Supplemental Figure Legends

Figure S1. Schematic of treatment and analysis pipeline for tumor-infiltrating B cells (related to Figure 1).

(A) Schematic of MMTV-PyMT tumor implantation, treatment, and data analysis in mice.

(B) Schematic of analysis flowchart for tumor-infiltrating B cells. DGE: differential gene expression

(C) Dot plot showing the expression of *Cd40* in B cells, *Cd40lg* in conventional CD4T (CD4Tconv) cells, and *Cd274*(PD-L1) in B cells.

Figure S2. Differential gene expression and pathway enrichment analysis for tumorinfiltrating B cells (related to Figure 2).

(A) Dot plot showing KEGG enrichment analysis using ORA method for both upregulated and downregulated genes from comparisons of PTT vs CTRL, GC vs CTRL and PTT+GC vs CTRL.

(B) Dot plot showing Reactome enrichment analysis using ORA method for both upregulated and downregulated genes from comparisons of PTT vs CTRL, GC vs CTRL and PTT+GC vs CTRL.

(C) Network plot of the KEGG enrichment analysis using GSEA method for DEGs from GC vs CTRL.

(D) Network plot of the KEGG enrichment analysis using GSEA method for DEGs from PTT+GC vs CTRL.

(E) Network plot of the Reactome enrichment analysis using GSEA method for DEGs from GC vs CTRL.

(F) Network plot of the Reactome enrichment analysis using GSEA method for DEGs from PTT+GC vs CTRL.

Figure S3. Overlapping of treatment-upregulated genes (related to Figure 3).

(A) Dot plot for MsigDB enrichment analysis of genes in Set_1 to Set_4 (enrichment of Set_3 not found).

(B) Dot plot for KEGG enrichment analysis of genes in Set_1 to Set_4 (enrichment of Set_3 not found).

(C) Dot plot for Reactome enrichment analysis of genes in Set_1 to Set_4 (enrichment of Set_3 and Set_4 not found).

(D) Dot plot of the expression of PTT+GC-specific upregulated genes in Set_4. These genes are involved in pathways of TLR, APC, IFN, cell survival, favorable prognosis, and metabolism (Table S1).

Figure S4. Overlapping of treatment-downregulated genes (related to Figure 4).

(A) Dot plot for MsigDB enrichment analysis of genes in Set_1 to Set_4.

(B) Dot plot for KEGG enrichment analysis of genes in Set_1 to Set_4.

(C) Dot plot for Reactome enrichment analysis of genes in Set_1 to Set_4 (enrichment of Set_3 not found).

(D) Dot plot of the expression of PTT+GC-specific downregulated genes (Set_4). These genes are involved in pathways of negative regulation of APC, IFN, cell death and prognosis (Table S1).

Figure S5. Identification and enrichment analysis of differentially expressed genes in B cells from comparing activated cell states (states 4 and 5) with inactivated (state 1) (related to Figure 5).

(A) Volcano plot for both upregulated and downregulated differentially expressed genes (DEGs) from comparison of activated cell states (states 4 and 5) with inactivated state (state 1). Top 10 upregulated and downregulated genes are labeled.

(B) Dot plot of the GO enrichment analysis for DEGs using ORA method.

(C) Dot plot of the KEGG enrichment analysis for DEGs using ORA method.

(D) Dot plot of the Reactome enrichment analysis for DEGs using ORA method.

(E) Network plot of MsigDB hallmark gene sets enrichment analysis for DEGs using GSEA method.

(F) Network plot of KEGG enrichment analysis for DEGs using GSEA method.

(G) Network plot of Reactome enrichment analysis for DEGs using GSEA method.

Figure S6. Association of PTT+GC vs GC-derived downregulated genes with breast cancer patient survival (related to Figure 6).

(A) Flowchart for analyzing overall survival of breast cancer patient using GSVA method.

(B) Kaplan–Meier plots showing the insignificant difference in survival time (days) between breast cancer patients in groups with "high" and "low" expression of PTT+GC vs GC-derived downregulated genes. Patient groups were stratified by the median of enrichment score calculated by GSVA. Log-rank method was used for statistical analysis.

 Table S1. Collection of reported functions for PTT+GC specifically upregulated and downregulated genes.

Figure S1.

Figure S2.

D

Figure S3.

D

Percent Expressed

Average Expression

25

50

75

100

1.0

0.5

0.0 -0.5

-1.0

GeneRatio

• 0.10

• 0.15

• 0.20

p.adjust

0.30

: 0.25

Α

В

Reactome analysis (ORA)

G

KEGG analysis (ORA)

Α

300

-log10(adj.p-value)

С

Ε

Cnbp

Hspd1

Odc1

Cc

Hmab2

KEGG analysis (GSEA)

F

Figure S5.

Α

6000

65

6000

Time

Figure S6.

Function	Gene	Reference	Description
Toll-like receptors cascades	Btk	https://dx.doi.org/10.3389%2 Ffimmu.2017.01986	Btk mediates pre-BCR or BCR downstream signals in B cells. It activates the MAPK cascade and realizes its biological functions by regulating the activity of transcription factors such as NF-KB.
	Casp8	https://dx.doi.org/10.1371%2 Fjournal.ppat.1005910	Caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis.
	Ctss	https://doi.org/10.1016/j.ccell .2020.03.016	CTSS regulates antigen processing and communication with CD4 + Tfh cells
	Ly86/MD-1	https://doi.org/10.1182/blood. v99.5.1699	Lymphocyte antigen 86 may cooperate with CD180 and TLR4 to mediate the innate immune response to bacterial lipopolysaccharide (LPS) and cytokine production.
	Mef2c	https://dx.doi.org/10.1038%2 Fni.1609	We have identified Mef2c as a transcriptional effector of BCR signaling required for B cell activation and normal antibody responses.
	S100a9	https://doi.org/10.4049/jimmu nol.1402301	Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE.
Antigen processing (- cross)/and presentation pathways	Psmb10	https://doi.org/10.1016/j.redo x.2018.02.022	LMP10 is a positive regulator of NF-kB signaling.
	Psme2 (PA28)	https://doi.org/10.1016/s0161- 5890(02)00099-8	PA28 selectively up-regulates the presentation of viral MHC class I epitopes.
	Tapbp (Tapasin)	https://doi.org/10.1002/immu. 200390029	Tapasin is not only required for stabilization of TAP but also for optimization of the spectrum of bound peptides
Interferon signaling	Ifit3	https://doi.org/10.4049/jimmu nol.1100963 https://doi.org/10.3380/fmolb	Our study characterizes IFIT3 as an important modulator in innate immunity.
		.2019.00148	interferon-stimulated genes (ISGs).
	Ifitm3	https://doi.org/10.1038/s4158 6-020-2884-6	IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen.
	Isg15	https://doi.org/10.18632/onco target.3372	We conclude that free ISG15 may have antitumor and immunoregulatory function in vivo.
	Xafl	https://doi.org/10.1038/s4141 9-018-0867-4	XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis.

	Ddx58 (RIG-	https://doi.org/10.1038/ncom	RIG-I senses viral RNA and initiates an effective innate immune response for type I
	1)	<u>ms15138</u>	interferon production.
	Nedd8	https://doi.org/10.1186/s1297	We present here the first evidence that the neuroinflammatory mediator IL-1beta
	Neudo	<u>4-019-1669-z</u>	facilitates ubiquitin ligase parkin/NEDD8 interactions.
	Rnf213	https://dx.doi.org/10.1038%2	Our data illustrate that RNF213 plays unique roles in endothelial cells for proper gene
	KIII215	<u>Fsrep13191</u>	expressions in response to inflammatory signals from environments.
	Tmsh4x	https://doi.org/10.1016/j.imbi	Tbeta4 is regulated by IL-18 and is involved in IL-18-enhanced IFN-gamma secretion in
	1111304X	<u>o.2011.04.002</u>	NK cells.
	Trim12c	https://doi.org/10.4049/jimmu nol.1402064	Trim12c stimulates type I IFN and NF-KB pathways.
Cell survival	Dvnll1	https://dx.doi.org/10.1371%2	Dynein light chain regulates adaptive and innate B cell development by distinctive
	Dymm	Fjournal.pgen.1007010	genetic mechanisms.
		http://www.ncbi.nlm.nih.gov/	Eef1d is a partner for CD48, a component of co-signaling receptors expressed on the
	Eef1d	pmc/articles/pmc6309335/	cell membrane of antigen presenting cells (APCs).
		*	
	Tnfaip8	https://doi.org/10.1002/mc.22	TNFAIP8 regulates Hippo pathway through interacting with LATS1 to promote cell
	1	<u>740</u>	proliferation.
	Pecam1	https://doi.org/10.1182/blood-	Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-
	(CD31)	2002-01-0027	cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune
			disease.
F		1.4	DDU DD I 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Favorable	Bin1	<u>https://doi.org/10.1038/onc.2</u>	BINI reverses PD-L1-mediated immune escape by inactivating the c-MIYC and ECEP (MARK signaling nethylays in non-small call lying concern
Prognosis		017.217	EOFR/MAPK signaling pathways in non-small cell lung cancer.
	Erro 20	https://doi.org/10.1038/labinv	Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal-epithelial
	EIP29	<u>est.2009.87</u>	transition and suppresses xenograft tumor growth of invasive breast cancer cells.
			Data show that high sernin B1 protein (SERPINB1) gene expression was associated
	Serpinb1a	https://doi.org/10.18632/onco	with favorable tumor response and prolonged survival under cisplatin-based
	Serpinora	target.6956	chemotherapy.

Function	Gene	Reference	Description
repression of antigen- presenting	B3gnt5	https://dx.doi.org/10.1073%2Fpn as.0914298107	B3gnt5 KO B cells were more sensitive to the induction of intracellular phosphorylation signals on BCR stimulation and proliferated more vigorously than WT B cells.
		https://doi.org/10.1111/cns.1343 9	Patients with high B3GNT5 expression had a short overall survival.
	Emp3	https://dx.doi.org/10.1097%2FM D.000000000009538	High EMP3 expression might be an independent indicator of unfavorable OS in GBM.
	Hspala	https://doi.org/10.1007/978-94- 007-5943-5_5	Intracellular HSP70 protects the cell and restricts cytokine production
repression of IFN	Dusp4	https://dx.doi.org/10.1073%2Fpn as.1109797109	Increased DUSP4 expression in activated T cells in the elderly in part accounts for defective adaptive immune responses.
	Dusp5	https://dx.doi.org/10.3390%2Fij ms20112710	Dusp4 and Dusp5 inhibits MAPK and therefore restrict cytokine expression.
	Nfe2l2(Nrf2)	https://dx.doi.org/10.1165%2Frc mb.2010-0321OC	Nrf2 knockout enhances the inflammation and T lymphocyte function.
regulation of cell fate	Bbc3 (PUMA)	https://doi.org/10.1182/blood- 2011-04-347096	Puma is a major regulator of memory B lymphocyte survival and therefore a key molecule in the control of the immune response.
		https://doi.org/10.1007/s12094- 013-1010-8	High expression of PUMA is associated with lymph node metastasis and invasion in gallbladder adenocarcinoma.
	Id2	https://doi.org/10.1073/pnas.080 2550106	Inhibition of id2 is required for B cell lineage.
unfavorable prognosis	Aggfl	https://doi.org/10.12659/msm.90 3248	High expression of AGGF1 predicts poor prognosis in gastric cancer patients.
	Calr	https://doi.org/10.1155/2019/879 2640	Plasma calreticulin level was positively correlated with the severity of sepsis and predicted patient mortality.
	Cct2	https://doi.org/10.1038/s41598- 019-43556-1	Overexpression of other four HSPs – HSP90AA1, CCT1, CCT2, CCT6A resulted in unfavorable prognosis for breast cancer patients.
		https://doi.org/10.1186/1477- 7819-11-143	positive expression of CCT2 and PDIA3 was negatively correlated with poor postoperative patient survival and positively correlated with high mortality.
	Chd1	https://doi.org/10.1007/s10620- 017-4641-8	Increased CHD1L protein expression was significantly associated with poor overall survival.

Eif5b	https://doi.org/10.1038/s43018- 020-0056-0	eIF5B overexpression, which is frequent in lung adenocarcinomas and associated with poor prognosis, is sufficient to induce PD-L1.
Pmepa1(TME	https://doi.org/10.1111/cas.1235	TMEPAI is constitutively and highly expressed in many types of cancer and is
PAI)	<u>5</u>	associated with poor prognosis.
Rcc2	https://doi.org/10.1158/1078- 0432.ccr-16-2909	Patients with LUAD with higher expression of RCC2 had shorter overall survival.
Serbp1	https://doi.org/10.1186/s13059- 020-02115-y	High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy
Skp1a	https://doi.org/10.1158/1078- 0432.ccr-18-3631	IHC analysis revealed that cytoplasmic expression of SKP1 was significantly associated with SFN positivity, tumor malignancy, and poorer patient outcome.
	https://doi.org/10.18632/oncotar get.5547	Skp1 was overexpressed in 36/64 (56.3%) of non-small cell lung cancers, and elevated Skp1 was associated with poor prognosis.
Slc9a3r1 (NHE- RF1/EBP50)	https://doi.org/10.18632/oncotar get.8751	NHERF1 was upregulated in high grades compared with low grades. Increased NHERF1 expression was correlated with poor prognosis and poor survival.
Vim (Vimentin)	https://doi.org/10.1245/s10434- 019-07891-x	Higher vimentin expression ($p = 0.018$) was associated with significantly shorter overall survival in PDAC patients.