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Figure S1 

 

 

 

Figure S1. Variability in EGFR expression levels in different cancer types. EGFR 

expression pattern in 5 tumor types is presented. EGFR protein (A) and EGFR phospho-protein 

expression levels (B) are compared between GBM, HNSCC, LUAD, LUSC and SKCM cancer 

types and within each type. (C) Percentage of HNSCC and GBM patients that harbor relatively 

low EGFR levels in comparison with the median values in the dataset. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2 

 

 

 



  





 

Figure S2.  19 unbalanced subnetworks, as identified by surprisal analysis, found to be 

active in 1038 tumors. (A) 19 unbalanced processes (subnetworks) characterizing 1038 

patients are shown. See Figure S3 demonstrating how the number of processes was determined. 

Proteins with negative Giα values are labeled in blue and proteins with positive Giα values in 

red, to distinguish between correlated and anti-correlated proteins. Circle sizes, denoting 

participating proteins in the process, are defined by Giα values. The procedure calculating 

induction or reduction in expression levels includes calculation of the product, ( )G ki  
, which  

denotes a deviation in expression levels from the reference state due to process Positive 

values of ( )G ki  
 mean induction relative to the steady state, and negative values mean 

reduction. For more details seereferences [1–3]. (B) Proteins must have a significant Giα 

(which represent the degree of participation of every protein i in the unbalanced process α, see 

Methods for more details) values to be included in the unbalanced process α. The proteins that 

take part in the different unbalanced processes were identified as follows: for every unbalanced 

process α, Giα values were sorted according to their size, and only proteins (i) with significant 

Giα values were considered to participate in the unbalanced process α. This is exemplified for 

the process α = 1. In the figure sorted values of Gi1 are shown. The gray box represents 

threshold values. Proteins with Gi1 > 0.1 or Gi1 < -0. 1 (which form the top and bottom "tails" 

of the distribution) were considered to participate the most in the unbalanced process α = 1. 

These proteins were used to build a functional subnetwork using STRING database (showed in 

A). 



Figure S3 

 

Figure S3. 19 unbalanced processes reproduce the experimental data. (A) R2 values, 

reflecting the correlation between the experimental expression data and the theoretical 

calculations, were calculated in order to determine how many processes are required in order 

to reproduce the experimental data. As we add more unbalanced processes we expect to get 

higher correlation between the experimental data and the theoretical calculation, reaching the 

highest level of correlation when the experimental data is reproduced by the theoretical fitting. 

When the R2 values reach a plateau, that means that we do not add real processes, but mainly 

noise.  Correlation plots between theoretical calculations and the experimental data are shown 

for 30 selected patients, harboring different types of cancer. R2 was calculated by plotting the 

natural logarithm of the experimental data (LnXi) vs  ( )G ki     for  = 1-30 (denoted as 



Num. of unbalanced processes in the plot). Gi
 denotes weight of protein i in a process . 

( )k
 denotes amplitude of a process  in each patient k. Product, ( )G ki  

,  denotes a deviation 

in expression levels from the reference state due to process . ( )G ki    is the sum of all the 

processes in which each protein participates ( For more details see [1–3]). The plot reaches a 

plateau after the 19th process. This indicates that after the 19th process the data includes mainly 

noise. (B) Unbalanced processes remained the same when either the entire dataset or a subset 

of the dataset are used for the analysis. The weights of the proteins in the significant unbalanced 

processes ( = 1-19) were found to be similar when either the entire dataset (original (ori) 

dataset, 1038 patients) or only half the population of patients from each dataset (521 patients) 

were analyzed as indicated by the high correlation of the scatter plots. The correlation 

coefficient R is above 0.9 for the processes 0,1,2,3,4,5,and 9 and is above 0.65 for the processes 

6,7,8,10,11,12,13 and 17. (C) The correlation coefficient R was significantly lower when the 

unbalanced processes 21, 23 were compared indicating that those processes represent mainly 

noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4 

 

 



 



 



 

 

Figure S4.  20 unbalanced subnetworks, as identified by surprisal analysis, found to be 

active in 162 cancer cell lines. (A) 20 unbalanced processes characterizing 162 cancer cell 

lines. See Figure S4C demonstrating how the number of processes was determined. Proteins 

with negative Giα values are labeled in blue and proteins with positive Giα values in red, to 

distinguish between correlated and anti-correlated proteins.  20 unbalanced processes reproduce 

the experimental data. (B) Proteins must have a significant Giα (which represent the degree of 



participation of every protein i in the unbalanced process α, see Methods for more details) 

values to be included in the unbalanced process α. The proteins that take part in the different 

unbalanced processes were identified as follows: For every unbalanced process α, Giα values 

were sorted according to their size, and only proteins with significant Giα values were 

considered to participate in the unbalanced process α. This is exemplified for the process α = 1. 

In the figure sorted values of Gi1 are shown. The gray box represents threshold values. Proteins 

with Gi1 > 0.15 or Gi1 < -0. 15 (which form the top and bottom "tails" of the distribution) were 

considered to participate the most in the unbalanced process α = 1. These proteins were used to 

build a functional subnetwork using STRING database (showed in A). (C) R2 values for 14 

selected cell lines, are shown as an example. The R2 was calculated by plotting the natural 

logarithm of the experimental data (LnXi) vs  ( )G ki     for  = 1-30. (see Figure legend S3 

for more details).  As we add more unbalanced processes, we expect to get higher correlation 

between the experimental data and the theoretical calculation ( ( )G ki   ), reaching the 

highest level of correlation when the experimental data is reproduced by the theoretical fitting. 

The plot reaches a plateau after the 20th process. This indicates that after the 20th process the 

data includes mainly noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5 

 
Figure S5. 22 unbalanced processes found to be active in 15 patient-derived HNSCC 

tissues treated with anti-EGFR monotherapy (A) R2 values were calculated for all patients 

by plotting the natural logarithm of the experimental data against the sum of the gene expression 

level alterations due to unbalanced processes for different values of α. The figure shows that 

the plots for all patients reach a plateau after 22 processes, suggesting that the 22 unbalanced 

processes are significant, and the rest of the processes represent random noise in the samples. 

(B) The transcripts that take part in the different unbalanced processes were identified as 

follows: For every unbalanced process α, Giα values were sorted according to their size, and 

only transcripts with significant Giα values were considered to participate in the unbalanced 

process α. This is exemplified for the process α = 1 in the figure. Shown are sorted values of 

Gi1, which represent the degree of participation of every transcript i in the unbalanced process 

α = 1. The gray box represents threshold values. Transcripts with Gi1 > 0.015 or Gi1 < -0.015 

(which are not contained in the gray box and form the top and bottom "tails" of the distribution) 

were considered to participate the most in the unbalanced process α = 1. These transcripts were 

used to find a biological meaning of each unbalanced processes using David database.  
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