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Abstract 

Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to 
a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in 
treatment of PCa. The development of precise medical imaging procedures simultaneously to 
improvements in big data analysis has led to the establishment of radiomics – a computer-based method 
of extracting and analyzing image features quantitatively. This approach bears the potential to assess and 
improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an 
overview on the current aspects of methodology and systematically reviews available literature on 
radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative 
synthesis includes all imaging modalities and focuses on validated studies, putting forward future 
directions. 

 

Introduction 
In global cancer statistics of men prostate cancer 

(PCa) is the most frequently diagnosed malignancies 
in the world and the fifth leading cause of death 
worldwide [1,2]. Therefore, the development of 
accurate diagnostic tools is of great importance. Many 
modern imaging modalities provide a great value in 

screening, diagnosis, treatment response 
measurement and prognosis evaluation of PCa 
patients. A suspicious digital rectal examination 
and/or an elevation of prostate specific antigen (PSA) 
in blood serum lead to transrectal ultrasound (TRUS) 
guided biopsy for histopathologic verification of PCa 
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[3]. In recent years an augmented approach of this 
strategy, including magnetic resonance imaging 
(MRI), has gained traction in clinical application and 
was incorporated into guidelines [4]. MRI is not only 
employed prior to biopsy, but for local staging and 
follow up [5]. Nevertheless, diagnostic accuracy is still 
hampered by inter-observer variability and exactness 
of lesion detection does not seem to be warranted 
[6-8]. In an attempt to improve interpretation, 
reporting and acquisition standards for global 
harmonization “Prostate Imaging - Reporting and 
Data System Version 2.1” (PI-RADSv2.1) were 
established [9]. Bone scans and computer tomography 
(CT) used to be standard of care (SoC) for staging and 
re-staging. As of late prostate specific membrane 
antigen positron emission tomography (PSMA-PET) 
has been implemented into clinical practice as 
recommended in current guidelines for staging and 
restaging [10-13]. Additionally, growing evidence 
proclaims the use of PSMA-PET for intraprostatic 
lesion detection and segmentation [14-18]. In addition 
to an accurate diagnosis, proper and decisive risk 
stratification is crucial, due to a variety of treatment 
options in different clinical scenarios. However, 
recommended models for risk classification [5,19,20] 
might not always predict the final outcome in every 
disease stage of PCa [21,22]. Thus, new concepts for 
adequate detection and risk stratification towards 
precision medicine and personalized treatment are 
required. With the rise of big data analysis, the 
computer-based extraction of pre-defined image 
features in terms of “hand-crafted” radiomic features 
(RF) is an emerging field in research that might satisfy 
this need. It is hypothesized that medical images 
contain more information than discernible visually by 
trained professionals. Simplified these RF might 
provide more information about a tumor or other 
tissues facilitating diagnosis, risk stratification and 
therapeutic outcome. The advantage of radiomics is 
the utilization of SoC images without additional 
required effort and the abundance of medical images 
available, which can be utilized for longitudinal 
monitoring. Another benefit is that radiomics 
examines whole tumors as opposed to biopsy 
schedules which are prone to sampling errors due to 
intratumoral heterogeneity [23,24]. Thereby, 
radiomics offer great potential for personalization of 
therapeutic approaches, in particular for image-based 
disciplines such as radiation oncology. This review 
gives an overview of methodological aspects of 
radiomics firstly, followed by the methodology of our 
literature search and a qualitative synthesis of 
radiomics in prostate cancer subdivided by imaging 
modalities and based on a systematic search. There 
have been reviews on this topic but mostly focusing 

on MRI whereas our review includes all imaging 
modalities and concentrates on papers with internal 
or external validation [25-29].  

Current Methodological Aspects of 
Radiomic Feature Extraction  
Radiomics Pipeline 

The Radiomics Pipeline (Figure 1) is the entire 
sequence of data processing from imaging to a 
diagnostic, predictive or prognostic model based on 
RF. It is subdivided into three major operations.  

(1) Image acquisition and preprocessing 
(2) High-throughput feature extraction 
(3) Data integration and data analysis  
The Image Biomarker Standardization Initiative 

(IBSI) published a reference manual to harmonize the 
feature extraction by providing (i) definitions, (ii) a 
standardization of the radiomics pipeline, (iii) 
reference datasets and (iv) a reporting scheme [30]. 

(1) Image acquisition and preprocessing 
All imaging modalities mentioned in the 

introduction can be utilized for PCa radiomics: TRUS, 
MRI, PSMA-PET, CT and bone scan. It is important to 
mention that heterogeneities in image acquisition und 
image reconstruction algorithms due to different local 
standards are culpable for missing repeatability and 
reproducibility of RF [31-34]. Prospective trails with 
fixed imaging protocols could aim to ensure that a 
scan yields similar results in the same patient when 
repeated on the same system i.e. repeatability as well 
as on different systems and institutes i.e. 
reproducibility [33]. After image acquisition the 
volume of interest (VOI) is delineated manually, 
semi-automatically or fully automatically. If manual 
segmentation is performed a sophisticated protocol 
should be used throughout the whole dataset to 
minimize inter-observer variability [35]. Subsequently 
and before feature extraction images should be 
pre-processed, e.g., by intensity inhomogeneity 
correction or noise filtering for MR-images [32]. It is 
known that preprocessing sequences can also have a 
significant impact on the robustness and 
reproducibility of RF and identification of 
generalizable and consistent preprocessing 
algorithms is a pivotal step [36]. 

(2) High-throughput feature extraction 
The spatial and gray level information of the 

segmented voxels is used in numerous mathematical 
calculations to extract pre-defined “hand-crafted” RF. 
They can be computed with various open-source 
packages like PyRadiomics [37], IBEX [38], RaCat [39], 
QIFE [40], MaZda [41], CERR [42] or LIFEx [43] as 
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well as commercial products [44]. Additionally, 
radiomic codes implemented in MatLab ® are 
commonly used. It is very important to validate the 
used software tools, especially homemade software, 
with datasets provided by the IBSI [30], to increase 
reproducibility, robustness and comparability across 
different platforms. Current versions of PyRadiomics, 
LIFEx, RaCat, CERR and adapted version of IBEX 
comply with IBSI. Besides the extraction of 
hand-crafted RF, convolutional neuronal networks as 
a subfield of machine learning (ML) can be used for 
pattern recognition and image feature analyses by 
applying the actual images [45]. This can be done in 
combination with predefined “hand-crafted” features 
[46,47], but mostly ML algorithms engineer models, 
based on large amounts of data, autonomously [48]. 

(3) Data integration and data analysis  
Often a vast number of RF are computed, and 

the abundance of RF demands feature selection 
and/or reduction to avoid overfitting and to exclude 
not relevant or redundant features. Many features are 
correlated with each other; these redundant features 
might be depicted with heatmaps and should be 
omitted [49,50]. Additionally, ML algorithms like 
minimum redundancy and maximum relevance or 
fisher score can be used to assess the correlation 
between RF [51,52]. Other options for feature 
reduction are prioritizing robust features [34]. An 

overview of feature reduction steps including 
quantitative comparisons of performance is given by 
Leger et al [53] and Parmar and colleagues [54]. The 
analysis of the remaining features can be conducted 
by using the RF alone or in combination with other 
clinical parameters by applying classical statistical 
methods or ML for data integration and modelling. 
Examples of ML classifiers are random forests, 
support vector machines and nearest neighbors for 
instance [51,55]. To avoid overfitting, it is 
recommended to control false positive results by 
correcting for multiple testing when the data analysis 
is based on classical statistical methods [56,57]. After 
the generation of a model based on RF, validation 
should be executed to evaluate its performance and to 
assess generalizability [58]. In recent years ever more 
emphasis has been laid on this last step [33-35]. 
During an internal validation, the data is usually split 
in 3 datasets: (i) one training dataset for optimizing 
the parameters of a model, (ii) one validation dataset 
for hyperparameter optimization e.g., the depth of a 
tree or a deep-learning architecture and (iii) one test 
set for the final assessment. The latter might be used 
independently for validation. During cross-validation 
(CV) usually small datasets are divided accordingly in 
an iterative process. K-fold CV partitions the dataset 
in k subsets using one as a validation and the rest for 
training. This process is repeated for each subset. 
Leave-one-out CV operates similarly but leaves one 

 
Figure 1. Radiomics pipeline depicts the data processing and operations to build a radiomics model with validation. First an image is acquired and segmented manually, 
semiautomatically or fully automatically. Then feature extraction is performed after preprocessing. Feature classes are shape features, first order features and texture features. 
Due to the abundance of RF a selection or reduction should be performed before or while integrating with histology, genomics or clinical data. Data analysis can be performed 
by using classical statistical models, with machine learning or deep learning. A predictive, prognostic or diagnostic model is built and should be internally or externally validated. 
Abbreviations: GLCM=gray level co-occurrence matrix; GLDZM = gray level distance zone matrix; GLRLM = gray level run length matrix; GLSZM = gray level size zone matrix; 
NGTDM = neighboring gray tone difference matrix; NGLDM = neighboring gray level dependence matrix; RF= Radiomic features. 
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patient for validation while using the rest for training 
CV should be used with caution especially with 
leave-one-out CV tending to be overly optimistic 
[59,60]. External validation based on independent 
datasets from different institutes enables the highest 
quality of validation [58].  

Hand-crafted Radiomic Features 
“Hand-crafted” RF [48] can be grouped in shape 

descriptors, 1st order features and texture features. 
Shape features describe the morphology of the VOI 
for instance the size, volume or diameter. 1st Order 
features are based on an intensity histogram derived 
of the segmented voxels [24]. Texture features are 
more advanced and do not only rely on voxel 
intensities i.e., gray levels but on spatial information 
as well. First introduced by Haralick et al. the gray 
level co-occurrence matrix (GLCM) assesses the gray 
levels of pairs of neighboring voxels [61]. Others like 
the gray level size zone matrix (GLSZM) [62] and the 
gray level run length matrix (GLRLM) [63] analyze 
groups of consecutive voxels, zones, or runs of 
connected voxels in one direction, respectively. For a 
more complete description of features, texture 
matrices and their mathematical calculations we 
recommend the IBSI and their documentation [30]. 
High-order features are calculated on filter 
transformed images like wavelets or gaussian 
bandpass filer [24].  

Methodology 
Studies eligible for inclusion complied with the 

following criteria: articles had to be on PCa radiomics 
with predefined “hand-crafted” features derived from 
MRI, TRUS, CT, Choline- or PSMA-PET and needed 
to apply internal or external validation. Excluded 

were papers not written in English and non-original 
articles. Two of the co-authors (SKBS and ASB) 
performed independently a PubMed/Medline, 
EMBASE and Cochrane Library database search for 
the terms: (cancer of prostate[MeSH Terms]) AND 
((texture features) OR (radiomics)). If the two 
independent readers included or excluded studies 
differently a third reader (CZ) decided on eligibility. 
This was performed in 11 cases. The time period 
considered in this literature review was from 1st of 
January 2014 [64] to 1st of January 2021. 251 articles 
were located. Additionally, 22 manuscripts were 
identified through other sources (e.g., google scholar 
or references in screened manuscripts). 35 duplicates 
were removed. Only articles that met inclusion 
criteria were included. Finally, 77 studies were 
included in the qualitative synthesis. Please see Figure 
2 for a detailed description of the performed literature 
search according to PRISMA [65]. Due to 
heterogeneity of imaging modalities, in the applied 
Radiomics pipeline and the analyzed endpoints no 
quantitative analysis was performed. Additionally, 
we assessed whether the utilized software complied 
with IBSI. 

Furthermore, ongoing clinical trials were 
screened on “clinicaltrials.gov”. Studies eligible for 
inclusion fulfilled the following criteria: ongoing trials 
on PCa RFs with “hand-crafted” features derived of 
MRI, TRUS, CT or PSMA-PET. Trials with unknown 
status were excluded. CZ performed the search for the 
terms (“Condition or disease: prostate cancer” AND 
“radiomicsl” OR “texture features”). Six trials were 
located, and one trial (NCT03294122) was excluded 
due to unknown trial status. 

 

  
Figure 2. Flow diagram of systematic database search and records excluded. Abbreviations: RF= radiomic features 



Theranostics 2021, Vol. 11, Issue 16 
 

 
http://www.thno.org 

8031 

Results 
I MRI 

Literature research revealed 57 original papers 
computing RF on multiparametric magnetic 
resonance tomography (mpMRI) imaging (see Table 
1). The most common segmented VOI was 
intraprostatic tumor (n = 48) [66-114], of which five 
studies focused on tumor location in transitional zone 
(TZ) [72,73,81,95,112] and five studies in peripheral 
zone (PZ) [68,71,76,82,95]. 14 studies selected the 
prostate as VOI [69,71,73,78,82,87,96,97,104,110,112, 
115-118] of which one study analyzed the prostate 
excluding urethra and intraprostatic dominant lesions 
[97] and one study differentiated between different 
prostate zones [115]. Four studies considered PCa 
localization in fused histopathologic information as 
VOI [75,119-121] and one study the area of biopsy 
including the surrounding 15 mm [114]. One study 
included peritumoral areas [96]. The rectal wall was 
delineated as VOI in one study [122]. RFs were 
extracted from T2-weighted images (T2w, n = 52) 
[66-76,78-91,93-107,109-113,116-122], apparent diffu-
sion coefficient (ADC, n = 38) [67,70-72,74,77-81,83- 
85,87,89-96,98-100,103-105,108-113,115,116,120,122], 
diffusion weighted imaging (DWI, n = 21) 

[66,69-73,76,77,80,82,86,88,90,94,98,105,107,112,115-11
7], dynamic contrast enhanced (DCE, n = 13) [66,73, 
79,80,82,89,91,104-107,114,120], computed high-b DWI 
(CHB-DWI) (n = 5) [69,74,75,100,115], T1-weighted 
sequences (T1w, n = 3) [72,106,117] and diffusion 
tensor imaging (n = 1) [76], respectively. PCa 
detection (n = 19) [66-82,114,115], Gleason Score (GS) 
discrimination or upgrading from biopsy to 
prostatectomy (n = 22) [83-100,116,119-121], 
extracapsular extension (n = 5) [90,103-105,120], 
biochemical recurrence (n=4) [108-110,117], 
segmentation (n = 3) [112, 113, 118], bone metastasis 
(n = 2) [106,107], treatment response (n = 1) [111], and 
rectal toxicity (n = 1) were investigated as primary 
endpoints [122]. Most of the studies adopted internal 
validation (n = 50) [66,67,69-72,74-95,97,99,100,103- 
107,109,111-117,119-122] utilizing ML algorithms like 
CV (n = 26) and/or leave-one-patient-out CV (n = 10) 
[66,67,69,72,74,75,81,83,84,86,88,90-94,97,99,103,104,11
1,113-115,119, 122], as well as independent internal 
validation cohorts (n = 24) [70,71,76-80,82,85,87,89,90, 
95,100,105-107,109,112,116,117,120,121]. External 
validation was performed in seven studies [68,73,96, 
98,108,110,118]. Eleven studies complied with IBSI 
[71,78-80,94,97,103,105,108,109,118]. 

 

Table 1. List of included articles on RFs derived of MRI. In the second column # are the number of patients enrolled retrospectively (R) 
or prospectively (P). In the fourth column the volume of interest (VOI) is presented accompanied by the type of segmentation in brackets 
M = manual, SA = semiautomatic and A = fully automatic. The last column contains information on validation. “e” stands for external 
validation and “I” for internal. The number stands for the number of cohorts used. 2 means one for development and one for testing. 

Prostate cancer detection 
Study # Imaging Modality VOI (Segmentation) Endpoint(s) Results Validation 
Cameron et 
al. [67] 

5 (R) T2w, ADC PCa (A +M) PCa detection RF model outperformed conventional mpMRI feature 
models. 

i (LOO) 

Cameron et 
al. [66] 

13 
(R) 

T2w, DWI, DCE PCa (A) Classifiers for PCa 
detection 

RF model outperformed conventional mpMRI feature 
models. 

i (CV, LOO) 

Viswanath et 
al. [68] 

85 
(R) 

T2w PCa, PZ, central gland (M) Classifier for 
voxel-wise PCa 
detection 

Boosted Decision Tree classifier has the highest 
ROC-AUC for detecting PCa., Boosted 
Quadratic-Discriminant Analysis is the most accurate 
and robust in detection of PCa extent across three 
sites. The ground truth was established by whole 
mount histology. 

e (CV with 
external 
centers) 

Khalvati et al. 
[69] 

20 (R 
) 

T2w, DWI, CDI, 
CHB-DWI 

PCa, prostate (M) Classifier for PCa 
detection 

Support vector machine classifier improved PCa 
auto-detection. 

i (LOO) 

Xu et al. [70] 331 
(R) 

T2w, DWI, ADC PCa Benign vs. malignant 
lesions 

BpMRI improved discrimination between benign and 
malignant lesions. 

i (2) 

Bonekamp et 
al. [71] 

316 
(R) 

T2w, DWI and ADC PCa, PZ, prostate (M) PCa ISUP ≥2 Quantitative ADC measurement improves 
differentiation of benign vs malignant lesions, ML 
comparable, performance of zone-specific models 
was lower. 

i (2+CV) 

Sidhu et al. 
[72] 

76 
(R) 

T1w, T2w, DWI, ADC PCa in TZ (M) PCa detection in TZ TZ derived RF can discriminate TZ-PCa. i (LOO) 

Ginsburg et 
al. [73] 

80 
(R) 

T2w, DWI, DCE PCa, TZ, prostate (M) PCa detection in TZ 
and PZ 

TZ-specific classifier significantly improves accuracy 
of PZ-PCa detection. 

e (3 
institutions) 

Parra et 
al.[114] 

52 
(R) 

DCE Habitat = biopsy +15 mm (M) PCa detection 
(significant) 

Habitats from DCE predict clinically significant PCa 
well. 

i (LOO) 

Khalvati et al. 
[74] 

30 
(R) 

T2w, ADC, CHB-DW, 
CDI 

PCa (A) Framework for PCa 
detection 

Proposed framework (MPCaD can be utilized to 
detect and localize PCa. 

i (LOO) 

Wang et al. 
[75]  

54 
(R) 

T2w, CHB-DW PCa, histological-radiological 
correlation (M) 

Classifier for PCa 
detection (significant) 

SVM classifier improves performance of PI-RADS v2 
for clinically relevant PCa. 

i (LOO) 

Gholizadeh et 
al.[76] 
 

16 
(P) 

T2WI, DWI, DTI PCa in PZ(M) Differentiation pf PCa 
and non-PCa 

Voxel‐based supervised machine learning models 
generated a binary classification of cancer probability 
maps. 

i (2+LOO) 

Hu et al. 136 DWI, ADC PCa (M) PCa detection A mixed model based on the clinically independent i (2) 
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Prostate cancer detection 
Study # Imaging Modality VOI (Segmentation) Endpoint(s) Results Validation 
[77] (P) risk factors and mp-MRI radiomics score showed the 

best performance. 
Woźnicki et 
al.[78] 
 

191 
(R) 

T2w, ADC PCa + Prostate (M) PCa detection and 
clinical significance 

An ensemble machine learning model combining 
radiomics, PI-RADS, prostate specific antigen density 
and digital rectal examination 
resulted in a good predictive performance. 
 

i (2+CV) 

Qi et al. 
[79] 

199 
(R) 

T2w, ADC, DCE PCa (M) PCa prediction on 
patients with PSA level 
of 4-10ng/ml 

The combined model incorporating all sequences, 
age, PSA density and the PI‐RADS v2 score yielded 
good performance for prediction of PCa.  

i (2) 

Dulhanty et 
al. [115] 
 

101 
(R) 

ADC, CHB-DWI Prostate zones (M) PCa detection based on 
10 anatomical zones 

Zone-level radiomic sequences distinguish between 
positive and negative zones. 

i (CV) 

Bleker et al. 
[80] 

206 
(P) 

T2w, DWI, ADC, DCE PCa (SA) csPCa in PZ Addition of DCE-RFs does not improve performance 
of T2w- and DWI-RF based models. Multivariate RF 
selection with extreme gradient boosting 
outperformed univariate selection. 

i (2) 

Wu et al.[81] 
 

90 
(R) 

T2w, ADC PCa in TZ (M) Differentiation of PCa 
inTZ 

Proposed models using quantitative ADC, shape and 
texture features, show good performance for TZ PCa 
detection and remained accurate when comparing TZ 
PCa with stromal BPH and in smaller lesions. 

i (CV) 

Kwon et al. 
[82] 
 

344 
(R 

T2w, DCE, DWI, proton 
density-weighted 

Prostate, PZ, PCa (M) Detection of csPCA 
Classification methods 

Random forest classification showed the highest 
AUC. 

i (2) 

Gleason score 
Hectors et 
al.[83] 

64 
(R) 

T2w, ADC, diffusion 
kurtosis imaging maps 

PCa (unknown)  Aggressiveness (GS, 
Gene expression, 
Decipher) 

14 RF with significant correlation to GS, 40 DWI 
features with significant correlation to Gene 
expression, ML models with excellent performance to 
predict Decipher score ≥ 6. 

i (CV) 

Chaddad et 
al. [85] 

99 
(R) 

T2w, ADC PCa (M)  GS grouping 
(6/3+4/4+3) 

Joint Intensity Matrix-derived RF (n=5) are 
independent predictors of GS. 

i (2) 

Chaddad et 
al. [84] 

99 
(R) 

T2w, ADC PCa (A)  GS grouping 
(6/3+4/4+3) 

T2w and ADC derived RF can predict GS. i (CV) 

Sun et al. 
[119] 

30 
(R) 

T2w  PCa on histology (M) GS, Risk groups ADC, GLCM and GLRLM discriminate between high 
grade and low grade PCa. The combination further 
improved AUC. 

i (CV) 

Jensen et al. 
[86] 

112 
(R) 

T2w, DWI PCa (M)  GS, risk group Zonal-specific DWI and T2w derived RF differentiate 
between PCa lesions of all GS. 

i (LOO + CV) 

Chen et al. 
[87] 

381 
(R) 

ADC, T2w PCa, prostate(M) PCa/non-PCa, high 
grade GS /low grade 
GS 6 compared to 
PI-RADSv2 

T2w and ADC RF show high efficacy in 
distinguishing PCa vs non-PCa and high-grade vs 
low-grade PCa. 

i (2) 

Toivonen et 
al. [88] 

62 
(R) 

T2w, DWI, T2-mapping PCa GS T2w and DWI derived RF show good classification 
performance for GS of PCa. 

i (LPOCV + 
CV) 

Zhang et al. 
[89] 

166 
(R) 

T2w, ADC, DCE PCa (M) PCa upgrading T2w, ADC and DCE derived RF can predict GS 
upgrading from biopsy to radical prostatectomy. 

i (2) 

Min et al. [90] 280 
(R) 

T2w, DWI, ADC PCa (M) PCa detection 
(significant) 

MpMRI derived RF discriminate between GS 3+4 or 
lower. 

I (CV) 

Li et al. [91] 63 
(R) 

T2w, ADC, DCE PCa (M) GS in CG PCa Support vector machine classification achieves 
accurate GS classification of PCa in central gland. 

i (CV) 

Rozenberg et 
al. [92] 

54 
(R) 

ADC PCa (M) Prediction of GS 
upgrading and 
Differentiation of GS 
3+4 and 4+3 

ADC derived texture features are not predictive of GS 
upgrading after radical prostatectomy. 

i (CV) 

McGarry et 
al. [120] 

48 
(P) 

T2w, ADC, DCE PCa on histology (M) Gleason probability 
maps 

RF based mapping successfully stratifies high- and 
low-risk PCa. 

i (2) 

Penzias et al. 
[121] 

36 
(R) 

T2w PCa on histology (M) GS, risk group, 
correlation with QH 

RF and quantitative histomorphometry features 
correlated with these RF are predictive for of GS. 

i (2) 

Fehr et al. [93] 217 
(R) 

T2w, ADC PCa (M) GS risk group 
differentiation 

Automatic classifiers achieve accurate classification of 
GS. 

i (CV) 

Hou et al. [94] 
 

263 
(R) 

T2w, DWI, ADC PCa, (M) Clincially significant 
PCa (GS≥7) in PIRADS 
3 lesions 

Radiomics ML model of all sequences has potential to 
predict csPCa in PIRADS 3 lesions to guide biopsy. 

i (CV) 

Li et al. [95] 
 

381 
(R) 

T2w, ADC PCa in TZ and PZ (M) Clincically significant 
PCa  

Radiomics model can predict csPCa with high 
accuracy (AUC ≥-98). 

i (2) 

Gong et 
al.[116] 
 

489 
(R) 

T2w, DWI, ADC Prostate Identification of high 
grade PCa (>GS7) 

DWI RF-model and combination of T2w and DWI 
achieved high accuracy in prediction of GS >7. 

i (2, CV) 

Algohary et 
al. [96] 
 

231 
(R) 

T2w, ADC PCa lesion, peritumoral area 
(M) 

Differentiation of PCa 
Risk Groups according 
to D'Amico 

Combination of peritumoral and intratumoral RFs 
improved the risk stratification results by 3–6% 
compared to intra-tumoral features alone. 

e (2) 

Gugliandolo 
et al. [97] 
 

65 
(R) 

T2w Prostate excluding urethra 
and dominant intraprostatic 
lesions (M) 

Prediction of GS, 
PIRADS v2 Score and 
Risk Group 

Radiomic signature consisting of the combination of 
3D GLCM and intensity domain category features 
were able to discriminate between low- and 
intermediate-grade malignancy.  

i (CV, LOO) 

Zhang et al. 
[98] 
 

159 
(R) 

T2w, DWI, ADC PCa (M) Discrimintation of 
csPCa and clincially 
insignificant PCa 

A radiomic signature of 10 features, was significantly 
associated with csPCa. A nomogram of this signature 
and ADC values showed even better AUCs. 

e (2, CV)  
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Prostate cancer detection 
Study # Imaging Modality VOI (Segmentation) Endpoint(s) Results Validation 
Algohary et 
al. [99] 
 

56 
(R) 

T2w, ADC PCa (M) Prediction of csPCa in 
active surveillance 
patients 

7 T2w-based and 3 ADC-based RF exhibited 
statistically significant differences between malignant 
and normal regions in the training groups. The 3 
constructed ML models yielded good accuracy 

i (CV) 

Abraham et 
al. [100] 
 

162 
(R) 

T2w, ADC, high 
B-Value 
Diffusion-Weighted 
(BVAL) 

PCa (A) Classification of Grade 
Groups 

The novel method using texture features and stacked 
sparse autoencoder was able to classify PCa grade 
groups moderately. 

i (2, CV)  

Extracapsular extension 
Ma et al. [120] 119 

(R) 
T2w PCa (M) ECE of PCa T2w derived RF predict side specific ECE. i (2) 

Ma et al. [90] 210 
(R) 

T2w PCa (M) ECE prior to RP T2w derived RF outperformed radiologist in 
predicting ECE. 

i (2) 

Stanzione et 
al. [103] 

39(R) T2w, AdC PCa index Lesions (M) Classifier for ECE 
prediction 

Bayesian Network was the best classifier for ECE 
prediction.  

i (CV) 

Losnegard et 
al. [104] 
 

228 
(R) 

T2w, ADC, DCE Prostate, PCa (M+A) ECE Prediction in high 
and unfav. 
Intermediate risk PCa 

12 RF extracted from manual segmentation combined 
with a Random Forest classifier can predict ECE with 
an AUC of 0.74. 
Features from T2W and ADC showed a good 
performance. A combined model performed even 
better.  

i (CV) 

Xu et al. [105] 
 

95 
(R) 

T2w, DWI, ADC, DCE PCa (M) ECE 8 RF were used to build a radiomics model with an 
AUC of 0.92. A radiomics nomogram with clinical 
features yielded similar results. 

i (2) 

Bone metastasis 
Wang et al. 
[106] 
 

176 
(R) 

T2w, DCE T1w PCa (M) Bone metastasis 
prediction 

T2w and DCE derived RF were predictors for BM. i (2) 

Zhang et al. 
[107] 
 

116 
(R) 

T2, DWI, DCE PCa (M) Prediction of bone 
metastasis in newly 
diagnosed PCa 

The radiomics nomogram based on 11 RFs and 
clinical risk factors, showed good performance to 
promote individualized prediction of bone 
metastasis. 

i (2) 

Biochemical recurrence 
Bourbonne et 
al. [109] 

107 
(R) 

T2w, ADC PCa (SA) Prediction of BCR and 
biochemical relapse 
free survival after RP in 
high risk PCa 

One ADC derived RF (SZEGLSZM) was predictive for 
BCR and bRFS (AUC 0.76). 

i (2) 

Bourbonne et 
al. [108] 

195 
(R) 

ADC PCa (SA) BCR External validation of the identified ADC derived RF 
(SZEGLSZM) for BCR and bRFS prediction after RP. 

e (2) 

Shiradka et al. 
[110] 

120 
(R) 

T2w and ADc PCa, prostate (M) BCR after RP or RT BpMRI RF-trained machine learning classifier can be 
predictive of BCR.  

e (2) 

Zhong et 
al.[117] 
 

91 
(R) 

T1w, T2w, DWI Prostate (M) BRC of localized PCa 
after RT and 
neoadjuvant endocrine 
therapy. 

MRI derived RFs can predict BCR after RT with good 
performance. 

i (2, CV) 

Treatment response 
Abdollahi et 
al. [111] 

33 
(P) 

T2w, ADC, pre- and 
post IMRT 

PCa (M) Therapy response (RT), 
GS, T-stage 

T2w and ADC derived RF and ML correlate with 
IMRT response. 

i (CV) 

Toxicity 
Abdollahi et 
al. [122] 

33 
(P) 

T2w, ADC Rectal wall (M) Rectal toxicity Pre-IMRT MRI RF predict rectal toxicity. i (CV) 

Segmentation 
Sunoqrot et 
al. [118]  
 

635 
(R) 

T2w Prostate gland (M) Quality System for 
automated prostate 
segmentation 

Proposal of a quality check for automated 
segmentation of the prostate in T2W MR image. 

e (2, CV) 
 

Lay et al. 
[112] 
 

224 
(R) 

T2w, ADC, DWI PCa (M) Prostate and TZ (A) PCa segmentation Random forest sampling strategy and instance-level 
weighting improve PCa detection performance 
compared to support vector machine. 

i (2, CV) 

Giannini et al.  
[113] 
 

58 
(R) 

T2w, ADC PCa (M) PCa segmentation Proposed method with GLCM texture features 
computed on ADC and T2w images reduced the 
number of false positives and increased the precision 
of PCa detection. 

i (CV) 

Abbreviations: ADC=Apparent diffusion coefficient, BCR=biochemical recurrence, bpMRI=biparametric magnetic resonance imaging, bRFS=biochemical recurrence free 
survival, CDI=current density imaging, csPCa= clinically significant prostate cancer, CV=cross validation, DCE=dynamic contrast enhanced, DTI= diffusion. tensor imaging, 
DWI=diffusion weighted imaging, GLCM= gray level co-occurrence matrix, GLRLM=grey-level run length matrix, GS=Gleason score, IMRT=intensity modulated 
radiotherapy, LOO=leave one out, LPOCV=leave-pair-out cross-validation, M=manual confirmation, ML=machine learning, mpMRI=multiparametric magnetic resonance 
imaging, PCa=Prostate cancer; PZ=peripheral zone, RF=radiomic feature, ROC-AUC=are under the receiver operating characteristics curve, RP=radical prostatectomy, 
T1w= T1-weighted imaging, T2w=T2-weighted imaging, TZ= transitional zone. 

 
In two preliminary studies, Cameron et al. 

developed a model based on mpMRI RF for PCa 
detection implementing a comprehensible 
identification scheme by grouping features into the 
categories morphology, asymmetry, physiology and 
size (MAPS) [66, 67]. The model had an accuracy of 

87% and outperformed models based on conventional 
mpMRI features [66]. Furthermore Khalvati et al. 
proposed a RF based framework for PCa detection 
and localization [74]. Additional studies, among 
which is the externally validated study by Viswanath 
et al. (ROC-AUC 0.683-0.768 across 3 sites), showed 
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good area under the receiver operating characteristics 
curve (ROC-AUC) for PCa detection [68-70,75]. Five 
studies considered the tumor location (TZ vs. PZ) for 
RF based PCa detection [71-73,76,81]. Two of these 
demonstrated improved PZ and TZ lesion 
classification with ADC based RF [71] and a high 
ROC-AUC value of 0.86 [72]. Gholizadeh et al. 
developed a framework of combined T2w, DWI and 
DTI features for differentiation of PCa and non-PCa 
voxels [76]. Bleker et al. demonstrated that the 
addition of DCE-RFs does not improve performance 
of T2w and DWI-RF based models to detect clinically 
significant PCa in the PZ [80]. A multi-institutional 
and externally validated study by Ginsburg et al. 
showed lower results for a PZ specific classifier for 
PCa detection with ROC-AUC of 0.6-0.71 [73].  

GS prediction and discrimination were assessed 
in 22 studies [83-100,116,119-121]. Most of these 
studies showed that RF models can differentiate 
between GS groups (low-, intermediate- and high 
risk), to predict GS or to predict GS upgrading 
between the biopsy and radical prostatectomy 
[83-91,93,114,119,120]. Chaddad et al. introduced 
novel RF based on Joint Intensity Matrix to predict GS 
(ROC-AUC 0.64-0.82 depending on GS groups) [84]. A 
study from Rozenberg et al. however, could not show 
that ADC features were predictive for GS upgrading 
in intermediate-risk prostate cancer [92]. Penzias et al. 
demonstrated that RF and quantitative 
histomorphometry correlate and are predictive for GS 
[121]. Hou et al. investigated the prediction of 
clinically significant PCa (GS≥7) in PIRADS 3 lesions, 
which could be a useful tool for biopsy guidance [94]. 
Zhang and colleagues showed that a radiomic 
signature, consisting of 10 features, identified 
clinically significantly PCa (GS ≥ 3+4) with AUC 
values of 0.95 (training), 0.86 (internal validation), and 
0.81 (external validation) [84]. Algohary et al. reported 
that RFs from T2w and DWI sequences are associated 
with clinically significant PCa, being even more 
relevant than PIRADSv2 evaluation in some patients 
[99]. In an external validated study, a combination of 
intra- and peritumoral RF resulted in AUCs of 0.87 
and 0.75 for the differentiation of low risk PCa versus 
high-risk PCa or intermediate- and high risk PCa 
defined by D’Amico Risk Classification [82]. 

Five studies investigated RF for the prediction of 
extracapsular extension and reported high AUC 
values between 0.80-0.90 for radiomic signatures 
based on T2w and ADC sequences [90,103,120] that 
outperformed clinical or nomogram models [104,105]. 
Two studies from Wang et al. and Zhang et al. showed 
that mpMRI derived RFs show good performance for 
bone metastasis prediction in untreated PCa with an 
ROC-AUC up to 0.92 [85,107]. Six studies analyzed 

the performance of RF in terms of outcome 
[108-111,117,122]. Bourbonne et al. externally 
validated an ADC based RF (SZEGLSZM), which was 
identified in a previous study [94] for biochemical 
recurrence (BCR) prediction after surgery with an 
accuracy of 0.76 [108,109]. Shiradkar et al. 
demonstrated a ML classifier derived from T2w and 
ADC RF with good prediction of BCR after surgery or 
RT. which was externally validated with a AUC of 
0.73 [110]. Another RF model by Zhong et al. showed 
good performance for BCR prediction after RT of 
localized PCa [117]. Abdollahi and colleagues 
indicated that RF from pre- and post-treatment ADC 
images are predictive in terms of treatment response 
after primary external beam radiotherapy [111]. 
Another study from this group demonstrated that RF 
of pre-radiotherapy images provided good ROC-AUC 
values of up to 0.81 for rectal toxicity prediction [122]. 
One study by Sunoqrot et al. elaborated a quality 
system to asses automated prostate segmentations 
with external validation [118] and two studies from 
Lay et al. and Giannini et al. addressed RF-based PCa 
segmentation [112,113].  

II PSMA-PET 
Literature research revealed five original papers 

[123-127] using PET images to extract RF (see Table 2). 
Four studies used intraprostatic tumor as VOI for RF 
extraction [124-127] and one study non-PCa tissue in 
PET [123]. One study performed external validation of 
their results, the remaining studies were internally 
validated by CV [124,125] or two independent cohorts 
[126,127]. Four of these studies complied with IBSI 
[123-126]. 

Three studies aimed for GS discrimination 
[124-126] and demonstrated excellent ROC-AUC 
values between 0.81-0.91. Two studies chose 
intraprostatic tumor detection as study endpoint 
[123,126]. A study by Zambolgou et al. reported two 
distinct RFs (SAE, local binary pattern small-area 
emphasis; SZNUN, local binary pattern size-zone 
non-uniformity normalized) with good performance 
to detect significant PCa lesions not visible in 
PSMA-PET/CT. This result was externally validated 
by an independent cohort [123]. Cysouw et al. 
demonstrated a RF based machine learning model to 
predict lymph node involvement, presence of 
metastases, GS prediction (≥8) and presence of 
extracapsular extension [125]. 

III Other imaging modalities 
Literature research revealed six original papers 

using CT scans [128-133] and four using TRUS 
imaging (n = 4) [47,134-136] to extract RF (see Table 3). 
The respective VOI for RF extraction were prostatic 
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gland (n = 6) [47, 128, 129, 133-135], intraprostatic 
tumor (n=5) [136], bone metastases (n = 1) [132], 
lymph node metastasis (n=1) [131] and rectal/bladder 
wall (n = 1) [130]. All studies were internally validated 
by CV (n = 8) [128-134,136] or two independent 
cohorts (n = 3) [47,131,135]. Only one study complied 
with IBSI [131]. 

GS discrimination by RF was the aim of four 
studies using TRUS [134], CT [128,133] or CBCT 
images [129] and reported excellent ROC-AUC values 
between 0.77-0.98 including one or multiple RF for 
modeling. Three studies defined intraprostatic tumor 
detection in TRUS images [47,134,136] as a study 
endpoint. Again, the implementations of one or 
multiple RF led to very promising results in PCa 
detection. The study of Wu et al. implemented RF for 
automatic prostate gland delineation in TRUS images 
[135] and observed similar results compared to 
manual delineation by experts. One study [130] 
implemented RF to predict bladder and bowel toxicity 
after radiotherapy of PCa patients and reported 
ROC-AUCs of up to 0.77 by integrating clinical 
information with RF. The study of Osman et al. 

suggested that RF derived from CT images might 
enhance interpretation of treatment response of bone 
metastases [133] and Acar et al. demonstrated that RFs 
derived from CT images of PSMA-PET/CT scans 
could accurately distinguish between metastatic 
lesions and sclerotic area [132]. The RF model in a 
study by Peeken et al. outperformed conventional 
measures for detection of lymph nodes metastases 
[131]. 

IV Ongoing trials 
In total, 5 studies were identified using mpMR 

imaging (n = 4), PET (n = 1), CT (n = 1) and bone scans 
(n = 1) to extract RF (see Table 4). Four studies 
evaluate RF for outcome prediction during or after 
several treatment approaches: active surveillance, 
surgery, radiotherapy, or radionuclide therapy in 
addition to chemotherapy. Two of those four studies 
integrate RF with molecular markers for modelling. 
One study evaluates whether RF extracted from 
lesions describe histologic characteristics, lymph node 
involvement and extension.  

 

Table 2. List of included articles on RFs derived from PSMA-PET images. In the second column # are the number of patients enrolled 
retrospectively (R) or prospectively (P). In the fourth column the volume of interest (VOI) is presented accompanied by the type of 
segmentation in brackets M = manual, SA = semiautomatic and A = fully automatic. The last column contains information on validation. 
The number stands for the number of cohorts used. 2 means one for development and one for testing. 

Study # Imaging Modality VOI (Segmentation) Endpoint(s) Results Validation 
Zamboglou et 
al. [123] 

20 (P) 
52 (R) 

[68Ga]Ga-PSMA-11 PET Non-PCa tissue  Visually not-detected lesions 2 distinct RF with good performance 
(SAE, SZNUN) 

e (2) 

Papp et al.[124] 52 (P) [18F]FMC/ 
[68Ga]Ga-PSMA-11 
PET/MRI 

PCa (M) Risk group discrimination, BCR Machine learning RF based models.  i (CV) 

Cysouw et 
al.[125] 

76 (P) [18F]DCFPyL PET PCa (SA) Lymph node metastasis, 
metastasis, GS≥ 8, extracapsular 
extension  

Radiomics-based machine learning 
models. 

i (CV) 

Zamboglou et 
al. [126] 

60 (R) PSMA-PET PCa (M) on PET images and 
on co-registered histology 

PCa detection, GS, pN1  
status 

QSZHGE: quantization algorithm + 
short zones high gray-level emphasis. 

i (2) 

Alongi et al. 
[127] 

46 (R) 18F-Choline PET PCa (unknown)  PCa patients’ outcome 13 selected RF. i (2) 
 

Abbreviations: CV= cross-validation; PCa = prostate cancer; GS = Gleason score, SAE, local binary pattern small-area emphasis; SZNUN, local binary pattern size-zone 
non-uniformity QSZHGE= quantization algorithm + short zones high gray-level emphasis. 

 

Table 3. List of included articles on RFs derived from other imaging modalities than MRI. In the second column # are the number of 
patients enrolled retrospectively (R) or prospectively (P). In the fourth column the volume of interest (VOI) is presented accompanied by 
the type of segmentation in brackets M = manual, SA = semiautomatic and A = fully automatic. The last column contains information on 
validation. “e” stands for external validation and “I” for internal. The number stands for the number of cohorts used. 2 means one cohort 
for development and one for testing.  

Study # Imaging 
Modality 

VOI 
(Segmentation) 

Endpoint(s) Results Valida
tion 

Prostate 
Zhang et al. [47] 113 (R) TRUS:  

B-mode, Sono- 
elastography 

Prostate (M) PCa detection Multimodal feature (4 RFs) learning. i (2) 

Wildboer et al. 
[134]. 

50 (R) TRUS:  
B-mode, 
contrast 
enhanced US 

Prostate (A) PCa detection, GS Multiparametric classifier (n=14). i (CV) 

Wu et al. [135] 132 & 
5 videos  
(R)  

TRUS:  
B-mode 

Prostate (A&M) Prostate segmentation Prostate segmentation framework utilizing 
speckle-induced texture features. 

i (2) 

Huang et al. [136] 342 (R) TRUS (M) Rectangle around 
the biopsy core 

PCa detection RF for a support vector machine classifier. i (CV) 
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Study # Imaging 
Modality 

VOI 
(Segmentation) 

Endpoint(s) Results Valida
tion 

Osman et al. [133] 342 (R) CT Prostate (M) GS, risk group discrimination Radiomics classifier. i (2, 
CV) 

Tanadini-Lang et 
al. [128] 

41 (R) CT perfusion Prostate (M) GS, risk group discrimination Single and combined use of RF and conventional CT 
perfusion parameters. 

i (CV) 

Bosetti et al. [129] 31 (R) Cone-beam CT Prostate (M) Tumor stage, GS, PSA level, risk 
group discrimination, BCR 

Histogram-based Energy and Kurtosis and a 
shape-based feature predict BCR and high risk. 

i (CV) 

Toxicity 
Mostafei et al. [130] 64 (P) CT Pre-treatment 

Rectal-& 
Bladder wall (M) 

RT toxicity  
GI/GU ≥ grade 1  
CTCAEv4.03 

Cystitis: clinical-radiomics (n=4) model. Proctitis: 
radiomics (n=3) model. 

i (CV) 

Lymph nodes 
Peeken et al. [131] 80 (R) Contrast-enhan

ced CT from 
PSMA PET/CT 
scans 

Lymph nodes (M) Lymph node metastasis Radiomics model significantly outperformed all 
conventional CT parameters.  

i (CV, 
2) 

Bone metastases 
Acar et al. [132] 75 (R) CT from PSMA 

PET/CT 
Bone metastases Discrimination of bone metastases 

that responded after treatment 
Weighted k-nearest neighborhood algorithm.  i (CV) 

Abbreviations: CT = computed tomography, CV= cross-validation, GI=gastrointestinal, GS = Gleason score, GU=genitourinary; PCa = prostate cancer; QSZHGE= 
quantization algorithm + short zones high gray-level emphasis, TRUS = Transrectal Ultrasound 

 

Table 4. List of identified ongoing trials to extract radiomic features. Only aims concerning radiomics are mentioned above. In the second 
column # are the number of patients enrolled retrospectively (R) or prospectively (P). The third column displays the imaging modality 
(mpMRI=multiparametric magnetic resonance imaging, PSMA/FDG-PET=prostate specific membrane antigen fluorodeoxyglucose 
positron emission tomography, CT=computer tomography). The fourth column gives an overview of the study’s aim(s). 

Study # Imaging Modality Aim(s) 
NCT03979573 90 (P) mpMRI Identification and monitoring of patients with RF in combination with clinical and molecular markers during active 

surveillance of PCa to reduce discontinuation. 
NCT02242773 207 (P) mpMRI Correlation of RF with progression during active surveillance and with genomic signatures and other biomarkers. 
NCT03180398  20 (P) mpMRI Extracted RF are used to identify dominant lesions within the prostate. These RF are monitored longitudinally to analyze 

their correlation with the local control. 
NCT04219059 200 (R) mpMRI Evaluates if RF on primitive prostate lesions can describe histological characteristics, lymph node involvement and 

disease extension. 
NCT04343885 140 (P) PSMA/FDG-PET, CT, 

bone scans 
Prognostic and predictive value RF from PET, CT or bone scans after Lutetium-177 PSMA radionuclide treatment and/ 
or chemotherapy. 

 

Discussion 
PCa radiomics is an emerging research field with 

a high potential to offer non-invasive and longitudinal 
biomarkers for personalized medicine. In our review 
based on a qualitative synthesis of 77 studies, most 
papers address MRI based RFs, which is not 
surprising since MRI is the actual SoC for primary 
PCa staging. Other imaging modalities such as CT, 
PSMA-PET, TRUS and bone scan are less commonly 
used, but their application has improved in the recent 
years. This trend might proceed with the increased 
usage of PSMA PET/CT for staging of primary, 
recurrent, and metastasized PCa patients. One major 
focus of the included papers was PCa detection. 
Keeping in mind that image interpretation and 
segmentation is hampered by interobserver 
variability [6,137] implementation of RF might 
enhance diagnostic performance. Advances in 
automated segmentation of intraprostatic tumor 
lesions, for example by deep learning-based 
approaches such as convolutional neural networks, 
might overcome this limitation [138].  

The other focus is GS discrimination, reflecting 
the need for improvements in risk stratification. It is 
not surprising that most of the studies chose GS 

discrimination, since GS is the most established 
histologic biomarker. In clinical routine, the GS before 
primary PCa therapy is evaluated in tissue cores 
obtained by biopsy. However, due to intratumoral 
heterogeneity the GS in biopsy cores and 
prostatectomy specimen is discordant in 20-60% of the 
patients [139,140]. Nevertheless, the bioptic GS has a 
significant impact on clinical management as it 
defines the patient’s risk group influencing for 
example the duration of androgen deprivation 
therapy or the dose to the prostate during radiation 
therapy [141]. RF-based GS prediction might account 
for intratumoral heterogeneity leading to over- or 
underestimation of the GS in biopsy specimen. For 
instance, Zamboglou et al. demonstrated that a PSMA 
PET-derived RF (QSZHGE) may outperform biopsy 
mapping for GS 7 vs ≥8 discrimination [126]. Recently, 
Chu et al. examined the PSMA expression in a 
combined cohort of more than 18 000 radical 
prostatectomy specimens and observed a correlation 
between PSMA expression and the GS [142]. This 
finding provides a strong biological rationale for 
non-invasive GS prediction based on RF extracted 
from PSMA PET images.  

However, several studies proposed that a 
thorough analysis of PCa tissue characteristics (e.g. by 
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genomic analyses) might outperform GS for risk 
prediction [143]. Radiogenomics combines RF 
analysis with genomic information thus linking both 
research fields. Our literature search revealed five 
studies but none of the studies were internally or 
externally validated and thus excluded. Nevertheless, 
they should be mentioned, highlighting this modern 
and innovative approach [25,144-147]. A pilot study 
by Sun et al. showed weak correlations between RF 
and hypoxia gene expressions, providing an 
opportunity to assess the hypoxia status in PCa [146]. 
Two studies by McCann et al. and Switlyk et al. 
demonstrated an association between RF and the 
genetic marker phosphatase and tensin homolog 
[144,147]. Stoyanova et al. identified radiomic 
signatures which reflected genes that are over- and 
underexpressed in aggressive prostate cancer [25]. 
Additionally, another study with a small patient 
cohort by Kesch et al. suggests that RF signatures 
could distinguish between lesions of different 
aggressiveness [145]. 

Direct prediction of treatment outcome with RF 
is investigated in ongoing clinical trials especially. A 
possible explanation for this finding is the long 
follow-up time needed to provide reliable clinical 
information of treatment outcomes in PCa patients. 
Just a few manuscripts (n = 24) address extraprostatic 
extension (n = 6), BCR (n = 6), segmentation (n = 4), 
bone metastasis (n = 3), lymph node detection (n = 3) 
and radiotherapy toxicity (n = 2). Considering that 
most PCa patients are long-term survivors after 
treatment a reliable prediction of toxicity is 
warranted. Due to the lack of predictive models for 
toxicity prediction, we consider this field of major 
interest for future studies. Some of the excluded 
studies featured interesting concepts for the use of 
radiomics and treatment associated toxicity in PCa 
patients. Radiotherapy toxicity prediction was 
investigated for femoral head fractures [148] and 
urethral strictures after high-dose rate brachytherapy 
[149]. One paper used RF for response assessment of 
PCa bone lesions derived of and ADC maps [150]. 
Rossi et al. did not compute RF on imaging but on 
rectum and bladder 3D dose-volume histogram 
distributions. This add-on improved the prediction of 
late toxicities after radiotherapy [151]. These extensive 
fields of application demonstrate the great potential of 
radiomics and its clinical implementation from 
diagnosis to outcome and toxicity prediction in an era 
of big data and individualized medicine. 

Overall, most of the included studies presented 
good to high AUC values. However, these findings 
need to be considered diligently regarding 
publication bias and the variability observed in RF. As 
illustrated above the radiomic pipeline is a sequence 

of operations and each operation can be modified [31]. 
RF and models are sensitive to those modifications 
and consequently, investigations on RF variability, 
robustness and reproducibility are demanded [31].  

Texture features are increasingly sensitive to 
acquisition parameters with growing spatial 
resolution [152] as well as reconstruction algorithms 
[153]. Yang et al proposed a simulation framework to 
asses robustness and accuracy of radiomic textural 
features with different MRI acquisition parameters 
and reconstruction algorithms [153]. Recently Rai et al. 
developed a 3D printable phantom to measure 
repeatability and reproducibility of MRI-based 
radiomic features which could facilitate multi-center 
studies to harmonize image protocols and thereby 
tackling some of these challenges [160]. 

Multiple segmentations can reduce variability 
and bias in RF extraction of manually, 
semiautomatically or automatically segmented VOIs 
[154]. To increase robustness of segmentation manual 
methods should be avoided. In PET images, Bashir et 
al demonstrated that semiautomatic threshold-based 
methods yield superior interobserver reproducibility 
[155]. Additionally, CNN based segmentation 
methods showed good performance [156]. 

Isaakson et al investigated normalization 
techniques to enhance comparability across different 
subjects and visits [158]. Scalco et al. investigated 
different generally adopted image intensity 
normalization techniques for T2w-MRI images and 
demonstrated a relevant impact on reproducibility of 
RFs [154]. 

Schwier et al. investigated the variability of RF in 
MRI by using different filters, normalization, and 
image discretization techniques and observed that RF 
were sensitive to these pre-processing procedures. 
Hence, they recommended detailed reporting of the 
pre-processing steps and the use of open-source 
software [29]. Orlhac et al. reported that ComBat 
harmonization is efficient and enables MRI data 
pooling from different scanners and centers [155].  

Two studies investigated repeatability of 
MRI-derived RFs and concluded that repeatability of 
many RFs is moderate and that a set of reproducible 
image features is desirable [156, 157]. Delgadillo et al. 
investigated repeatability of RF derived from CBCTs 
and reported that only five radiomic features were 
repeatable in < 97% of the reconstruction and 
preprocessing methods [159]. Bologna et al. proposed 
an approach to assess RF stability without multiple 
acquisitions and segmentations that could be used for 
preliminary RF selection. In addition, the authors 
advocated that RF derived of ADC maps behave 
differently based on the region extracted e.g. RF 
derived from head and neck tumors are less stable 
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than those derived of sarcomas [161]. Pfaehler et al. 
recommends to investigate the repeatability of RF for 
every tumor type as well and for every PET-Tracer 
[30]. 

These papers demonstrate the fragility of RFs 
and the need of reproducible RF sets in order to 
enable a broad clinical application. 

Consequentially, more research on prostate MRI 
and PSMA-PET RF robustness should be performed. 
Other approaches to tackle RF variability is the 
standardization of RF definitions and calculations 
which IBSI tries to promote [28]. The radiomics 
quality score, a tool to evaluate methodologic quality 
of radiomic studies, could also be used [32]. With 
higher quality, evidence on RF robustness like the 
recent metanalysis of Zwanenburg et al. pitfalls could 
be uncovered and described [33]. These 
methodological aspects seem all the more important, 
since only a few studies identified in this review are 
explicitly IBSI compliant and future work needs to 
focus on this issue. We furthermore encountered 
problems to validate the studies IBSI compliance, 
since most studies don’t give sufficient information 
about the used software and calculations of RF. We 
therefore plead for uniform and detailed 
specifications. 

Nevertheless, validation is pivotal considering 
the variability of RF. 35 of 238 articles were excluded 
due to missing validation. In internal validation 
different types might be utilized like the 
aforementioned ML algorithms, k-fold CV or 
leave-one-out CV, as well as independent datasets for 
model development and validation. A proper 
methodology and the separation of training and 
validation dataset is demanded at all times [157]. Our 
synthesis detected 64 articles with internal validation 
(k-fold CV n = 36; leave-one-out CV n = 11, two 
cohorts n = 29). 14 studies used more than one 
validation type. External validation is the gold 
standard and was performed in eight of the identified 
articles. Only one manuscript reported about external 
validation of an already published model [108]. These 
findings put ever more emphasis on the validation of 
radiomics models especially externally and from 
already published models [58]. 

Many studies used ML for model building and 
verification. ML and deep learning as a subfield are 
emerging and harbor great potential [48]. Li et al. used 
deep learning in combination with “hand-crafted” 
features and has successfully applied it in 
differentiating unilateral breast cancer from low-risk 
patients [46]. Segmentation of PCa lesions by deep 
learning networks is explored without “hand-crafted” 
features [158]. 

This review focusses on the clinical aspects of RF 
demonstrating its great potential to affect 
management of PCa. However, some technical 
aspects have not been further investigated: 
information on the used algorithms for RF extraction 
or ML approaches were not provided. Additionally, 
we did not state whether the published models or the 
parameters are publicly available.  

In conclusion, most research in PCa radiomics 
focuses on PCa detection and GS discrimination. MRI 
as SoC is the most used imaging modality for RF 
computation for now, but PSMA-PET is gaining 
evidence in a wide variety of clinical settings. Most of 
the results suggest good to high performance of 
radiomics models but should be considered carefully 
due to RF variability. Further research is demanded 
on RF sensitivity and robustness especially on RF 
extracted of prostate MRI and PSMA-PET. 
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