## Supplementary Information

## CRISPR/Cas9-based genome-wide screening for deubiquitinase subfamily identifies USP1 regulating MAST1-driven cisplatin-resistance in cancer cells

Apoorvi Tyagi ${ }^{1 \dagger}$, Kamini Kaushal ${ }^{1 \dagger}$, Arun Pandian Chandrasekaran ${ }^{1}$, Neha Sarodaya ${ }^{1}$, Soumyadip Das ${ }^{1}$, Chang-Hwan Park ${ }^{1,3}$, Seok-Ho Hong², Kye-Seong Kim ${ }^{1,3 *}$ and Suresh Ramakrishna ${ }^{1,3 *}$<br>${ }^{1}$ Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea<br>${ }^{2}$ Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea<br>${ }^{3}$ College of Medicine, Hanyang University, Seoul, South Korea

${ }^{\dagger}$ These authors contributed equally: Apoorvi Tyagi and Kamini Kaushal.

Running title: Loss of USP1 reverses MAST1-mediated cisplatin-resistance.

## *Corresponding authors

SR (E-mail: suri28@hanyang.ac.kr, suresh.ramakris@gmail.com)
KS (E-mail: ks66kim@hanyang.ac.kr)

## Supplementary Figures

Figure S1. The efficiencies of sgRNAs and shRNAs targeting USP1.
Figure S2. The effect of UAF1 depletion on MAST1 protein level and cisplatin resistance.
Figure S3. USP1 increases exogenous MAST1 protein level.
Figure S4. MAST1 protein undergoes 26S proteasomal degradation.
Figure S5. The effect of Cdh1 on MAST1 protein level and cisplatin resistance.
Figure S6. USP1 deubiquitinates Cdh1-mediated MAST1 ubiquitination.
Figure S7. The deubiquitination of K63-linked ubiquitination of MAST1 by USP1.
Figure S8. Generation of single cell-derived USP1 knockout clones in A549 cells.
Figure S9. Validation of single cell-derived USP1KO2 clone in A549 cells.

Figure S10. Off-target analysis of sgRNA1-targeting USP1 in USP1 knockout clone.

Figure S11. Half-life of MAST1 protein.

Figure S12. Expression of USP1 in normal vs. cancer tissues.

Figure S13. Expression of MAST1 in normal vs. cancer tissues.

Figure S14. Immunohistochemical staining of USP1 and MAST1 in human clinical samples.

Figure S15. Immunohistochemical staining of USP1 and MAST1.

Figure S16. Depletion of USP1 promotes DNA damage and prevents cell proliferation.

Figure S17. Determination of carcinogenic activity of USP1-KO1 in A549 cells.

Figure S18. Determination of carcinogenic activity of USP1-KO2 in A549 cells.

Figure S19. Combined pharmacologic inhibition of USP1 and MAST1 further sensitizes cisplatin-resistant cells to cisplatin.

## Supplementary Tables

Table S1. Target sequences used for sgRNA plasmid construction.

Table S2. Target sequences used for shRNA plasmid construction.

Table S3. Oligonucleotide sequences used to get PCR amplicon for T7E1 assay.

Table S4. Oligonucleotide sequences used to get PCR amplicon for Off-target genes.

Table S5. PCR amplicon and cleavage sizes after T7E1 assay.

Table S6. The mRNA scores for USP1 and MAST1 expression derived from the Cancer Cell Line Encyclopedia database.


Figure S1. The efficiencies of sgRNAs and shRNAs targeting USP1.
(A) The cleavage efficiency of sgRNA1 (T1) and sgRNA2 (T2) was determined by the T7E1 assay in HeLa cells after transfection with plasmids encoding Cas9 and sgRNA targeting USP1. Scrambled sgRNA transfected cells were used as mock control (Mock). The size marker $(M)$ is shown. The red arrow indicates the expected position of the cleaved DNA bands. The numbers at the bottom of the gel indicate the mutation percentages measured by band intensity using ImageJ software. (B) The efficiency of shRNAs was validated in HeLa cells by transducing shRNA1 and shRNA2 targeting USP1 and immunoblotting with the USP1 antibody. GAPDH was used as a loading control.


Figure S2. The effect of UAF1 depletion on MAST1 protein level and cisplatin resistance.
(A) Schematic representation of the sgRNA targeting exon 1 of the UAF1 gene. Red arrowheads indicate the positions of sgRNAs that target the top strand and the bottom strand of UAF1 gene. sgRNA sequences are in red; PAM sequences are in bold blue font. (B) Validation of sgRNAs efficiency targeting UAF1 and their effect on USP1 and MAST1 by transient transfection of sgRNAs into HeLa cells and immunoblotting with indicated endogenous antibodies. (C) The UAF1-depleted cells were treated with a sub-lethal dose of cisplatin for 48 h , and cell viability was assayed using CCK-8 reagent. Data are presented as the mean and standard deviation of three independent experiments $(\mathrm{n}=3)$.


Figure S3. USP1 increases exogenous MAST1 protein level.
(A) Exogenous protein levels of MAST1 in HEK293 cells were analyzed upon transfection with increasing concentrations of Flag-USP1 or (B) USP1CS. (C) The reconstitution effect of USP1 on exogenous MAST1 protein in USP1-depleted HEK293 cells.


Figure S4. MAST1 protein undergoes 26 S proteasomal degradation. (A) The MAST1 protein level was analyzed in HeLa cells treated with increasing concentrations of MG132 ( $0,2.5,5$, and $10 \mu \mathrm{M} / \mathrm{mL}$ ). (B) HEK293 cells were transfected with Myc-MAST1 and HAubiquitin to analyze the ubiquitination status of MAST1 protein. The protein obtained from the transfected samples were immunoprecipitated and immunoblotted with the indicated antibodies.


Figure S5. The effect of Cdh1 on MAST1 protein level and cisplatin resistance.
(A) Exogenous protein levels of MAST1 in HEK293 cells were analyzed upon transfection with a constant amount of Myc-MAST1 and increasing concentrations of Flag-Cdh1 (B) The exogenous protein level of MAST1 in HEK293 cells was analyzed upon transfection of sgRNA1 and sgRNA2 targeting Cdh1. (C) The Cdh1-mediated degradation of exogenous MAST1 protein was rescued in cells transfected with sgRNA1 targeting Cdh1. Protein expression was assessed by Western blotting with the indicated antibodies. GAPDH was used as a loading control. (D) The Cdh1-overexpressed and Cdh1-depleted cells were treated with a sub-lethal dose of cisplatin for 48 h , and cell viability was assayed using CCK-8 reagent. Data are presented as the mean and standard deviation of three independent experiments $(n=3)$.


Figure S6. USP1 deubiquitinates Cdh1-mediated MAST1 ubiquitination.
(A) HEK293 cells were transfected with Myc-MAST1, HA-ubiquitin, Flag-USP1, FlagUSP1CS, or shRNA targeting USP1. The deubiquitination of exogenous MAST1 was confirmed by co-immunoprecipitation with the anti-Myc antibody and immunoblotting with the anti-HA and anti-Myc antibodies. (B) The deubiquitinating activity of USP1 was analyzed in the presence of Cdh1 by co-immunoprecipitation with the anti-MAST1 antibody and immunoblotting with the anti-HA and anti-MAST1 antibodies. GAPDH was used as the internal loading control. The ubiquitination of MAST1 was quantified using ImageJ software with reference to the input MAST1 and represented as (MAST1(Ub)n/MAST1) below the blot.


Figure S7. The deubiquitination of K63-linked ubiquitination of MAST1 by USP1. HEK293 cells were transfected with Myc-MAST1 and HA-K63-ubiquitin along with FlagUSP1 or Flag-USP1CS, followed by immunoprecipitation with an anti-Myc antibody and immunoblotting with anti-HA and anti-Myc antibodies. The ubiquitination of MAST1 was quantified using ImageJ software with reference to the input MAST1 and represented as (MAST1-(Ub)n/MAST1) below the blot.


Figure S8. Generation of single cell-derived USP1 knockout clones in A549 cells.
(A) Screening for single cell-derived USP1 knockout clones in A549 cells by T7E1 assay.

T7E1 positive clones showing cleavage are represented in red text. Red arrow heads show the cleaved bands. (B) Western blot analysis showing the knockout efficiency of USP1 in A549 cells. Scrambled sgRNA transfected cells were used as mock control (Mock).

A
USP1-KO2
GAAGAAATACCTCATCCGAAAGAGGAAATGAATGGTATTAA (WT)
GAAGAAATACCTCAT--------------GAATGGTATTAA (-14) (X2) (out-of-frame)
GAA--------------------------GAATGGTATTAA (-26) (X3) (out-of-frame)

B


C



Figure S9. Validation of single cell-derived USP1-KO2 clone in A549 cells. (A) Sanger sequencing data showing the disrupted USP1 gene sequences in USP1KO\#23 (USP1-KO2). The sgRNA recognition site is denoted in red. The deleted bases are indicated with dashes and the number of deleted bases are indicated in parentheses. The number of occurrences of the indicated sequences is shown in parentheses (for example, X2 and X3 indicate the number of each clone sequenced). (B) The effect of USP1-KO2 on the mRNA expression of USP1 and (C) MAST1 was analyzed by qRT-PCR with specific primers. The relative mRNA expression levels are shown after normalization to GAPDH mRNA expression. Data are presented as the mean and standard deviation of three independent experiments $(\mathrm{n}=3)$. A two-tailed $t$-test was used, and the $P$ values are indicated. (D) Western blot analysis of the endogenous expression of USP1 and MAST1 protein in USP1-KO2. GAPDH was used as the internal loading control.

```
A
    USP1: CATCCGAAAGAGGAAATGAATGG On-target
    KAZN: CATTAGAAAGAGGAGATGAATGG Off-target 1
    INTS7: GTTCCGAAAGAGAAAATAAATGG Off-target 2
```

B


Off-target 1


Off-target 2

Figure S10. Off-target analysis of sgRNA1-targeting USP1 in USP1 knockout clone.
(A) The on-target sequence of USP1, off-target 1 sequence of KAZN and off-target 2 sequence of INTS7. PAM sequences are shown in blue and mismatched bases are underlined and represented in bold red font. (B) The mutation frequencies at on-target and off-target sites were determined using T7E1 assays.

## A <br> MAST1


(MAST1/GAPDH) $1.0 \quad 0.89 \quad 0.81 \quad 0.710 .530 .36$


Figure S11. Half-life of MAST1 protein. (A) The half-life of MAST1 protein was determined using cycloheximide assay in HeLa cells for the indicated time intervals as mentioned above the blot. The rate of MAST1 decay was quantified using ImageJ software with reference to the GAPDH as control and is mentioned below the blot. (B) The effect of Cdh1 on the half-life of MAST1 protein was determined in HeLa cells transfected with Flag-Cdh1 and treated with CHX for the indicated time points. The rate of MAST1 decay was quantified using ImageJ software with reference to the GAPDH as control and is mentioned below the blot.

## USP1






Figure S12. Expression of USP1 in normal vs. cancer tissues. Scatter plot showing the expression of USP1 in different types of cancer tissues vs. normal contexts using Correlation AnalyzeR. The displayed $R$ value was determined by Pearson correlation.

MAST1


Figure S13. Expression of MAST1 in normal vs. cancer tissues. Scatter plot showing the expression of MAST1 in different types of cancer tissues vs. normal contexts using Correlation AnalyzeR. The displayed $R$ value was determined by Pearson correlation.

## A Lung cancer






B Colon cancer


Normal Tumor




C Breast cancer


Figure S14. Immunohistochemical staining of USP1 and MAST1 in human clinical samples. Representative immunohistochemical staining images of endogenous USP1 and MAST1 in (A) lung, (B) colon, and (C) breast cancer tissues vs. normal tissues. All IHC images were quantified with an H -score. A two-tailed $t$-test was used, and $P$ values are indicated. Scale bar $=30 \mu \mathrm{~m}$.


Figure S15. Immunohistochemical staining of USP1 and MAST1. Representative immunohistochemical (IHC) staining images of endogenous USP1 and MAST1 in (A) human lung cancer ( $n=32$ ), (B) colon cancer $(\mathrm{n}=32)$, and (C) breast cancer $(\mathrm{n}=21)$ tissues. The statistical significance of USP1 and MAST1 protein staining intensity was assessed using Chi-square test and the $P$ values are indicated. Stained group represents highly stained cells and unstained group represents low or unstained cells.


Figure S16. Depletion of USP1 promotes DNA damage and prevents cell proliferation. Mock control, USP1-KO2, and USP1-KO2 cells reconstituted with either USP1 or MAST1 were used to perform the following experiments. (A) Western blot analysis to validate the expression of USP1 and MAST1 using USP1- and MAST1specific antibodies. GAPDH was used as the loading control. (B) The cells were treated with either vehicle or cisplatin ( $2 \mu \mathrm{~g} / \mathrm{mL}$ ) for 24 h and subjected to immunofluorescence analysis to estimate $\mathrm{yH2AX}$ foci formation. Green, yH 2 AX ; blue, nucleus stained by DAPI. Scale bar $=100 \mu \mathrm{~m}$. The right panel depicts the percentage of yH 2 AX -positive cells. (C) The cells were treated with a sub-lethal dose of cisplatin ( $2 \mu \mathrm{~g} / \mathrm{mL}$ ) for 48 h , and cell viability was assayed using CCK-8 reagent. Data are presented as the mean and standard deviation of three independent experiments ( $n=3$ ).


Figure S17. Determination of carcinogenic activity of USP1-KO1 in A549 cells. (A) Mock A549, USP1-KO1 A549, USP1-KO1_reconsUSP1 (USP1-KO1+USP1), and USP1KO1_reconsMAST1 (USP1-KO1+MAST1) cells were treated with either vehicle or cisplatin for 14 days, and the colonies were stained with crystal violet for visualization. (B) Representative images of in vitro scratch assay to assess the migration potential of the groups mentioned. Scale bar $=100 \mu \mathrm{M}$. (C) Transwell cell invasion assay was performed with the groups mentioned. Scale bar $=500 \mu \mathrm{M}$. All assays were performed in triplicate and representative images are presented.

A


B



C




Figure S18. Determination of carcinogenic activity of USP1-KO2 in A549 cells.
Vehicle- or cisplatin-treated, Mock A549, USP1-KO2 A549, USP1-KO2_reconsUSP1 (USP1-KO2+USP1), and USP1-KO2_reconsMAST1 (USP1-KO2+MAST1) cells were subjected to a $(A)$ colony formation assay, the representative images are presented in the
right panel; ( $B$ ) wound-healing assay, the representative images are presented in the right panel, Scale bar $=100 \mu \mathrm{M}$; $(\mathrm{C})$ Transwell cell-invasion assay, the representative images are presented in the right panel, Scale bar $=500 \mu \mathrm{M}$. Data are presented as the mean and standard deviation of three independent experiments $(\mathrm{n}=3)$.


Figure S19. Combined pharmacologic inhibition of USP1 and MAST1 further sensitizes cisplatin-resistant cells to cisplatin. (A) The morphology of A549-cis ${ }^{R}$ cells subjected to single treatment of lestaurtinib (150 nM) or pimozide ( $25 \mu \mathrm{M}$ ) or their combination in presence of cisplatin ( $5 \mu \mathrm{~g} / \mathrm{mL}$ ) was assessed and representative images are presented. Scale bar $=200 \mu \mathrm{~m}$. (B) The cells were treated with either vehicle or mentioned drugs for 14 days, and the colonies were stained with crystal violet for visualization. (C) Representative images of in vitro scratch assay to assess the migration potential of the groups mentioned. Scale bar $=100 \mu \mathrm{~m}$.

Table S1. Target sequences used for sgRNA plasmid construction.

| Gene | sgRNA | Direction | Sequence (5' to 3') | Orientation |
| :---: | :---: | :---: | :---: | :---: |
| USP1 | sgRNA1 | FP | CATCCGAAAGAGGAAATGAA | Sense |
|  |  | RP | TTCATTTCCTCTTTCGGATG |  |
|  | sgRNA2 | FP | GCATAGAGATGGACAGTATG | Sense |
|  |  | RP | CATACTGTCCATCTCTATGC |  |
| Cdh1 | sgRNA1 | FP | GCAGTACACGGAGCACCTGG | Sense |
|  |  | RP | CCAGGTGCTCCGTGTACTGC |  |
|  | sgRNA2 | FP | CGCTTCTGGAACACGCTGAC | Sense |
|  |  | RP | GTCAGCGTGTTCCAGAAGCG |  |
| UAF1 | sgRNA1 | FP | AGTGTCAACATGCAAGATGG | Sense |
|  |  | RP | CCATCTTGCATGTTGACACT |  |
|  | sgRNA2 | FP | GCGCCACGACCAGCTGGGGT | Antisense |
|  |  | RP | ACCCCAGCTGGTCGTGGCGC |  |

Table S2. Target sequences used for shRNA plasmid construction.

| Gene | shRNA | Sequence (5' to 3') |
| :---: | :---: | :---: |
| USP1 | shRNA1 | GAAAGCTCCACATCAATAA |
|  | shRNA2 | AGTGACCAAACAGGCATTA |

Table S3. Oligonucleotide sequences used to get PCR amplicon for T7E1 assay.

| Gene | sgRNA | Direction | Sequence (5' to 3') |
| :---: | :---: | :---: | :---: |
| USP1 | sgRNA1 and sgRNA2 | FP | AAACCTGGTGTATGGTAAGCA |
|  |  | FP1 | CAGCATGATGCACAGGAAGT |
|  |  | RP | AGGAACACCAGTCATTGGAAGA |
| Cdh1 | sgRNA1 and sgRNA2 | FP | AACGACAACAAGGTACCCCC |
|  |  | FP1 | GCTGCTGGTCTGGAATCACT |
|  |  | RP | CTATGCCTGCTGCCTCACAT |
|  |  | RP1 | CCATCTCCCTTCAGAGCGAC |
| UAF1 | sgRNA1 and sgRNA2 | FP | TGAGGCCACGACATAATTCTCC |
|  |  | FP1 | CAGCCCTGAAAAGTGGCTC |
|  |  | RP | CCGCAAGTCCACTCCTACAGA |

Table S4. Oligonucleotide sequences used to get PCR amplicon for Off-target genes.

| Gene | Direction | Sequence (5' to 3') |
| :---: | :---: | :---: |
| KAZN | FP | TATGCTCTGCCTTGCATCGT |
|  | FP 1 | TCACATAGCCTGCAGCACAA |
|  | RP | TTCTTCCATCTGTGTATTCACTTGT |
| INTS7 | FP | ATGTTCTGAGGCAACCTGAGT |
|  | $\mathrm{FP1}$ | GAATAGAAGGAGCACACGGT |
|  | RP 1 | CAACTATGCCTTCTCCCCTGG |
|  | RP | AATGGGGGAGAAGCACACAC |

Table S5. PCR amplicon and cleavage sizes after T7E1 assay.

| Gene | sgRNA | PCR size | Cleavage size |
| :---: | :---: | :---: | :---: |
| USP1 | sgRNA1 | 296 | $140+156$ |
|  | sgRNA2 | 296 | $171+125$ |
|  | sgRNA1 | 355 | $299+56$ |
|  | sgRNA2 | 355 | $151+196$ |
| UAF1 | sgRNA1 | 564 | $238+326$ |
|  | sgRNA2 | 564 | $362+202$ |
| KAZN | off-target for <br> USP1 | 770 | $245+525$ |
| INTS7 | off-target for <br> USP1 | 348 | $219+129$ |

Table S6. The mRNA scores for USP1 and MAST1 expression derived from the
Cancer Cell Line Encyclopedia database.

| Cell line | USP1 expression | MAST1 expression |
| :---: | :---: | :---: |
| SCLC21H | 5.53169336 | 6.72955277 |
| DMS79 | 6.82946905 | 6.348197 |
| KPNRTBM1 | 4.68818036 | 6.31705076 |
| NCIH1836 | 6.21742461 | 6.02147973 |
| MHHNB11 | 4.95093493 | 5.94696474 |
| NCIH1105 | 7.03562391 | 5.88044065 |
| NCIH1963 | 6.31578358 | 5.86913112 |
| NCIH2106 | 6.78345665 | 5.86071455 |
| NCIH1694 | 7.29167722 | 5.85324717 |
| NH6 | 6.13442632 | 5.77610399 |
| CORL279 | 6.79506558 | 5.71671659 |
| KPNYN | 5.05093697 | 5.6363346 |
| NCIH1092 | 5.87479697 | 5.63575439 |
| LU135 | 7.91043287 | 5.63575439 |
| NCIH1618 | 6.52073653 | 5.5649878 |
| NCIH82 | 6.15542543 | 5.53418614 |
| NCIH889 | 6.08342614 | 5.47702965 |
| NCIH2171 | 6.78920758 | 5.47540919 |
| NCIH69 | 5.93969674 | 5.4502215 |
| CORL24 | 7.52034367 | 5.44327511 |
| KELLY | 5.59275601 | 5.41650199 |
| NCIH446 | 5.83035675 | 5.37364821 |
| NCIH146 | 6.17831627 | 5.28392177 |
| CHP126 | 5.03606369 | 5.22958792 |
| CORL47 | 6.23859581 | 5.22265002 |
| NCIH2081 | 6.05961486 | 5.21101219 |
| MDAMB134VI | 5.26940724 | 5.16309614 |
| SKNFI | 5.40973035 | 5.14282184 |
| SKNBE2 | 4.6467387 | 5.10391721 |
| NCIH1436 | 6.55842071 | 5.09887429 |
| NCIH2227 | 6.12205145 | 5.02812708 |
| HCC33 | 7.27052894 | 4.94438996 |
| SIMA | 4.57288967 | 4.94063661 |
| NCIH1184 | 6.21218021 | 4.93545975 |
| NCIH1930 | 6.61676937 | 4.90496572 |
| NMB | 6.24849689 | 4.90303827 |
|  |  |  |
|  |  |  |


| NCIH209 | 6.38594866 | 4.79597469 |
| :---: | :---: | :---: |
| IMR32 | 6.19239146 | 4.77505054 |
| NCIH524 | 6.42676793 | 4.75435307 |
| NCIH1155 | 6.5147535 | 4.71699089 |
| NCIH1876 | 7.12298325 | 4.70763522 |
| NCIH1385 | 4.63517395 | 4.70708299 |
| NCIH2196 | 6.10538475 | 4.69153417 |
| NCIH1341 | 6.52700776 | 4.60525726 |
| NCIH510 | 6.32930303 | 4.59514557 |
| CORL311 | 5.88386516 | 4.44228004 |
| COGN305 | 4.61588707 | 4.40190347 |
| CORL95 | 6.32966182 | 4.40053793 |
| DU4475 | 6.07274895 | 4.39780296 |
| SKNDZ | 6.11270013 | 4.34411834 |
| DMS153 | 6.76937505 | 4.32048468 |
| GOTO | 5.47540919 | 4.29278175 |
| SCLC22H | 6.65663937 | 4.28835856 |
| NB1643 | 5.48058827 | 4.26978124 |
| TGW | 6.2212971 | 4.22110373 |
| SBC5 | 4.3262497 | 4.1473067 |
| NCIH2029 | 7.09476389 | 4.11436703 |
| NCIH1048 | 5.99254186 | 4.04089243 |
| SHP77 | 5.32300971 | 3.97819563 |
| CHP212 | 4.70929064 | 3.96624587 |
| NCIH660 | 6.9518675 | 3.92504997 |
| NCIH526 | 6.09655704 | 3.90496572 |
| CHLA15 | 5.63575439 | 3.87184365 |
| LAN2 | 6.21723072 | 3.85698569 |
| CORL23 | 4.19927972 | 3.84699469 |
| NCIH2077 | 4.78240857 | 3.82781903 |
| CORL88 | 6.50207596 | 3.82781903 |
| NB1 | 5.65191275 | 3.79805052 |
| NCIH841 | 5.27015514 | 3.77399633 |
| HCSC1 | 5.37885838 | 3.76341157 |
| LS | 5.8242587 | 3.66902677 |
| NCIH854 | 3.68929916 | 3.66106548 |
| DMS273 | 5.58285704 | 3.65878273 |
| NH12 | 4.97773785 | 3.6287736 |
| NCIH810 | 5.55826763 | 3.56681515 |
| DMS114 | 6.17632277 | 3.48284828 |
| BEN | 3.20633065 | 3.47118746 |


| COLO668 | 6.90412278 | 3.44890095 |
| :---: | :---: | :---: |
| HCC2157 | 5.54132898 | 3.41818995 |
| SKNSH | 5.01122726 | 3.39231742 |
| MDAMB453 | 5.00270252 | 3.37573454 |
| NCIH2444 | 4.35191096 | 3.34056227 |
| HCC1395 | 5.23572706 | 3.3262497 |
| SNU398 | 5.48574882 | 3.30597052 |
| 22RV1 | 5.61028666 | 3.29865832 |
| A427 | 5.34695689 | 3.27649667 |
| HCC1195 | 4.08831124 | 3.24792751 |
| NGP | 5.41481206 | 3.19219417 |
| NCIH522 | 6.30359812 | 3.18586655 |
| HCC1187 | 6.08937103 | 3.169925 |
| ZR751 | 4.76181714 | 3.15704371 |
| NCIH2286 | 5.82781903 | 3.15218342 |
| HCC1833 | 5.07339182 | 3.15055968 |
| CALU6 | 5.29167722 | 3.10768787 |
| DMS53 | 6.20925839 | 3.10601324 |
| NCIH358 | 5.51884983 | 3.09085343 |
| NCIH650 | 4.62585493 | 3.08406427 |
| HDQP1 | 4.58796499 | 3.08065766 |
| NCIH1975 | 4.67242534 | 3.07382023 |
| COGN278 | 5.75702325 | 3.06004738 |
| JHH4 | 4.60347799 | 3.04788733 |
| NCIH661 | 5.62029315 | 3.04614178 |
| RERFLCAI | 5.31867837 | 3.01077984 |
| NCIH2087 | 5.12556845 | 3.0071955 |
| HCC1806 | 3.84197312 | 3.00360224 |
| LK2 | 5.41481206 | 2.98913901 |
| NCIH727 | 5.03077747 | 2.98550043 |
| NCIH2110 | 4.88606234 | 2.98185265 |
| NCIH2052 | 4.97085365 | 2.97636364 |
| HCC2108 | 5.138323 | 2.94110631 |
| NCIH1793 | 4.53294029 | 2.94110631 |
| NCIH838 | 5.46172499 | 2.93357264 |
| NCIH1373 | 4.95046841 | 2.93168306 |
| NCIH1581 | 5.1473067 | 2.91647664 |
| LNCAPCLONEFGC | 4.24488706 | 2.89724043 |
| KPNSI9S | 4.21179098 | 2.88752527 |
| LXF289 | 4.42559358 | 2.88166462 |
| HEP3B217 | 4.94204526 | 2.87774425 |


| NCIH1703 | 5.47702965 | 2.86591882 |
| :---: | :---: | :---: |
| LC1F | 4.82680268 | 2.84398384 |
| NCIH1299 | 5.20750246 | 2.83592407 |
| SKMES1 | 4.93073734 | 2.76341157 |
| DMS454 | 5.30451104 | 2.75274859 |
| HCC1500 | 5.96439863 | 2.75060651 |
| C33A | 6.09360243 | 2.73552218 |
| NCIH1819 | 5.04395687 | 2.72246602 |
| NCIH1339 | 5.11228311 | 2.72246602 |
| NCIH2126 | 5.13955135 | 2.71149491 |
| MDAMB157 | 5.60050765 | 2.69599381 |
| NCIH2030 | 4.70542504 | 2.68706069 |
| EFM19 | 5.38404981 | 2.592158 |
| MDAMB468 | 6.19672506 | 2.58976349 |
| CAL51 | 6.50827018 | 2.57773093 |
| BT549 | 5.94157586 | 2.57531233 |
| HCC366 | 5.89384756 | 2.53853816 |
| CALU1 | 6.24697806 | 2.52857132 |
| SKNAS | 4.86245139 | 2.52606881 |
| KPL1 | 4.53915881 | 2.52356196 |
| HCC1438 | 5.93262816 | 2.50842865 |
| HCC1359 | 5.50493813 | 2.50334874 |
| BOKU | 4.90929309 | 2.50080205 |
| NCIH2887 | 4.49952702 | 2.48284828 |
| NCIH520 | 5.83238372 | 2.46988598 |
| RERFLCMS | 4.69766263 | 2.45154083 |
| NCIH23 | 5.38059093 | 2.45154083 |
| HS578T | 4.45154083 | 2.44890095 |
| MFM223 | 4.80115866 | 2.43562859 |
| NCIH441 | 5.582556 | 2.42760617 |
| NCIH2172 | 5.52199296 | 2.41953889 |
| HCC1171 | 4.9044841 | 2.40599236 |
| MDAMB436 | 5.83617663 | 2.40326772 |
| NCIH1650 | 5.53791725 | 2.39231742 |
| NCIH3255 | 4.71863562 | 2.38956681 |
| T3M10 | 5.11686376 | 2.37851162 |
| JHH2 | 5.64875303 | 2.37573454 |
| HCC95 | 4.89530262 | 2.37016428 |
| COLO824 | 7.56338697 | 2.37016428 |
| CORL105 | 3.88849974 | 2.35614381 |
| NCIH2085 | 5.34660238 | 2.33628339 |


| IALM | 4.70431868 | 2.29278175 |
| :---: | :---: | :---: |
| VCAP | 4.83541884 | 2.28392177 |
| LCLC97TM1 | 4.34978987 | 2.28095631 |
| MORCPR | 4.79649393 | 2.27500705 |
| HMC18 | 4.81915722 | 2.26303441 |
| NCIH596 | 5.52638186 | 2.25701062 |
| NCIH1838 | 4.74577515 | 2.25701062 |
| HCC1599 | 5.8117279 | 2.25398927 |
| NCIH2023 | 5.24450655 | 2.24184018 |
| NCIH1573 | 4.9293176 | 2.24184018 |
| EKVX | 4.78293271 | 2.22342255 |
| PC3 | 4.50462039 | 2.20476675 |
| SW1271 | 5.74899785 | 2.1953476 |
| T47D | 4.33771109 | 2.17312743 |
| NCIH2009 | 5.52418908 | 2.16349873 |
| SUM1315MO2 | 6.21276386 | 2.16027483 |
| CAMA1 | 4.48864354 | 2.15380534 |
| NCIH1792 | 5.19219417 | 2.1473067 |
| HCC202 | 4.50143915 | 2.14077866 |
| HCC38 | 5.9044841 | 2.13750352 |
| NCIH1734 | 5.69069644 | 2.12763328 |
| MPP89 | 5.29020321 | 2.12432814 |
| HCC364 | 5.49729301 | 2.12432814 |
| NCIH2291 | 5.18110255 | 2.12432814 |
| CAL120 | 5.64067876 | 2.12432814 |
| EPLC272H | 6.33181268 | 2.10097765 |
| PC9 | 5.05701697 | 2.05311134 |
| HCC2450 | 5.55305325 | 2.04963077 |
| NCIH1437 | 4.25171909 | 2.04264434 |
| CHAGOK1 | 5.38301302 | 2.01435529 |
| LCLC103H | 4.60644223 | 2.01077984 |
| NCIH1355 | 5.74550627 | 2.0071955 |
| BT483 | 4.1268077 | 2.0071955 |
| SNU449 | 4.81455042 | 1.99638875 |
| SNU182 | 4.40190347 | 1.99276843 |
| CAL12T | 4.90881291 | 1.97085365 |
| NCIH1648 | 4.582556 | 1.96347412 |
| NCIH1395 | 3.54101915 | 1.95605665 |
| PLCPRF5 | 4.75221337 | 1.92599942 |
| UACC893 | 4.53543092 | 1.92219785 |
| NCIH1915 | 5.13791332 | 1.91838623 |


| LU99 | 5.90881291 | 1.91838623 |
| :---: | :---: | :---: |
| PC14 | 4.97773785 | 1.9068906 |
| RERFLCKJ | 6.14241344 | 1.88752527 |
| HCC1937 | 5.26303441 | 1.87578006 |
| LOUNH91 | 5.10055722 | 1.8559897 |
| HCC1419 | 4.40463068 | 1.8559897 |
| HCC827GR5 | 5.34837408 | 1.84398384 |
| NCIH211 | 6.04264434 | 1.83187724 |
| JHH5 | 4.83238372 | 1.81557543 |
| CASKI | 4.43429462 | 1.79077204 |
| JHH1 | 4.38818954 | 1.79077204 |
| HCC4006 | 4.6363346 | 1.78659636 |
| SNU761 | 3.7473874 | 1.78659636 |
| BT20 | 5.41616417 | 1.76977174 |
| SKHEP1 | 4.79077204 | 1.75274859 |
| SNU878 | 4.94063661 | 1.7398481 |
| HCC1569 | 5.3248106 | 1.71808758 |
| NCIH2342 | 5.25247621 | 1.71369582 |
| JHH6 | 5.197315 | 1.70043972 |
| NCIH2228 | 5.61735726 | 1.69599381 |
| RERFLCAD2 | 4.49952702 | 1.68706069 |
| DV90 | 4.64789009 | 1.67355642 |
| NCIH1568 | 6.13257684 | 1.66448284 |
| NCIH1693 | 6.12432814 | 1.65992456 |
| MDAMB231 | 5.89893387 | 1.65535183 |
| MSTO211H | 5.53791725 | 1.63226822 |
| HCC1954 | 5.5533605 | 1.60407132 |
| HCC1143 | 5.60229059 | 1.59454855 |
| NCIH2882 | 5.90616907 | 1.57046293 |
| HCC461 | 5.92552477 | 1.55090067 |
| HCS2 | 7.20035918 | 1.55090067 |
| MCF7 | 4.28688115 | 1.54596837 |
| SUM149PT | 4.12018603 | 1.54596837 |
| A549 | 4.87332106 | 1.53106949 |
| NCIH2073 | 4.86245139 | 1.51601515 |
| SW900 | 4.59753117 | 1.51601515 |
| HCC44 | 5.00225245 | 1.50080205 |
| SUM52PE | 3.96254902 | 1.50080205 |
| HCC1428 | 5.14363831 | 1.49057013 |
| NCIH460 | 5.05701697 | 1.48542683 |
| ACCMESO1 | 5.28651156 | 1.47508488 |


| SW1573 | 5.51664556 | 1.47508488 |
| :---: | :---: | :---: |
| NCIH1755 | 5.69988473 | 1.46988598 |
| NCIH647 | 5.31795522 | 1.46988598 |
| HELA | 5.79155363 | 1.46988598 |
| HCC827 | 5.39711841 | 1.45943162 |
| NCIH1435 | 5.16430358 | 1.43295941 |
| C4I | 5.13134254 | 1.43295941 |
| HCC2279 | 4.34340782 | 1.38404981 |
| NCIH2347 | 5.28281044 | 1.36176836 |
| LC1SQSF | 5.86888427 | 1.36176836 |
| NCIH2122 | 4.13750352 | 1.35614381 |
| HCC78 | 4.27500705 | 1.35049725 |
| AU565 | 5.01569381 | 1.35049725 |
| SNU886 | 5.4551628 | 1.33342373 |
| MDAMB175VII | 3.57046293 | 1.31614574 |
| DOTC24510 | 7.01870093 | 1.31034012 |
| HEPG2 | 4.50652578 | 1.29865832 |
| NCIH292 | 4.77978501 | 1.28095631 |
| CAL148 | 4.88264305 | 1.23878686 |
| SKBR3 | 4.99050111 | 1.23266076 |
| GIMEN | 4.26453643 | 1.23266076 |
| HUH1 | 4.45351758 | 1.22650853 |
| LUDLU1 | 4.53106949 | 1.22032996 |
| P4E6 | 3.8509994 | 1.21412481 |
| HCC15 | 5.78816366 | 1.20789285 |
| NCIH1869 | 4.91838623 | 1.1953476 |
| HOP92 | 3.84398384 | 1.16349873 |
| HUH7 | 5.1886383 | 1.16349873 |
| HCA1 | 5.02281165 | 1.11769504 |
| HOP62 | 5.35155766 | 1.10433666 |
| NCIH1623 | 5.29939121 | 1.0976108 |
| HARA | 5.52732061 | 1.09085343 |
| NCIH1651 | 5.32156738 | 1.077243 |
| MDAPCA2B | 4.66789213 | 1.077243 |
| HCC2218 | 3.65420638 | 1.06350294 |
| LU65 | 4.83642913 | 1.05658353 |
| SNU475 | 4.77663042 | 1.05658353 |
| HCC2814 | 4.75648961 | 1.03562391 |
| NCIH322 | 5.05180711 | 1.01435529 |
| COLO699 | 5.48091135 | 0.99276843 |
| NCIH2405 | 5.3950628 | 0.97819563 |


| SQ1 | 5.53822774 | 0.97819563 |
| :---: | :---: | :---: |
| CAL851 | 4.72955277 | 0.96347412 |
| RERFLCAD1 | 5.17512535 | 0.95605665 |
| HOKUG | 6.2981084 | 0.95605665 |
| EBC1 | 5.68201139 | 0.94860085 |
| NCIH1781 | 5.21955577 | 0.93357264 |
| HUH6 | 5.05961486 | 0.91838623 |
| JHH7 | 5.23649262 | 0.91838623 |
| RERFLCSQ1 | 5.20241772 | 0.91073266 |
| HCC2935 | 4.47573343 | 0.89530262 |
| MERO41 | 5.924575 | 0.88752527 |
| MDAMB361 | 4.73714592 | 0.88752527 |
| CALU3 | 4.54966917 | 0.87184365 |
| JIMT1 | 6.15319733 | 0.83187724 |
| SIHA | 5.7057015 | 0.81557543 |
| NCIH1563 | 4.94906797 | 0.80735492 |
| SHMAC5 | 3.0976108 | 0.79077204 |
| NCIH3122 | 5.29755828 | 0.78240857 |
| VP229 | 3.99367436 | 0.78240857 |
| SUM159PT | 5.29682446 | 0.77399633 |
| HCC2429 | 5.28281044 | 0.76553475 |
| BPH1 | 6.08065766 | 0.74846123 |
| MERO83 | 5.15583017 | 0.73118324 |
| NCIH2170 | 4.38818954 | 0.72246602 |
| JL1 | 4.28318098 | 0.72246602 |
| MERO48A | 5.5428771 | 0.72246602 |
| ZR7530 | 4.6099913 | 0.70487196 |
| HCC515 | 5.65935376 | 0.66902677 |
| KNS62 | 3.89044669 | 0.64154603 |
| BT474 | 4.89336221 | 0.63226822 |
| LI7 | 4.79181407 | 0.63226822 |
| NCIH1944 | 5.53884852 | 0.61353165 |
| EFM192A | 4.3262497 | 0.61353165 |
| HT3 | 3.86195536 | 0.61353165 |
| NCIH196 | 6.40684276 | 0.60407132 |
| SW756 | 6.64500988 | 0.59454855 |
| MERO82 | 5.72164608 | 0.56559718 |
| SNU423 | 5.02147973 | 0.54596837 |
| NCIH1666 | 4.17392693 | 0.50589093 |
| ABC1 | 5.53915881 | 0.50589093 |
| HCC70 | 6.65047737 | 0.50589093 |


| SUM185PE | 2.69376571 | 0.48542683 |
| :---: | :---: | :---: |
| MS751 | 6.03738222 | 0.48542683 |
| UACC812 | 3.16027483 | 0.43295941 |
| MERO14 | 4.84749588 | 0.41142625 |
| SUAMB415 | 4.20554891 | 0.40053793 |
| WPE1NA22 | 2.33913739 | 0.40053793 |
| MERO84 | 4.68706069 | 0.40053793 |
| SUM229PE | 4.98276546 | 0.38956681 |
| ISTMES1 | 4.52293456 | 0.38956681 |
| HLF | 5.21606678 | 0.37851162 |
| ISTMES2 | 5.83895177 | 0.37851162 |
| SISO | 5.78371856 | 0.35614381 |
| SNU387 | 5.62117275 | 0.3219281 |
| MERO95 | 5.627315 | 0.3219281 |
| SW954 | 5.05484848 | 0.27500705 |
| NCIH28 | 1.94485845 | 0.21412481 |
| NCIH226 | 5.67722633 | 0.20163386 |
| C4II | 5.25889576 | 0.18903382 |
| SUM102PT | 6.06995989 | 0.18903382 |
| HCC1588 | 1.57046293 | 0.0976108 |
| NCIH2452 | 4.00809242 | 0.07038933 |
| SHMAC4 | 5.67468662 | 0.05658353 |
| MERO25 | 3.65878273 | 0.05658353 |
|  | 6.55428186 | 0.04264434 |

