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Abstract 

Background: Homologous recombination deficiency (HRD) is a common molecular characteristic of 
genomic instability, and has been proven to be a biomarker for target therapy. However, until now, no 
research has explored the changes in the transcriptomics landscape of HRD tumors. 
Methods: The HRD score was established from SNP array data of breast cancer patients from the 
cancer genome atlas (TCGA) database. The transcriptome data of patients with different HRD scores 
were analyzed to identify biomarkers associated with HRD. The candidate biomarkers were validated in 
the gene expression omnibus (GEO) database and immunotherapy cohorts. 
Results: Based on data from the gene expression profile and clinical characteristics from 1310 breast 
cancer patients, including TCGA database and GEO database, we found that downstream targets of the 
cGAS-STING pathway, such as CXCL10, were upregulated in HRD tumors and could be used as a 
predictor of survival outcome in triple-negative breast cancer (TNBC) patients. Further comprehensive 
analysis of the tumor immune microenvironment (TIME) revealed that the expression of CXCL10 was 
positively correlated with neoantigen load and infiltrating immune cells. Finally, in vivo experimental data 
and clinical trial data confirmed that the expression of CXCL10 could be used as a biomarker for 
anti-PD-1/PD-L1 therapy. 
Conclusions: Together, our study not only revealed that CXCL10 is associated with HRD but also 
introduced a potential new perspective for identifying prognostic biomarkers of immunotherapy. 
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Introduction 
Immune checkpoint blockade (ICB) therapy 

produces an average objective response rate of up to 
50% in various types of solid tumors with DNA 
deficient mismatch repair [1,2]. This is an important 
finding, indicating that ICB inhibitors can be used as 
“broad-spectrum drugs” for tumor treatment. 
Generally, dMMR tumors are characterized by an 
increased number of mutations and enhanced T-cell 
infiltration; however, a considerable number of 
dMMR tumors have a high mutation burden but lack 
sufficient T-cell infiltration and respond poorly to ICB 

therapy [3]. Usually, the response to ICB therapy 
depends on the following biomarkers: 1) the number 
of neoantigens derived from genome instability, such 
as the tumor mutation burden (TMB) and dMMR, and 
2) tumor-infiltrating lymphocytes (TILs), mainly CD4+ 
T cells, CD8+ T cells and gene signals that interfere 
with the activity of T cells, such as those affecting 
PD-1/PD-L1/CTLA4 function [4,5]. The effective 
activation of T cells not only depends on neoantigens 
but also requires costimulatory molecular signals 
recognized by the innate immune system. As an 
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important part of innate immune recognition, 
cytoplasmic DNA recognition mediated by the 
cGAS-STING pathway was reported in 2013 as a 
breakthrough finding [6]. 

In the recent issue of Cancer Cell, Lu and Guan et 
al. demonstrated that the activation of the 
cGAS-STING pathway in tumor tissues was 
significantly and positively correlated with the 
prognosis of patients bearing dMMR tumors but not 
that of patients with pMMR (proficient MMR) tumors. 
The results of their in vitro experiments showed that 
antigen-presenting cells nurtured by dMMR but not 
pMMR tumors could strongly promote T-cell 
proliferation, whereas this phenomenon was 
abolished when STING was ablated in dMMR tumor 
cells [7]. 

In addition to dMMR, homologous 
recombination deficiency (HRD) also induces 
genomic instability and serves as an effective 
therapeutic biomarker for breast cancer and ovarian 
cancer [8-11]. 

To explore whether there is a possible connection 
between the ICB therapeutic biomarkers in 
genomically unstable tumors elicited by HRD, we 
extracted the HRD score and transcriptome data from 
the Cancer Genome Atlas breast cancer cohort 
(TCGA-BRCA). By analyzing the transcriptome data 
of patients with HRD tumors, we found that 
downstream targets of the cGAS-STING pathway, 
such as CXCL10, were positively associated with 
HRD. Furthermore, we discovered a positive 
relationship between the CXCL10 expression and 
tumor immune microenvironment (TIME), including 
infiltrating immune cells, neoantigen load and 
immune checkpoint blockade (ICB). Moreover, high 
CXCL10 expression was able to be used as biomarkers 
for anti-PD-1/PD-L1 therapy, and the predictive 
effect of CXCL10 was better than that of PD-1/PD-L1. 
Our research perspectives and methods provide a 
possible direction for immunotherapy. The results of 
this study may be valuable for understanding the 
relationship between the genomic instability and 
TIME and improving the clinical outcome of patients 
receiving anti-PD-1/PD-L1 therapy. 

Materials and Methods 
Data collection and processing 

Patients’ RNA sequencing data, SNP array data 
and corresponding clinical follow-up information 
were downloaded from the publicly available the 
Cancer Genome Atlas (TCGA) database (https:// 
portal.gdc.cancer.gov) and the NCBI Gene Expression 
Omnibus (GEO) database [12]. RNA sequencing data 
were normalized as transcripts per million (TPM) by 

using the R. SNP array data were processed using 
Affymetrix Power Tools and PennCNV. The somatic 
mutation counts, copy number variation (CNV), 
fraction genome altered scores (FGA: percentage of 
copy number altered chromosome regions out of 
measured regions) and MSIsensor score 
(microsatellite instability detection using paired 
tumor-normal sequence data) were obtained from the 
cBioPortal database (http://www.cbioportal.org/ 
study?id = brca_tcga_pan_can_atlas_2018). In total, 
1055 TCGA-BRCA samples data were extracted; 255 
GEO samples data were extracted (E-MTAB-365, 
GSE19615, GSE21653, GSE2603 and GSE31519) 
(http://kmplot.com/analysis/index.php?p = service 
&cancer = breast ). Please refer to Table S1 for the 
clinical information of patients included in this study. 
Single-cell RNA-seq of Triple-negative breast cancer 
(TNBC) patients were obtained from GSE118389 [13]. 
The transcriptome profile and clinical information 
from immunotherapy cohorts were obtained from 
Imvigor210 [14,15]. The RNA-seq data of immune 
checkpoint treated tumors from TNBC murine models 
were downloaded from GSE124821 [16]. 

HRD score analysis 
Loss of heterozygosity (LOH) was defined as the 

number of counts of chromosomal LOH regions 
shorter than whole chromosome and longer than 15 
Mb [17]. Large-scale State Transitions (LST) were 
defined as chromosome breakpoint (change in copy 
number or allelic content ) between adjacent regions 
each of at least 10 megabases obtained after 
smoothing and filtering shorter than 3 Mb small-scale 
copy number variation [18]. Telomeric Allelic 
Imbalance (TAI) was defined as the number of regions 
with allelic imbalance which extend to the 
sub-telomere but do not cross the centromere [19]. The 
HRD score was defined as the sum of TAI, LST, and 
LOH scores [20-22]. The HRD score of each patient 
was shown in Table S2. 

Neoantigen load 
The 4-digit HLA type for each sample was 

inferred using POLYSOLVER [23]. Neo-epitopes were 
predicted for each patient by defining all novel amino 
acid 9mers and 10mers resulting from mutation in 
expressed genes (median >10 TPM in the tumor type) 
and determining whether the predicted binding 
affinity to the patient’s germline HLA alleles was < 
500 nM using NetMHCpan [24-26]. The Neoantigen 
load of each patient was shown in Table S3. 

KEGG and Gene Ontology enrichment analysis 
RNA-seq data (raw counts) analysis was 

conducted using the “edgeR” package of R [27] . Fold 
change > 1.5, adj. p < 0.05, TPM > 1 and genes with the 
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first 75% of median absolute deviation (MAD) were 
set as the cutoffs to screen for differentially expressed 
genes (DEGs). Functional enrichment analysis of 
DEGs was performed by DAVID [28] to identify GO 
categories by their biological processes (BP), 
molecular functions (MF), or KEGG pathways. 

Identification of prognostic DEGs positively 
associated with the HRD score 

Kaplan-Meier plots were generated to illustrate 
the relationship between patients’ overall survival 
and gene expression levels of DEGs. The relationship 
was tested by log-rank test. 
Immune cells infiltration in bulk tumor gene 
expression data 

In order to study the enrichment of immune 
cells, we used TIMER [29], an efficient algorithm for 
predicting immune cell infiltration of bulk tumor gene 
expression data (https://cistrome.shinyapps.io/ 
timer/). For each sample, TIMER quantified the 
relative abundance of six types of infiltrating immune 
cells, including T cells, B cells, macrophages, 
neutrophiles and dendritic cells. 
Results 
The HRD Score reflects patients’ genomic 
instability and can be used as a prognostic 
marker in patients with TNBC 

According to the HRD-algorithm, LOH, TAI and 
LST were used as the basis for calculating the HRD 
score (Table S2). To explore the correlation between 
the HRD score and other hallmarks of genomic 
instability, including somatic mutation counts, 
fraction genome altered and microsatellite instability 
(MSI), the breast cancer patients were sorted in 
ascending order of HRD scores; and the bottom 20% 
and the top 20% of the patients were selected. As 
shown in Figure 2, the hallmarks of genomic 
instability were significantly higher in the top 20% 
HRD-score group than the bottom 20% HRD-score 
group (Wilcoxon signed-rank test, P < 0.0001, Figure 
2A-C). However, the HRD score was not a good 
prognostic marker in the whole breast cancer cohort 
(Figure S1A). This result might be due to the 
endocrine therapy of breast cancer. Therefore, we 
analyzed the prognosis of triple-negative breast 
cancer (TNBC) patients by the HRD score. In the 
TNBC cohort, the Kaplan-Meier survival curve 
(Figure 2D) showed that overall survival of patients in 
the HRD-positive group (HRD scores > 26) was much 
longer than the cases in the HRD-negative group 
(HRD scores were ≤ 26) (log-rank test, P < 0.0001). 
Receiver operating characteristic (ROC) analysis 
showed that the HRD score had a good predictive 

effect on the prognosis of TNBC (Figure 2E). 

Downstream targets of the cGAS-STING 
pathway are associated with HRD 

To explore the transcriptomic signatures 
associated with HRD, the breast cancer patients were 
sorted in ascending order of HRD scores; and the 
bottom 20% and the top 20% of the patients were 
selected. We compared the difference of whole 
transcriptome between the top 20% HRD-score group 
and the bottom 20% HRD-score group (Figure 1). 
Utilizing the egdeR method, a total of 632 
differentially expressed genes (DEGs) were screened 
out in breast cancer (Figure 3A). In breast cancer, the 
KEGG and GO cluster plots revealed that the 
up-regulated DEGs were enriched in immune-related 
signaling pathways such as immune response, 
chemokine signaling pathway and cytokine-cytokine 
receptor interaction in the top 20% HRD-score group 
(Figure 3B). Intriguingly, six upregulated genes 
(CXCL1, CXCL10, CXCL11, CCL8, CCL13 and CCL18) 
among the immune-related signaling pathways 
appear repeatedly (Figure 3C). Notably, the six 
upregulated genes were closely correlated with the 
transcriptional data, indicating cGAS-STING 
signaling activation in the TCGA-BRCA cohort, as 
CXCL10/11 had been reported to be downstream 
targets of the cGAS-STING pathway (Figure 3D, 
Pearson correlation coefficient, R > 0.4, P ≈ 0). The 
results from the Kaplan-Meier analysis showed that 
TCGA-TNBC patients with high expression of these 
six genes had prolonged survival, and CXCL10 
expression had the strongest predictive power for 
survival (Figure 3E and Figure S1B-F). The prognostic 
value of CXCL10 was further verified in the 
GEO-TNBC cohort (Figure 3F). To confirm that 
up-regulated CXCL10 expression is derived from 
HRD tumor cells, we re-analyzed single-cell RNA-seq 
data of TNBC patients [13]. The box plot showed that 
the expression of CXCL10 in the epithelial cells of the 
patient with BRCA1 loss-of-function mutations was 
significantly higher than the expression of CXCL10 in 
the epithelial cells of the HR proficient patient 
(Wilcoxon signed-rank test, **** P < 0.0001, Figure 
S2C). 

The CXCL10 expression signature is positively 
associated with the tumor immune 
microenvironment 

The expression of Cytokines/Chemokines is 
essential for attracting immune cells [30,31]. In order 
to explore the relationship between the chemokine 
signatures and tumor infiltrating immune cells, we 
first used the ESTIMATE algorithm to calculate the 
correlation between downstream targets of the 
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cGAS-STING pathway and immune scores [32]. As 
shown in Figure 4A, the expression of CXCL10 was 
positively correlated with immune scores in breast 
cancer patients (Spearman’s rank correlation 
coefficient, R > 0.6, P ≈ 0). More importantly, we 

found that this correlation existed not only in the 
TCGA-BRCA cohort, but also in other cancer types 
(Figure S3). To further clarify the subtype of tumor 
infiltrating cells, the TIMER algorithm [33] was 
applied to estimate the association of various immune 

cell types with the CXCL10 expression 
signature. As depicted in the scatter plot, the 
CXCL10 upregulation correlated to the 
infiltration of dendritic cells and anti-tumor 
lymphocyte subpopulations (Spearman’s rank 
correlation coefficient, P < 0.0001) (Figure 4B). 
Dendritic cells play a crucial role in antigen 
processing and presentation pathways, hinting 
that the expression of antigen-related genes 
might be associated with the expression of 
CXCL10. To prove this assumption, we 
explored the correlation of antigen-related 
genes with the CXCL10 expression signature by 
using the Pearson correlation coefficient. We 
found that the expression of MHC class I/II (I: 
HLA-A, HLA-B, and HLA-C; II: HLA-DP, 
HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ, 
and HLA-DR) and the key antigen binding 
(B2M, TAP1/2 and so on) molecules were 
positively correlated with the CXCL10 
expression signature (Spearman’s rank 
correlation coefficient, P < 0.0001) (Figure 4C). 
We further identified that the predicted 
neoantigen load was positively correlated with 
the CXCL10 expression signature (Spearman’s 
rank correlation coefficient, P < 0.0001) (Figure 
4D). 

The CXCL10 expression signature is 
positively associated with ICB- 
related genes 

In recent years, ICB therapy, represented 
by anti-PD-1/L1, has played an increasingly 
important role in anti- 
tumor treatment [34]. The characteristics of 
TIME and ICB-related genes have a profound 
impact on ICB therapy. Therefore, we collected 
more than 40 common ICB-related genes and 
analyzed the relationship between the CXCL10 
expression signature and ICB-related genes 
[35]. As displayed by heatmap, the CXCL10 
expression was positively correlated with the 
expression of multiple ICB-related genes in the 
TCGA-BRCA cohort (Figure 5A). Ten of the 
most relevant ICB-related genes were: LAG3, 
ICOS, CTLA4, CD48, HAVCR2, PDCD1(PD-1), 
PDCDILG2(PD-L2), TIGIT, CD274(PD-L1) and 
CD86. Generally, the key regulatory factors 
involved in immunity perform similar 
functions in different tissues. We thus explored 

 

 
Figure 1. Computational overview of HRD-related RNAs detection. The columns 
reflected TCGA-BRCA samples, and the rows reflected three biomarkers of the HRD score. The 
color reflects the scores for each biomarker on each sample. HRD-related RNAs were detected 
by comparing the RNA expression profile between the top 20% patients with high HRD scores 
and the bottom 20% patients with low HRD scores. 
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the CXCL10 expression signature and ICB-related 
genes across the cancer types. We found that the 
positive relationship between CXCL10 and the 
ICB-related genes was not only present in breast 
cancer, but also in 32 other cancer types (Figure 5B). 

The CXCL10 expression signature could be 
used as a potential biomarker for ICB therapy 

All of the above results indicate that the CXCL10 
expression signature is closely related to the 
biomarkers for ICB therapy. Therefore, the RNA-seq 
data of immune checkpoint treated tumors from 
TNBC murine models [16] were used to investigate 
the role of CXCL10 in ICB Therapy. As shown in 
Figure 5C, the expression of CXCL10 in sensitive 
tumor tissues is significantly up-regulated at different 
time points of treatment compared with resistant 
tumor tissues (Wilcoxon signed-rank test, *** P < 
0.001). To further confirm the predictive effect of 
CXCL10 on ICB treatment, we collected the 
transcriptome profile and clinical information from an 

immunotherapy cohort (Imvigor210) of urothelial 
cancer (UC) treated with atezolizumab [14]. In this 
cohort, tumor patients with high CXCL10 expression 
exhibited markedly improved clinical benefits and 
significantly prolonged survival (Figure 6A). 
Significant therapeutic advantages and immune 
responses to PD-L1 blockades were observed in 
samples with high expression of CXCL10 compared to 
those with low expression (Fisher extract test, P < 0.01, 
Figure 6B; Kruskal-Wallis H test, P < 0.001, Figure 
6C). Further analysis revealed that TMB, neoantigen 
load and tumor infiltrating immune phenotype were 
significantly elevated in tumors with high expression 
of CXCL10, which was closely linked to 
immunotherapeutic efficacy (Figures 6D-F). Besides, 
the association between the expression of CXCL10 and 
immunotherapy survival remained statistically 
significant after taking into account gender, smoking, 
ECOG score, immunophenotype and, PD-1/PD-L1 
status (Figure 7). 

 

 
Figure 2. The HRD Score reflects patients' genomic instability and can be used as a prognostic marker in patients with TNBC. (A) Violin plot of somatic 
mutations in the top 20% HRD-score group and the bottom 20% HRD-score group. Somatic mutation counts in the top 20% HRD-score group were significantly higher than 
those in the bottom 20% HRD-score group (Wilcoxon signed-rank test, **** P < 0.0001). (B) Violin plot of MSI in the top 20% HRD-score group and the bottom 20% HRD-score 
group (Wilcoxon signed-rank test, **** P < 0.0001). (C) Violin plot of fraction genome altered in the top 20% HRD-score group and the bottom 20% HRD-score group 
(Wilcoxon signed-rank test, **** P < 0.0001). (D) Kaplan-Meier estimates of overall survival of patients with the HRD-positive or HRD-negative tumors calculated by the HRD 
score in the TCGA-TNBC cohort. (E) ROC curves analysis of the HRD score in the TCGA-TNBC cohort. 
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Figure 3. Downstream targets of the cGAS-STING pathway are associated with HRD. (A) Volcano plot of DEGs in the top 20% HRD-score group and the bottom 
20% HRD-score group. The horizontal line at false discovery rate (FDR) < 0.05; vertical line at |log2FC| = 1.5; TPM > 1; MAD > 75%. (B) KEGG and Gene Ontology enrichment 
analysis of DEGs. The outermost ring represented the name of signaling pathways. The second outer ring represented the number of genes in signaling pathways, the heights of 
the columns in the inner ring indicate the proportion of DEGs in the total number of genes in the signaling pathway and the color depth represented the number of differential 
genes. (C) Chord plot depicting the relationship between genes and immune-related signaling pathways. The genes marked in red fonts refer to the most frequently repeated 
genes in immune-related signaling pathways. (D) Correlation between the expression of cGAS and the most frequently repeated DEGs in TCGA-BRCA cohort. The size and 
color of the pie chart represent the correlation coefficient. (E and F) Curve for overall survival is shown for high and low CXCL10 expression in the TCGA-TNBC cohort and 
GEO-TNBC cohort. 
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Figure 4. The CXCL10 expression signature is associated with TIME. (A) Positive correlation between the CXCL10 expression signature and ImmuneScore in the 
TCGA-BRCA cohort (Spearman's rank correlation coefficient, R = 0.71, P ≈ 0). (B) Positive correlation between the CXCL10 expression signature and immune cell 
subpopulations in the TCGA-BRCA cohort (Spearman's rank correlation coefficient, P < 0.0001). (C) Positive correlation between the CXCL10 expression signature and 
antigen-related genes in the TCGA-BRCA cohort. (D) Positive correlation between the CXCL10 expression signature and neoantigen load in the TCGA-BRCA cohort 
(Spearman's rank correlation coefficient, P < 0.0001). 
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Figure 5. The CXCL10 expression signature is positively associated with ICB-related genes (A) Correlation between the CXCL10 expression signature and 
ICB-related genes in the TCGA-BRCA cohort. (B) Correlation between the CXCL10 expression signature and ICB-related genes in the TCGA-pan cancer cohorts. (C) Violin plot 
depicting the expression of CXCL10 in sensitive or resistant tumor tissues. Immunotherapy: anti-PD1 and anti-CTLA-4 combination therapy. From left to right: Before receiving 
immunotherapy, on the 3rd day of receiving immunotherapy, on the 7th day of receiving immunotherapy, and at the time point of the end of immunotherapy (Wilcoxon 
signed-rank test, ** P < 0.01, *** P < 0.001). 

 

Discussion 
Emerging evidence has shown the importance of 

the cGAS-STING pathway in tumor immunotherapy 
[36,37]. Recent studies have found that the 
cGAS-STING pathway being activated in the setting 
of genome instability can be attributed to dMMR [38], 
PARP inhibitor treatment, or functional loss of 
BRCA1/2 genes [39], and it predicts a better prognosis 
of tumor patients. While these previous studies, 
combined with our research, fully prove that genomic 
instability is associated with the activation of the 
cGAS-STING pathway. As one of the hallmarks of 
malignant tumors, genomic instability plays an 
important role in the occurrence and development of 
tumors [40,41]. Genomic instability could facilitate the 
evolution of tumors. However, as the old saying goes, 
“every coin has two sides”: genomic instability also 
makes tumor cells bear a higher neoantigen load, 

which is more easily recognized by the immune 
system [42,43]. The activation of the anti-tumor 
immune response requires the participation of the 
innate immune response. The instability of the tumor 
genome also causes the up-regulation of the 
cGAS-STING pathway [44,45], which in turn activates 
the innate immune response (Figure 8). 

By analyzing the expression profile of patients 
with different HRD scores, we identified that CXCL1, 
CXCL10, CXCL11, CCL8, CCL13 and CCL18 expression 
were enriched in patients with high HRD scores, and 
that the expression of CXCL10 had the strongest 
ability to predict the prognosis of the patients. 
Although recent studies have found that in different 
types of cancer, patients with high expression of 
CXCL10 have a better clinical prognosis [46-48], but 
no one has explained the molecular mechanism of 
CXCL10 high expression. Our cohort analysis 
combined with the single-cell RNA-seq results fully 
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demonstrated the correlation between HRD and 
CXCL10. As a downstream target gene of the 
cGAS-STING pathway [49,50], CXCL10 is a small 
cytokine belonging to the CXC chemokine family that 
is also known as Interferon-inducible T-cell alpha 
chemoattractant and Interferon-gamma-inducible 
proteins [51,52]. CXCL10 has been attributed to 
several roles, such as chemoattraction for monocytes/ 
macrophages, T cells, NK cells, dendritic cells, and 

promotion of T cell adhesion to endothelial cells 
[53-56]. Our results demonstrated that the correlation 
between genomic instability and activated the 
cGAS-STING signaling in dMMR tumors [7] can be 
extended to HRD tumors. Most importantly, we 
introduced CXCL10 as a potentially reliable 
biomarker for the efficacy of ICB therapy. The 
CXCL10 can be used as a barometer of the HRD score 
with strong predictive power. 

 

 
Figure 6. The CXCL10 expression signature could be used as potential biomarkers for ICB therapy. (A) Curve for overall survival is shown for high and low 
CXCL10 expression in the PD-L1 treatment cohort. (B and C) The proportion of immune response to anti-PD-L1 treatment in high versus low CXCL10 expression subgroups. 
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (D and E) TMB and neoantigen load in the immunotherapy cohort were compared 
among distinct CXCL10 expression signature subgroups (Wilcoxon signed-rank test, * P < 0.05, **** P < 0.0001). (F) The CXCL10 expression signature in different immune 
phenotype subgroups. The tumor immunophenotype was defined according to immunohistochemistry results of the CD8 antibody (Wilcoxon signed-rank test, **** P < 0.0001) 
[14]. 
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Figure 7. Multivariate Cox regression analysis of the CXCL10 expression signature with gender, smoking, ECOG score and immunophenotype were taken 
into account. ECOG: Eastern Cooperative Oncology Group. TMB: Tumor Mutation Burden. Immune phenotype: Desert, CD8+ T cells are absent from the tumor and its 
periphery; Excluded, CD8+ T cells accumulated but do not efficiently infiltrate; Inflamed, CD8+ T cells infiltrate but their effects are inhibited. 

 
Under this situation, the determination of 

whether upregulated CXCL10 unavoidably results 
from cGAS-STING activation needs further 
experimental testing. As a downstream target of the 
cCAS-STING pathway, upregulated CXCL10 showed 
superior predictive power compared with the HRD 
score. Importantly, the clinical examination of 
CXCL10 in tumor tissues or serum is more feasible 
than applying the steps necessary for calculating the 
HRD score, and the prediction accuracy of 
upregulated CXCL10 is even better than the HRD 
score itself. We introduced, for the first time, a 
prospective biomarker associated with the efficacy of 
immunotherapy in HRD tumors, which merits further 
investigation in multiple cohorts. 
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Figure 8. Model for genomic instability-induced cGAS activation and immune response. Genomic instability, caused by dMMR or HRD, leads to tumor cells bearing 
a higher neoantigen load. Additionally, the instability of the tumor genome also causes the activation of the cGAS-STING pathway, which in turn up-regulates the expression of 
chemokines and attracts immune cells to migrate to tumor tissue. 
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