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Supplemental Materials

Supplemental Methods:

Autophagy detection by LC3B-Mitotracker co-staining

Briefly, cardiomyocytes were transfected with adenovirus loaded EGFP-LC3B, after various
treatment, cells were co-stained with MitoTracker™ Deep Red FM (M22426, Invitrogen,
Thermo Fisher Scientific Inc.), then cells were fixed and imaged by confocal microscope, and

analyzed using the Zeiss colocalization module in the ZEN software.
Immunofluorescence staining

After cardiomyocytes were subjected to various treatments, they were rinsed with PBS once
and fixed for 15 min with 4% paraformaldehyde in PBS. The slides were washed twice with
PBS and cells were permeabilized with 0.02% Triton X-100 for 10 min. After rinsing twice
with PBS, the slides were incubated with primary antibody of TFEB in a 1:100 dilution at
4°C overnight. Next day, slices were incubated with secondary antibodies for 40 min at room
temperature in the dark, washed three times with PBS followed by DAPI co-staining. Slides
were mounted on glass coverslips and imaged by fluorescence microscope.

Cell area measurement

Wheat germ agglutinin (WGA) staining was employed for cardiac tissue slices for detection
of cardiomyocytes size. WGA dye was diluted in water firstly, and slices were incubated with
WGA work solution at 37°C for 30 min. Then, DAPI was co-stained for 5 min, and slices

were observed and imaged by fluorescence microscope.
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Figure S1. Mitochondrial Ca2* channel protein, MCU was upregulated due to increased CaMKIl activity under Sor stimulation. (A-C)
Representative blots and analysis of proteins of interest related to mitochondrial Ca2* entry and export. (D) The mRNA levels of MCU with Sor
stimulation. (E, F) Western blot imaging and analysis of necroptosis under Sor and MCU siRNA stimulation. (G-I) The mRNA and protein levels of
MCU with or without Sor and KN93 intervention. (J, K) ATP content and cell viability were detected under Sor stimulation. Sor treatment (20 uM)
for 24 h was employed for Figure S1."P < 0.05 vs DMSO or si-NC. P < 0.01 vs DMSO or si-NC. #P < 0.05 vs Sor or Sor+si-NC. #P < 0.01 vs
Sor or Sor+si-NC. N = 3.
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Figure S2. Silencing of FUNDC1 and silencing of MFN2 repressed Sor-induced excess Ca?* entry. (A, B) Rhod2 and MitoTracker co-
staining was performed to detect Ca2* change with si-FUNDC1 treatment. Quantitative analysis of Pearson’s coefficient was performed. (C, D)
Rhod2 and MitoTracker co-staining was performed to detect Ca2* change with si-MFN2 treatment. Quantitative analysis of Pearson’s coefficient
was performed. Scale bar: 10 ym. “P < 0.01 vs si-NC. #P < 0.01 vs Sor+si-NC. N = 4.
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Figure S3. MFN2 repressed TSZ-induced necroptosis in cardiomyocytes. (A, B) TSZ-induced cell necroptosis was evaluated by flow
cytometry. (C, D) Representative blots and quantification of the necroptosis pathway with TSZ applied under a concentration gradient. (E, F)
Representative blots and quantification of the regulation of the necroptosis pathway mediated by MFN2 overexpression, under TSZ stimulation.
(G, H) The effect of the down-regulation of MFN2 in the regulation of TSZ-induced necroptosis. 1X TSZ was applied for Figure S3E-H. "P <
0.05 vs DMSO or si-NC or pcDNA3.1. “P < 0.01 vs DMSO or si-NC or pcDNA3.1. #P < 0.05 vs Sor+si-NC or pcDNA3.1. #P < 0.01 vs Sor+si-
NC or pcDNA3.1. N = 3.
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Figure S4. Sor induced CaMKII activation and MAM overproduction in vivo. (A, B) Representative blots and quantification of proteins of
interest in heart under Sor gavage at 40mg/kg/d for 8 weeks. (C) Immunohistochemical staining of MAM-derived protein. (D, E) Representative
blots and quantification of interest proteins in cardiac homogenate. (F) Immunohistochemical staining of MFN2 in cardiac slices. *P < 0.05 vs
Saline. "P < 0.01 vs Saline. N = 3.
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Figure S5. NEC-1 rescued Sor-mediated cardiac dysfunction in vivo. (A-D) Echocardiography of mice given NEC-1 subcutaneously at

1.65 mg/kg/d for 8 weeks. Analysis was performed by Vevo Strain software, with parameters including GLS%, cardiac longitudinal and
radial strain, EF%, FS%. P < 0.01 vs Saline. #P < 0.05 vs Sor. N = 5.
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Figure S6. The global overexpression of MFN2 rescued Sorafenib-induced cardiac dysfunction in vivo by restraining excessive RIP3/MLKL
pathway activation. (A-D) MFN2 overexpression in vivo reversed Sor-mediated cardiac dysfunction after 8 weeks Sor gavage, as measured by
echocardiography and analyzed by Vevo Strain software, with parameters including GLS%, EF%, FS%, and Strain. N=6-10. (E-F) WGA staining
showed that MFN2 reversed Sor-induced cardiomyocyte hypertrophy. Scale bar: 20 um. (G-1) MFN2 overexpression in vivo reversed myocardial
necroptosis and MAM expression after 8 weeks Sor gavage, as detected in cardiac tissue homogenates. N = 3.



Sor+AAV-CMV-GFP

%ER adjacent to
mitochondria

Sor+AAV-CMV-MFN2

(J, K) The morphology of mito-ER contacts with Sor intervention was imaged by TEM. Arrows denote ER. M, mitochondria. Sor at 40mg/kg/d for 8
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Figure S7. Overexpression of AAV-TNT-MFN2 in vivo. (A, B) Morphology of cardiomyocytes collected by cardiac perfusion after 8 weeks of
Sor application. (C) Successful delivery of AAV-GFP-TNT, as shown by imaging. *P < 0.05 vs AAV-TNT-GFP. N = 4.
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Figure S8. MFN2 was upregulated in Huh7 cells and regulated hepatoma cell proliferation and viability. (A, B) Representative protein
expression and quantification of MFN2 level and necroptosis in Huh7 cells. (C) MFN2 regulated cell viability in Huh7 cells under sor
stimulation, as detected by CCK8 assays. (D-G) The effect of the overexpression and down-regulation of MFN2 on the regulation of hepatoma
cell proliferation and necroptosis. "P < 0.05 vs DMSO or si-NC. “P < 0.01 vs DMSO or si-NC or pcDNA3.1. #P < 0.05 vs Sor+si-NC. #P < 0.01

vs Sor+si-NC or Sor+pc3.1. N = 3.
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Figure S9. P53 upregulated MFN2 at the transcriptional level in Huh7 cells stimulated with Sor. (A) Pathway analysis of AC16 and Huh7 cell
lines under Sor stimulation. (B, C) Representative blots and quantification of p53 and MFN2 in AC16 cells. (D, E) Representative blots and
quantification of P53 and MFN2 in Huh7 cells. (F) Relative mRNA levels of P53 and MFN2 in Huh7 cells under Sor application. (G-I)
Representative blots and quantification and relative mRNA levels of P53 and MFN2 under si-P53 application in Huh7 cells. *P < 0.05 vs.vs DMSO

orsi-NC. "P <0.01 vs DMSO or si-NC. N = 3.



Table S1

primers in our study

Gene Forward primers Reverse primers
m-Camk2d GATGGGGTAAAGGAGTCAACTG CATTGTGGCATACAGCGACA
m-Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
m-Scarb2 AGAAGGCGGTAGACCAGAC GTAGGGGGATTTCTCCTTGGA
m-Lamp2 TGTATTTGGCTAATGGCTCAGC TATGGGCACAAGGAAGTTGTC
m-Ctsd GCTTCCGGTCTTTGACAACCT CACCAAGCATTAGTTCTCCTCC
m-Ctsb TCCTTGATCCTTCTTTCTTGCC ACAGTGCCACACAGCTTCTTC
m-Fundc1 CCCCCTCCCCAAGACTATGAA CCACCCATTACAATCTGAGTAGC
m-Pacs2 GCAGGAAGCGGTACAAGAACA CTGGACAGGGAGACGATCC
m-Mfn2 AGAACTGGACCCGGTTACCA CACTTCGCTGATACCCCTGA
m-Mcu GAGCCGCATATTGCAGTACG CGAGAGGGTAGCCTCACAGAT
Table S2

Primary antibodies involved in our study

Antibodies Company Catalog number
MFN2 Cell Signaling Technology #9482
Phospho-MLKL-T357/S358/S360  ABclonal AP0949
MLKL ABclonal A5579
Phospho-RIP3 (Thr231/Ser232) Cell Signaling Technology 91702s
RIP3 ABclonal A5431
CaMKII® Abcam ab181052
oxidized-CaMKIl (Met281/282) Sigma 07-1387
Phospho-CaMKII alpha (Thr286) Thermo Fisher MA1-047
PACS2 Proteintech 19508-1-AP
FUNDC1 ABclonal A16318
GAPDH Cell Signaling Technology #5174
MCU Cell Signaling Technology #14997
NCLX Abcam ab83551
Phospho-mTOR (Ser2448) Cell Signaling Technology #5536
mTOR Cell Signaling Technology #2983
PARKIN Cell Signaling Technology #2132
PINK1 Abcam ab216144
LC3B Cell Signaling Technology #43566
P62 Cell Signaling Technology #48768
TFEB Cell Signaling Technology #32361
Phospho-TFEB (Ser211) Cell Signaling Technology #37681
TOM20 Cell Signaling Technology #42406
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