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Supplementary Information  1 

Collection and curation of proteome and phosphoproteome datasets. 2 

The proteome and phosphoproteome were mainly derived from CPTAC and CCRC 3 

cohorts. Briefly, the global proteomics of CPTAC cohort were subjected to TMT10-labeld 4 

LC-MS/MS analysis and resulted in a total of 8067 common proteins. The relative protein 5 

abundances were log2 transformed and zero-centered for each gene to obtain final, relative 6 

abundance values. The TMT-10 phosphoproteome data were processed by the Ascore 7 

algorithm[1] for phosphorylation site localization, and the top-scoring sequences were 8 

reported. The hybrid spectral library of CCRC cohort proteome or CCRC phosphoproteome 9 

was generated by DDA and DIA strategies. Quantity was determined on MS/MS level using 10 

area of XIC peaks with enabled cross run normalization and presented a total of 8450 11 

quantified proteins and 47786 phosphosites in CCRC dataset. Detection of clinicopathologic 12 

features and MSI status was performed as described in the original reports describing the 13 

cohorts. 14 

Analysis of mutational signatures and SCNA 15 

The somatic mutation and copy number alteration (SCNA) segments data of CPTAC and 16 

TCGA-COAD/READ were downed and curated for the genomic analysis. “ExtractSignatures” 17 

function based on Bayesian variant nonnegative matrix factorization, factorized the mutation 18 

portrait matrix into two nonnegative matrices ‘signatures’ and ‘contributions’, where 19 

‘signatures’ represent mutational processes and ‘contributions’ represent the corresponding 20 

mutational activities. The extracted mutational portrait of CRC was compared and annotated 21 
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by cosine similarity analysis against the Catalogue of Somatic Mutations in Cancer (COSMIC 22 

V3). The 96 types single nucleotide variants on CRC genomic landscape were profiled by 23 

Lego plot. Moreover, we set up a threshold of 0.4 (-ta and -td parameters of GISTIC2) in 24 

filtering the amplified or deleted regions based on the distribution of germline copy number 25 

variants. GISTIC2 generated arm level and focal level SCNAs for the cohort with G-Score 26 

and FDR-Q value indicating the significance and strength of the identified SCNAs. 27 

Single cell analyses of CRC cellular landscape 28 

The single cell RNA-seq and metadata were curated form the Samsung Medical Center 29 

(SMC cohort)[2] and Katholieke Universiteit Leuven (KUL cohort)[3]. Briefly, gene 30 

expression matrix from the CellRanger pipelines was filtered and normalized using the Seurat 31 

R package[4] within the following criteria: >1,000 unique molecular identifier (UMI) 32 

counts; >200 genes and <6,000 genes; and <20% of mitochondrial gene expression in UMI 33 

counts. We further utilized the reciprocal PCA (RPCA) implemented in Seurat (v4.0) to 34 

integrate and align the tumor cells from the two scRNA datasets. After the integration, to 35 

perform dimension reduction, we first scaled the data by shifting and scaling the expression of 36 

each gene so that the mean expression across cells was 0 and the variance across cells was 1. 37 

Afterwards we ran PCA analysis and clustered and visualized the aligned dataset using 38 

UMAP projection. The major cell types in the datasets have been annotated by comparing the 39 

canonical marker genes and the differentially expressed genes (DEGs) for each cluster.  40 

Data Imputation 41 
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Missing values of preprocessed RNA-seq, protein and phosphoproteome data were 42 

imputed by KNN method using R package “impute”. For protein data, genes presented in at 43 

least 70% samples were reserved with the imputation parameters: k = 5, rowmax = 0.3, 44 

colmax = 0.4. For phosphoproteome data, phosphosites presented in at least 50% samples 45 

were reserved according to previous report[5] with the imputation parameters: k = 5, rowmax 46 

= 0.3, colmax = 0.4. For RNA-seq data, genes presented in at least 80% samples were used 47 

for data analysis as previously described[6]. The imputed data described above was z-scored 48 

for each sample 49 

Consensus Molecular Clustering 50 

 We adopted the mRNA, imputed proteomic data and imputed phosphoprotein data to a 51 

similarity matrix using R package “CancerSubtypes”[6, 7]by default parameters. The 52 

similarity matrix was used as the input of unsupervised clustering performed by R package 53 

“ConsensusClusterPlus”[8] with the parameters: maxK = 10, reps = 500, clusterAlg = 54 

“spectralAlg.” The number of clusters was demonstrated by the stable shape and maximum 55 

area of the consensus cumulative distribution function (CDF) curve with the clearest 56 

consensus matrix and the rapid decrease of average silhouette from k = 2 to 4. NMI values for 57 

three data types were calculated by the function “rankFeaturesByNMI” in the R package 58 

“SNFtool” using default parameters. Besides, each filtered data matrix was used for 59 

consensus clustering respectively by R package “ConsensusClusterPlus” with the parameters: 60 

maxK = 10, reps = 500, clusterAlg = “km”, distance = “euclidean”. 61 

Variable selection analysis and subset prediction 62 
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Variable selection analysis was used for KRAS mutant subset signature selection 63 

performed by the R package “VSURF” with random forest algorithm. The number of trees 64 

was set to 10,000 as previously described. mRNA data of selected signature from 65 

interpretation step was used to build a prediction model for KRAS-WT sub-groups performed 66 

by the function “predict” in the R package “VSURF” with the parameters: type = “class”, step 67 

= “interp.” The subsets of KRAS mutant (nonsynosmous mutation) subtype in TCGA and 68 

CCLE datasets were acquired by unsupervised clustering based on the mRNAs signature 69 

using the imputed RNA-seq data. 70 

ssGSEA and PTM-SEA analysis  71 

We utilized gene-centric single sample Gene Set Enrichment Analysis (ssGSEA) of gene 72 

expression data (e.g. mRNAs, proteins) and site-centric PTM Signature Enrichment Analysis 73 

(PTM-SEA) of phosphoproteomics data sets with the PTM signatures database 74 

(PTMsigDB)[9] to investigate the variation in biological processes among different KRAS 75 

mutant subtype. The well-defined biological signatures were derived from the Hallmarker 76 

gene set (download from MSigDB database v7.1), Zeng et al. curated Immuno-Oncology 77 

gene sets[10]. The Student’s t test was used for P value calculation and the ratio of mean was 78 

used for fold-change compared to other two subsets. GO annotation for KRAS mutant versus 79 

WT subtype-related genes was performed in the R package ‘clusterProfiler’ with the cutoff 80 

value of FDR < 0.001. 81 

Metascape and KSEA analysis 82 
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Metascape is a web-based portal designed to provide a comprehensive pathway 83 

annotation and analysis resource to deconstruct the molecular mechanisms underlying a 84 

biological system within OMICs database[11]. Here, we utilized the differential gene 85 

expression list (RNA, protein, phosphoprotein) as input to Metascape portal and followed by 86 

the analysis guidelines with the cutoff of P <0.05 to investigate the variation in biological 87 

processes among different KRAS mutant subtype. Kinase-substrate enrichment analysis 88 

(KSEA) were performed by KESA App website (https://casecpb.shinyapps.io/ksea/) using 89 

phosphosite data according to its manual with the cutoff of P < 0.05 and substrate count more 90 

than 1. 91 

Colorectal cancer cell line and drug sensitivity analyses 92 

The CTRP (v.2.0, released October 2015), PRISM Repurposing dataset (19Q4, released 93 

December 2019) and GDSC1 (Genomics of Drug Sensitivity in Cancer Project, Release 8.1, 94 

Oct 2019) for cancer cell line drug sensitivity analyses were achieved from the dependency 95 

map (DepMap) portal (https://depmap.org/portal/). The three datasets utilized the area under 96 

the dose–response curve (AUC) values as a measure of drug sensitivity, and lower AUC 97 

values indicated increased sensitivity to drugs treatment. Before analysis, we firstly removed 98 

the agents with more than 20% of missing data, and the remaining drug missing data were 99 

also imputed by ‘impute’ R package. For the filtration of the potential drug, fold-change 100 

differences of the protein expression levels of candidates’ drug targets between tumor and 101 

normal tissue were calculated in CCRC and CPTAC cohort. A higher fold change value 102 

indicated a greater potential of candidate agent for CRC treatment. Thirdly, a comprehensive 103 



 6 

literature search was performed in PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) and 104 

ClinicalTrials website (https://clinicaltrials.gov/) to find out the experimental and clinical 105 

evidence of candidate compounds in treating gastrointestinal tumors. 106 

 107 
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 156 

Figure S1. Molecular characteristics of KRAS mutation in CRC 157 

(A-B) KRAS mutational residues in TCGA-COAD/READ and CPTAC cohort were shown 158 

by lollipop plot. (C) Kaplan-Meier curves for patients with KRAS-Mut and KRAS-WT 159 

groups in the CIT (GSE39582) and MSK cohorts. (D) The volcano plot: green and gray 160 
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points represented differentially expressed proteins and no statistically significant difference 161 

genes, respectively, in the KRAS-Mut versus KRAS-WT. X-axes showed log2 (fold change) 162 

and y-axes showed -log10 (P value). (E) Functional annotation for KRAS-Mut 163 

phenotype-related genes using GO enrichment analysis. The color depth of the barplots 164 

represented the statistical significance of enriched pathways. (F-G) Comparison of tumor 165 

mutation load in KRAS-Mut versus KRAS-WT in TCGA and CPTAC cohorts. (H) The 166 

association of KRAS mutation with response to ICB therapy in various tumors types. 167 

 168 
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Figure S2. Single-cell transcriptomes profile and representative marker of each cluster 169 

with KRAS-Mut colorectal cancer. 170 

(A) UMAP clustering of the aggregated 55539 colorectal cancer cells obtained from 23 SMC 171 

and 6 KUL samples colored by the two dataset (left) and 29 clusters (right). (B) Heatmap of 172 

the top five significant DEGs for each cluster in CRC tumors. Significant P-values were 173 

obtained from the two-sided Student’s t-test. (C) The color-coded expression of key markers 174 

of CD4+ T cells, CD8+ T cells, IgG+ plasma cells, SPP1+ macrophages cells and 175 

Myofibroblast cell in CRC. 176 
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 177 

Figure S3. Proteomic and phosphoproteomic analysis enables multi-omics-based 178 

integrative subtyping of KRAS-Mut CRC tumors. 179 

(A) Heatmap representation of unsupervised clustering of the multi-omic data in KRAS-Mut 180 

tumors of CPTAC cohort with cluster numbers from 2 to 6. (B) The consensus CDF of 181 

unsupervised clustering based on multi-omic data. (C) The silhouette width of unsupervised 182 

clustering based on SNF method in RNA, Protein and Phosphoprotein, respectively. (D) The 183 
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OOB (out of bag) error rate during the signature selection for mRNA, protein, and 184 

phosphoprotein using random forest. (E-H) Heatmap of signature mRNAs in KRAS-Mut 185 

tumors of CPTAC, TCGA and CIT cohort. (I-J) Heatmap of signature Proteins in KRAS-Mut 186 

types of CPTAC and CCRC cohort.  187 

 188 

Figure S4. Validation of the prognostic significance of KRAS molecular subtype in 189 

independent KRAS-Mut CRC cohorts. 190 
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(A-C) Prognosis analysis of the KM1 and KM2 molecular subtype in CIT/GSE39582 cohort 191 

(A), GSE87211 cohort (B), and CCRC cohort (C). (D-G) Subgroup analysis estimating 192 

clinical prognostic value between KRAS-Mut subtype in TCGA cohort (D), CIT cohort (E), 193 

GSE87211 cohort (F), and CCRC cohort (G) by multivariable Cox regression. The length of 194 

the horizontal line represented the 95% confidence interval for each group. The vertical dotted 195 

line represented the hazard ratio (HR) of all patients.  196 

 197 

Figure S5. Tumor genomic alterations of KRAS-Mut colorectal cancer. 198 

(A) Mutational landscape of SMGs in CPTAC stratified by KRAS-WT, KM1 and KM2 199 

groups. Individual patients were represented in each column. The upper barplot showed TML, 200 

the right bar plot showed the mutation frequency of each gene in separate groups. Age, stage, 201 
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gender, MSI status, immune risk signature, and progression were shown as patient 202 

annotations. (B) Cosine similarity analysis of extracted mutational signatures against the 67 203 

identified SBS signatures in Catalogue of Somatic Mutations in Cancer (COSMIC, v3) with 204 

heatmap illustration. (C) Relative distribution of arm level somatic copy number alternation in 205 

KM1 versus KM2 in CPTAC cohort. (D-E) Relative distribution of arm level somatic copy 206 

number alternation in KM1 versus KM2 in CPTAC cohort and TCGA cohort. 207 

 208 

Figure S6. Molecular subtype and tumorigenic related signatures within KRAS-Mut 209 

subtypes in TCGA cohort. 210 

(A) Differences in Tumor Mutation Load, T cell exhaustion, and Immune score among KM1, 211 

KM2 and WT groups in CPTAC cohort. (B) The proportion of TCGA immune subtypes, 212 

TCGA integrated subtype, MSI status, CMS label subtype, and CIMP status among 213 

KRAS-WT, KM1 and KM2 groups. (C) Differences in oncogenic-related signatures (TML, 214 
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stromal score, immune score, Pan F TBRs, CAF, EMT2, Macrophages, MDSC, and T cell 215 

exhaustion) among KRAS-WT, KM1 and KM2 groups in TCGA cohort. 216 

 217 

Figure S7. Proteomics and Phosphoproteomics characterzation of KRAS-Mut 218 

subgroups in CCRC cohort 219 

(A) Heatmap shows the representative molecular pathways on proteomics among KM1 and 220 

KM2 groups in CCRC cohort. (B) Protein-protein interaction enrichment analysis by 221 

metascape analysis were performed to validate the relationship of differential expression 222 

protein in KM1 and KM2 tumors subset. Cluster MCODE1 included the proteins ITGB2, 223 

ECM1. APOH, et.al, which are associated with Platelet degranulation (R-HSA-114608); 224 

Complement and coagulation cascades (hsa04610); Platelet activation, signaling and 225 

aggregation (R-HSA-76002). Cluster MCODE2 included COL15A1, COL12A1, COL1A2, 226 

et.al, which are associated with the Extracellular matrix organization (R-HSA-1474244); 227 
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Integrin cell surface interactions (R-HSA-216083); NABA COLLAGENS (M3005). The 228 

remaining cluster MCODE were related to Extracellular matrix organization 229 

(R-HSA-1474244); NABA CORE MATRISOME (M5884), et.al. Colors represent the 230 

different MCODE clusters. PPI, Protein-protein interaction; MCODE, Molecular Complex 231 

Detection. (C-D) The proteomics and phosphoproteome data in CCRC cohort were curated 232 

and subjected to metascape analysis and found similar results to CPTAC cohort. According to 233 

the MCODE method, 16 sub-clusters of proteins were identified; proteins in each cluster 234 

shared the same GO terms and KEGG pathways. Cluster MCODE1 included the proteins 235 

COL4A2, COL6A2, COL1A1, et.al, which are associated with Collagen biosynthesis and 236 

modifying enzymes (R-HSA-1650814); post-translational protein phosphorylation 237 

(R-HSA-8957275); NABA CORE MATRISOME (M5884). The remaining cluster MCODE 238 

were related to Extracellular matrix organization (R-HSA-1474244); NABA CORE 239 

MATRISOME (M5884), et.al. (E-F) The proteomics and phosphoproteome data in CCRC 240 

cohort were curated and subjected to metascape analysis and found similar results to CPTAC 241 

cohort. According to the MCODE method, 3 sub-clusters of proteins were identified; proteins 242 

in each cluster shared the same GO terms and KEGG pathways. Cluster MCODE1 included 243 

the proteins KIF5B, EZH2, POLR2A, PPID and PPKARIB, et.al, which are associated with 244 

post-translational protein phosphorylation (R-HSA-8957275); Regulation of Insulin-like 245 

Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins 246 

(IGFBPs) (R-HSA-381426); chromatin organization (GO:0006325). The remaining cluster 247 

MCODE were related to chromatin organization (GO:0006325); chromatin assembly or 248 
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disassembly (GO:0006333); DNA metabolic process (GO:0006259). Colors represent the 249 

different MCODE clusters. PPI, Protein-protein interaction; MCODE, Molecular Complex 250 

Detection. (G) Enriched kinases in KM1 and KM2 subsets using KSEA with a significance of 251 

P < 0.05 in CCRC cohort. Red bars represent positively enriched; purple bars represent 252 

negatively enriched. 253 

 254 

Figure S8. Molecular targets in CCLE. 255 

(A) Overlapped molecular targets among the three drug sensitivity database in KM1 and KM2 256 

subtype. (B) Correlations between the sensitivity of MEKi/ERKi/AKTi and transcriptomic 257 



 18 

levels in each KRAS-Mut subset. Genes with Pearson correlation coefficient less than -0.5 258 

and FDR < 0.05 was colored by blue and representative gene was marked by darkblue dot. 259 

 260 

Table S1.  Summary of included clinical cohorts. 261 
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