consider the safety of 
longitudinal imaging that requires administration of 
gadolinium (Gd)-based contrast agents (GBCA), 
especially in sarcoma that shown high prevalence in 
children. Although macrocyclic chelates as 
gadobutrol used in this study have shown to be safe 
and not leach Gd or induce nephrogenic systemic 

fibrosis, it has been demonstrated that a variability of 
GBCA classes, but especially the linear chelates, can 
cause small fraction of Gd retention in human tissues. 
Thus, repeated administration of GBCA must be 
planned carefully, especially in pediatric patients, as 
long-term effects of Gd tissue accumulation have not 
been fully characterized [50]. Although our pre- 
clinical study performed longitudinal measurements 
repeatedly during therapy, high frequency DCE-MR 
scans are generally not acquired clinically. Based on 
our preclinical observations, a pre-therapy imaging 
session is important to define the therapy based on 
the extent of hypoxia, and two or three additional 
measurements along the treatment would be 
informative of HAPs therapy response. Additional 
studies are necessary to establish the optimal time 
points when MRI should be considered for maximal 
impact to clinical care. 

In addition, it is worth emphasizing that our 
CNN-based imaging approach provides spatial 
information of the heterogeneous distribution of 
hypoxia, and it reflects both acute and chronic 
hypoxia, as PIMO histology was used as the true 
hypoxia fraction to train the model [51]. 
Distinguishing between acute and chronic hypoxia 
would be interesting to evaluate if longitudinal 
assessment of acute hypoxia also has a true value in 
the therapy choice and monitoring. In the past, we 
and others have used time-dependent changes in the 
T2* signal to identify temporal changes in HbO2 status 
as a surrogate for tissue pO2 [52], and future work to 
combine the CNN maps with temporal T2* are being 
explored. 

This spatial information is especially important 
to optimize combination therapy regimens 
considering the tumor evolutionary dynamics. Here, 
we showed that combination of TH-302 + Dox was 
much more effective than TH-302 monotherapy in the 
PDX model, showing an initial suppression of 
hypoxia; however, both therapeutic regimes lead to 
resistance with prolonged treatment, with an increase 
in the hypoxia fraction being observed later on during 
the therapies. A rationale for using a combination of 
TH-302 and Dox is to target two different populations 
within the heterogeneous tumor microenvironment, 
which would lead to complete tumor eradication or 
long-term control compared to monotherapies that 
affect only the normoxic or hypoxic adapted 
populations. However, optimal therapy efficiency is 
highly dependent on identifying the right timing and 
administration sequence of combination therapies 
[11]. In our study, Dox was given once a week and 
TH-302 was given daily, 5 days a week. 

Thus, our data suggest that with the continued 
use of TH-302 and Dox, a state of dynamic 
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equilibrium between hypoxic and viable normoxic 
tumor cell populations was lost, with TH-302 not 
being able to continue controlling the population in 
the hypoxic habitat. Therapy-sensitive and resistant 
cell types constantly compete into the tumor 
microenvironment; however, this equilibrium can 
change with prolonged treatment, leading to 
emergence of a resistant population. The residual cell 
population that persisted after the several rounds of 
therapy is likely to have greater intrinsic or 
environmental resistance, and will continue to survive 
with the continued use of the same therapeutic 
regimen [53, 54]. A different study reached a similar 
conclusion with an epidermal growth factor receptor 
(EGFR)- targeted agent with a mathematical model 
showing that a longer time under TH-302 therapy 
without the targeted inhibitor erlotinib allowed the 
EGFR- sensitive cell population to expand drastically 
due to TH-302 resistance [11]. Indeed, it has been 
observed clinically that resistance to different 
individual therapies that are used in combination can 
emerge asynchronously [55]. 

Following tumor hypoxia longitudinally in the 
clinic using imaging approaches as developed in this 
study, would allow an optimal time planning for 
switching drugs, avoiding unnecessary doses or 
drugs and could predict future response or resistance 
to therapy. In addition, it could guide adaptive 
therapy, which adjusts the time course of therapy to 
turn it on and off accordingly, to maintain the 
sensitive cells populations that will compete and 
continue to suppress the resistant population [53]. 
Unlike simple whole-tumor metrics, the spatial 
insight available from the method may provide a 
detailed picture of this evolutionary balance. 

Our results show that different responses to 
TH-302 in PDX rhabdomyosarcoma and RIF-1 
fibrosarcoma seems to be associated with status of 
tumor hypoxia. A major limitation and unknown 
remaining from this study is the mechanism 
underlying the resistance that emerges in PDX tumors 
over the course of therapy. RIF-1 tumors are 
intrinsically resistant due to low hypoxic volumes. 
However, it is notable that RIF-1 tumors get very large 
and hypoxic, they are still resistant. We speculate that, 
at the point, the tumors were too large to control at the 
given dose. Notably, the PDX was originally sensitive 
but developed physiological resistance during TH-302 
monotherapy or in combination with Dox, and this 
resistance was not related to a reduction in hypoxic 
volumes. Another limitation is the small number of 
the cohorts and most tumors in the training cohorts 
has hypoxia fraction larger than 20%, so the models 
could not achieve good performance in tumors with 
small hypoxia fraction (<10%). We will improve the 

DL models with accruing more data in the future. 
Third, all sequences in this study were obtained with 
a slice thickness of 1 mm, the performance of the 
models may be decreased for clinical images with 
larger slice thickness due to poor image quality and 
larger partial volume effect. However, this can be 
mitigated by differences in the sizes of tumors, with 
sarcomas being 100-1000 times larger in humans 
compared to mice. 

In conclusion, non-invasive MR imaging to 
identify hypoxia prior to therapy can presage the 
initial responsiveness to TH-302 and longitudinally 
monitor its antitumor effect. Specifically, hypoxia 
imaging developed here can be applied in further 
studies, where cycle treatments between TH-302 and 
Dox can be optimized depending on the extent of 
hypoxic habitats to avoid or delay the emergence of 
resistance. 
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