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Figure S1. Depletion of residual BM-Mφ impedes LSKs regeneration after 7.5 3 

Gy irradiation. (A) Representative flow cytometry analysis of LSKs in the femur 4 

after 7.5 Gy irradiation with PBS-lip or Clo-lip injection. (B-C) Number of LSKs per 5 

femur at 3 days (B) and 7 days (C) after 7.5 Gy irradiation with PBS-lip or Clo-lip 6 

injection (n = 4 mice, t-test). * P < 0.05; ns, not significant. 7 
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Figure S2. Effect of BM-Mφ depletion by Clo-lip on sinusoids at steady state. (A) 2 

Representative flow cytometry analysis of bone marrow sinusoidal endothelial cells 3 

(SECs). (B) In situ immunofluorescence images showing bone marrow cells that have 4 

engulfed DiI-labeling liposomes (DiI-lip) (red), bone marrow sinusoids (green, 5 

CD105), and BM-Mφ (green, F4/80). The nucleus was stained with DAPI (blue). 6 

Scale bar, 50 μm. (C) Frequency of BM-Mφ in BMNCs and number of BM-Mφ per 7 

femur. (D) In situ immunofluorescence images showing bone marrow sinusoids 8 

(green, CD105) after 1 day with Clo-lip or PBS-lip treatment under non-irradiation 9 

conditions. (E) Frequency of SECs in BMNCs and number of SECs per femur, (F) 10 

frequency of CD31+ECs in BMNCs and number of CD31+ECs per femur, (G) 11 

frequency of CD105+ stromal cells in BMNCs, and the number of CD105+ stromal 12 

cells per femur analyzed by flow cytometry at 1 day after Clo-lip or PBS-lip injection 13 

(n = 4–6 mice, t-test). Data were shown as mean ± SD. **P < 0.01; ns, not significant. 14 



4 
 

4 
 

 1 

Figure S3. Piezo1 expression in classical M1 and M2 activation in BMDMs. 2 

BMDMs were treated with 50 ng/mL LPS and 20 ng/mL IFNγ or 100 ng/mL IL-4 for 3 

6 h in vitro. (A) FPKM of Prizo1 in non-activated BMDMs (Ctrl), M1 and M2 4 

BMDMs (ref: GES113836) (n = 2 independent experiments, Tukey test). (B) RT-PCR 5 

analysis of Piezo1 mRNA level in BMDMs after activation or not (n = 3 independent 6 

experiments, Tukey test). Data were shown as mean ± SD. ns, not significant. 7 
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Figure. S4 Phagocytosis of irradiation-induced apoptotic bone marrow cells 3 

(BMs) by BMDMs in vitro. (A) Diagram showing phagocytosis of 4 

irradiation-induced apoptotic BMs by BMDMs in vitro. (B) Representative 5 

immunofluorescence images showing BMDMs that have engulfed DiI-labeling 6 

irradiation-induced apoptotic BMs (red). Scale bar, 50 μm. 7 
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Figure. S5 Direct effects of irradiation on BMDMs activation. (A) RT-PCR 2 

analysis of CD206 (M2-type Mφ maker) mRNA levels in BMDMs 24 h after 3 

irradiation (n = 3 independent experiments, t-test). (B) Representative 4 

immunofluorescence images showing expression of CD206 in BMDMs at 24 h after 5 

irradiation. (C) RT-PCR analysis of iNOS (M1-type Mφ maker) in BMDMs 24 h after 6 

irradiation (n = 3 independent experiments, t-test). (D) Representative 7 

immunofluorescence images showing expression of iNOS in BMDMs at 24 h after 8 

irradiation. Scale bar, 50 μm. Data were shown as mean ± SD. ns, not significant 9 

(t-test). 10 
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Figure S6. The quantitative analysis of the relative protein levels of Western 3 

blots in Figure 7. Protein expression was quantified by densitometry and normalized 4 

to GAPDH. (A) The quantitative analysis of HIF-1α protein level in Fig Figure 7B. 5 

(B-C) The quantitative analysis of NFATc1 and NFATc3 protein levels in Figure 7E. 6 

(D) The quantitative analysis of HIF-1α protein level in Figure 7F. (E-G) The 7 

quantitative analysis of HIF-1α, NFATc1, and NFATc3 protein levels in Figure 7I. n = 8 

3 independent experiments, Tukey test. Data were shown as mean ± SD.*P < 0.05; 9 

*P < 0.01. 10 
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Figure. S7 The roles of ERK, AKT, and NFATs in Yoda1 induced HIF-1α 2 

accumulation. (A) Western blot analysis of HIF-1α, NFATC1, p-AKT, AKT, 3 

p-ERK1/2, ERK, and GAPDH in BMDMs pretreated with CsA or SCH for 30 min 4 

before 24 h Yoda1 (5 μM) treatment. Blots are representative of three independent 5 

experiments. (B) Expression analysis of NFATs in BM-Mφ from mice after 5 Gy 6 

irradiation (IR) or non-irradiation (Non) (n = 3 mice). Data were shown as mean ± SD. 7 

FPKM: fragments per kilobase million. 8 
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Figure S8. The activation of calcineurin/NFAT/HIF-1α signaling is responsible 2 

for Piezo1-mediated VEGF-A upexpression in RAW264.7 cells. (A) Western blot 3 

analysis of HIF-1α, NFATC1, and NFATC3 in RAW264.7 cells pretreated with CsA 4 

for 30 min before 24 h Yoda1 (5 μM) treatment. Blots are representative of three 5 

independent experiments. (B) RT-PCR analysis of VEGF-A mRNA levels in 6 

RAW264.7 cells pretreated with CsA or Ecn for 30 min before 6 h Yoda1 (5 μM) 7 

treatment (n = 3 independent experiments, Tukey test). (C) ELISA analysis of 8 

VEGF-A expression in RAW264.7 cells pretreated with CsA or Ecn for 30 min 9 

before 24 h Yoda1 (5 μM) treatment (n = 4 independent experiments, Tukey test). 10 

Data were shown as mean ± SD. ****P < 0.0001. 11 
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Figure S9. The morphology of BMDMs after irradiation. (A) Phase-contrast 2 

micrographs of BMDMs on the third day after 5 Gy irradiation. Scale bar, 100 μm. 3 

(B) Analysis of the cell area of (n = 123, 118 cells from three separate experiments, 4 

t-test). Values represent mean ± SD, ns, not significant. 5 
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Figure S10. The role of TRPV4 in the expression of VEGF-A in BMDMs. (A) 2 

RT-PCR analysis of VEGF-A mRNA levels in BMDMs at 6 h after TRPV4 agonist 3 

GSK1016790A treatment (B) ELISA analysis of VEGF-A expression in BMDMs at 4 

24 h after TRPV4 agonist GSK1016790A treatment. (C) RT-PCR analysis of VEGF-A 5 

mRNA levels in BMDMs pretreated with TRPV4 inhibitor RN-1734 for 30 min 6 

before 6 h Yoda1 (5 μM) treatment (D) ELISA analysis of VEGF-A expression in 7 

BMDMs pretreated with TRPV4 inhibitor RN-1734 for 30 min before 24 h Yoda1 (5 8 

μM) treatment. n = 3 independent experiments, Tukey test. Data were shown as mean 9 

± SD. **P < 0.01; ****P < 0.0001; ns, not significant. 10 
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